Add Ideal Size node to core nodes

The Ideal Size node is useful for High-Res Optimization as it gives the optimum size for creating an initial generation with minimal artifacts (duplication and other strangeness) from today's models.

After inclusion, front end graph generation can be simplified by offloading calculations for HRO initial generation to this node.
This commit is contained in:
Jonathan 2024-01-16 07:50:36 -06:00 committed by psychedelicious
parent 3c79476785
commit 892fe62264

View File

@ -1,5 +1,6 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import math
from contextlib import ExitStack from contextlib import ExitStack
from functools import singledispatchmethod from functools import singledispatchmethod
from typing import List, Literal, Optional, Union from typing import List, Literal, Optional, Union
@ -1228,3 +1229,54 @@ class CropLatentsCoreInvocation(BaseInvocation):
context.services.latents.save(name, cropped_latents) context.services.latents.save(name, cropped_latents)
return build_latents_output(latents_name=name, latents=cropped_latents) return build_latents_output(latents_name=name, latents=cropped_latents)
@invocation_output("ideal_size_output")
class IdealSizeOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
width: int = OutputField(description="The ideal width of the image in pixels")
height: int = OutputField(description="The ideal height of the image in pixels")
@invocation(
"ideal_size",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.2",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Target width")
height: int = InputField(default=576, description="Target height")
unet: UNetField = InputField(default=None, description="UNet submodel")
multiplier: float = InputField(default=1.0, description="Dimensional multiplier")
def trim_to_multiple_of(self, *args, multiple_of=LATENT_SCALE_FACTOR):
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
aspect = self.width / self.height
dimension = 512
if self.unet.unet.base_model == BaseModelType.StableDiffusion2:
dimension = 768
elif self.unet.unet.base_model == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = self.trim_to_multiple_of(
math.floor(init_width),
math.floor(init_height),
)
return IdealSizeOutput(width=scaled_width, height=scaled_height)