mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add personalization
This commit is contained in:
parent
0cdf5e61b0
commit
8952196bbf
166
.gitignore
vendored
Normal file
166
.gitignore
vendored
Normal file
@ -0,0 +1,166 @@
|
|||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
cover/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
# .python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# poetry
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||||
|
#poetry.lock
|
||||||
|
|
||||||
|
# pdm
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||||
|
#pdm.lock
|
||||||
|
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||||
|
# in version control.
|
||||||
|
# https://pdm.fming.dev/#use-with-ide
|
||||||
|
.pdm.toml
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||||
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
|
#.idea/
|
||||||
|
|
||||||
|
**/*.ckpt
|
||||||
|
src/
|
||||||
|
logs/
|
||||||
|
**/__pycache__/
|
||||||
|
outputs
|
58
README.md
58
README.md
@ -100,6 +100,64 @@ cat aspect of the image and 75% on the white duck aspect
|
|||||||
use any combination of integers and floating point numbers, and they
|
use any combination of integers and floating point numbers, and they
|
||||||
do not need to add up to 1.
|
do not need to add up to 1.
|
||||||
|
|
||||||
|
## Personalizing Text-to-Image Generation
|
||||||
|
|
||||||
|
You may personalize the generated images to provide your own styles or objects by training a new LDM checkpoint
|
||||||
|
and introducing a new vocabulary to the fixed model.
|
||||||
|
|
||||||
|
To train, prepare a folder that contains images sized at 512x512 and execute the following:
|
||||||
|
|
||||||
|
~~~~
|
||||||
|
# As the default backend is not available on Windows, if you're using that platform, execute SET PL_TORCH_DISTRIBUTED_BACKEND=gloo
|
||||||
|
(ldm) ~/stable-diffusion$ python3 ./main.py --base ./configs/stable-diffusion/v1-finetune.yaml \
|
||||||
|
-t \
|
||||||
|
--actual_resume ./models/ldm/stable-diffusion-v1/model.ckpt \
|
||||||
|
-n my_cat \
|
||||||
|
-gpus 0, \
|
||||||
|
--data_root D:/textual-inversion/my_cat \
|
||||||
|
--init_word 'cat'
|
||||||
|
~~~~
|
||||||
|
|
||||||
|
During the training process, files will be created in /logs/[project][time][project]/
|
||||||
|
where you can see the process.
|
||||||
|
|
||||||
|
conditioning* contains the training prompts
|
||||||
|
inputs, reconstruction the input images for the training epoch
|
||||||
|
samples, samples scaled for a sample of the prompt and one with the init word provided
|
||||||
|
|
||||||
|
On a RTX3090, the process for SD will take ~1h @1.6 iterations/sec.
|
||||||
|
|
||||||
|
Note: According to the associated paper, the optimal number of images is 3-5 any more images than that and your model might not converge.
|
||||||
|
|
||||||
|
Training will run indefinately, but you may wish to stop it before the heat death of the universe, when you fine a low loss epoch or around ~5000 iterations.
|
||||||
|
|
||||||
|
Once the model is trained, specify the trained .pt file when starting dream using
|
||||||
|
|
||||||
|
~~~~
|
||||||
|
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py --embedding_path /path/to/embedding.pt --full_precision
|
||||||
|
~~~~
|
||||||
|
|
||||||
|
Then, to utilize your subject at the dream prompt
|
||||||
|
|
||||||
|
~~~
|
||||||
|
dream> "a photo of *"
|
||||||
|
~~~
|
||||||
|
|
||||||
|
this also works with image2image
|
||||||
|
~~~~
|
||||||
|
dream> "waterfall and rainbow in the style of *" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
|
||||||
|
~~~~
|
||||||
|
|
||||||
|
It's also possible to train multiple tokens (modify the placeholder string in configs/stable-diffusion/v1-finetune.yaml) and combine LDM checkpoints using:
|
||||||
|
|
||||||
|
~~~~
|
||||||
|
(ldm) ~/stable-diffusion$ python3 ./scripts/merge_embeddings.py \
|
||||||
|
--manager_ckpts /path/to/first/embedding.pt /path/to/second/embedding.pt [...] \
|
||||||
|
--output_path /path/to/output/embedding.pt
|
||||||
|
~~~~
|
||||||
|
|
||||||
|
Credit goes to @rinongal and the repository located at https://github.com/rinongal/textual_inversion Please see the repository and associated paper for details and limitations.
|
||||||
|
|
||||||
## Changes
|
## Changes
|
||||||
|
|
||||||
* v1.07 (23 August 2022)
|
* v1.07 (23 August 2022)
|
||||||
|
105
configs/stable-diffusion/v1-finetune.yaml
Normal file
105
configs/stable-diffusion/v1-finetune.yaml
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 5.0e-03
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: image
|
||||||
|
cond_stage_key: caption
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: true # Note: different from the one we trained before
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
use_ema: False
|
||||||
|
embedding_reg_weight: 0.0
|
||||||
|
|
||||||
|
personalization_config:
|
||||||
|
target: ldm.modules.embedding_manager.EmbeddingManager
|
||||||
|
params:
|
||||||
|
placeholder_strings: ["*"]
|
||||||
|
initializer_words: ["sculpture"]
|
||||||
|
per_image_tokens: false
|
||||||
|
num_vectors_per_token: 1
|
||||||
|
progressive_words: False
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||||
|
|
||||||
|
data:
|
||||||
|
target: main.DataModuleFromConfig
|
||||||
|
params:
|
||||||
|
batch_size: 2
|
||||||
|
num_workers: 16
|
||||||
|
wrap: false
|
||||||
|
train:
|
||||||
|
target: ldm.data.personalized.PersonalizedBase
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
set: train
|
||||||
|
per_image_tokens: false
|
||||||
|
repeats: 100
|
||||||
|
validation:
|
||||||
|
target: ldm.data.personalized.PersonalizedBase
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
set: val
|
||||||
|
per_image_tokens: false
|
||||||
|
repeats: 10
|
||||||
|
|
||||||
|
lightning:
|
||||||
|
callbacks:
|
||||||
|
image_logger:
|
||||||
|
target: main.ImageLogger
|
||||||
|
params:
|
||||||
|
batch_frequency: 500
|
||||||
|
max_images: 8
|
||||||
|
increase_log_steps: False
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
benchmark: True
|
||||||
|
max_steps: 6100
|
@ -26,6 +26,15 @@ model:
|
|||||||
f_max: [ 1. ]
|
f_max: [ 1. ]
|
||||||
f_min: [ 1. ]
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
personalization_config:
|
||||||
|
target: ldm.modules.embedding_manager.EmbeddingManager
|
||||||
|
params:
|
||||||
|
placeholder_strings: ["*"]
|
||||||
|
initializer_words: ["sculpture"]
|
||||||
|
per_image_tokens: false
|
||||||
|
num_vectors_per_token: 1
|
||||||
|
progressive_words: False
|
||||||
|
|
||||||
unet_config:
|
unet_config:
|
||||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
params:
|
params:
|
||||||
|
@ -19,6 +19,7 @@ dependencies:
|
|||||||
- omegaconf==2.1.1
|
- omegaconf==2.1.1
|
||||||
- test-tube>=0.7.5
|
- test-tube>=0.7.5
|
||||||
- streamlit>=0.73.1
|
- streamlit>=0.73.1
|
||||||
|
- pillow==9.0.1
|
||||||
- einops==0.3.0
|
- einops==0.3.0
|
||||||
- torch-fidelity==0.3.0
|
- torch-fidelity==0.3.0
|
||||||
- transformers==4.19.2
|
- transformers==4.19.2
|
||||||
|
160
ldm/data/personalized.py
Normal file
160
ldm/data/personalized.py
Normal file
@ -0,0 +1,160 @@
|
|||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import PIL
|
||||||
|
from PIL import Image
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from torchvision import transforms
|
||||||
|
|
||||||
|
import random
|
||||||
|
|
||||||
|
imagenet_templates_smallest = [
|
||||||
|
'a photo of a {}',
|
||||||
|
]
|
||||||
|
|
||||||
|
imagenet_templates_small = [
|
||||||
|
'a photo of a {}',
|
||||||
|
'a rendering of a {}',
|
||||||
|
'a cropped photo of the {}',
|
||||||
|
'the photo of a {}',
|
||||||
|
'a photo of a clean {}',
|
||||||
|
'a photo of a dirty {}',
|
||||||
|
'a dark photo of the {}',
|
||||||
|
'a photo of my {}',
|
||||||
|
'a photo of the cool {}',
|
||||||
|
'a close-up photo of a {}',
|
||||||
|
'a bright photo of the {}',
|
||||||
|
'a cropped photo of a {}',
|
||||||
|
'a photo of the {}',
|
||||||
|
'a good photo of the {}',
|
||||||
|
'a photo of one {}',
|
||||||
|
'a close-up photo of the {}',
|
||||||
|
'a rendition of the {}',
|
||||||
|
'a photo of the clean {}',
|
||||||
|
'a rendition of a {}',
|
||||||
|
'a photo of a nice {}',
|
||||||
|
'a good photo of a {}',
|
||||||
|
'a photo of the nice {}',
|
||||||
|
'a photo of the small {}',
|
||||||
|
'a photo of the weird {}',
|
||||||
|
'a photo of the large {}',
|
||||||
|
'a photo of a cool {}',
|
||||||
|
'a photo of a small {}',
|
||||||
|
]
|
||||||
|
|
||||||
|
imagenet_dual_templates_small = [
|
||||||
|
'a photo of a {} with {}',
|
||||||
|
'a rendering of a {} with {}',
|
||||||
|
'a cropped photo of the {} with {}',
|
||||||
|
'the photo of a {} with {}',
|
||||||
|
'a photo of a clean {} with {}',
|
||||||
|
'a photo of a dirty {} with {}',
|
||||||
|
'a dark photo of the {} with {}',
|
||||||
|
'a photo of my {} with {}',
|
||||||
|
'a photo of the cool {} with {}',
|
||||||
|
'a close-up photo of a {} with {}',
|
||||||
|
'a bright photo of the {} with {}',
|
||||||
|
'a cropped photo of a {} with {}',
|
||||||
|
'a photo of the {} with {}',
|
||||||
|
'a good photo of the {} with {}',
|
||||||
|
'a photo of one {} with {}',
|
||||||
|
'a close-up photo of the {} with {}',
|
||||||
|
'a rendition of the {} with {}',
|
||||||
|
'a photo of the clean {} with {}',
|
||||||
|
'a rendition of a {} with {}',
|
||||||
|
'a photo of a nice {} with {}',
|
||||||
|
'a good photo of a {} with {}',
|
||||||
|
'a photo of the nice {} with {}',
|
||||||
|
'a photo of the small {} with {}',
|
||||||
|
'a photo of the weird {} with {}',
|
||||||
|
'a photo of the large {} with {}',
|
||||||
|
'a photo of a cool {} with {}',
|
||||||
|
'a photo of a small {} with {}',
|
||||||
|
]
|
||||||
|
|
||||||
|
per_img_token_list = [
|
||||||
|
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
|
||||||
|
]
|
||||||
|
|
||||||
|
class PersonalizedBase(Dataset):
|
||||||
|
def __init__(self,
|
||||||
|
data_root,
|
||||||
|
size=None,
|
||||||
|
repeats=100,
|
||||||
|
interpolation="bicubic",
|
||||||
|
flip_p=0.5,
|
||||||
|
set="train",
|
||||||
|
placeholder_token="*",
|
||||||
|
per_image_tokens=False,
|
||||||
|
center_crop=False,
|
||||||
|
mixing_prob=0.25,
|
||||||
|
coarse_class_text=None,
|
||||||
|
):
|
||||||
|
|
||||||
|
self.data_root = data_root
|
||||||
|
|
||||||
|
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
||||||
|
|
||||||
|
# self._length = len(self.image_paths)
|
||||||
|
self.num_images = len(self.image_paths)
|
||||||
|
self._length = self.num_images
|
||||||
|
|
||||||
|
self.placeholder_token = placeholder_token
|
||||||
|
|
||||||
|
self.per_image_tokens = per_image_tokens
|
||||||
|
self.center_crop = center_crop
|
||||||
|
self.mixing_prob = mixing_prob
|
||||||
|
|
||||||
|
self.coarse_class_text = coarse_class_text
|
||||||
|
|
||||||
|
if per_image_tokens:
|
||||||
|
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||||
|
|
||||||
|
if set == "train":
|
||||||
|
self._length = self.num_images * repeats
|
||||||
|
|
||||||
|
self.size = size
|
||||||
|
self.interpolation = {"linear": PIL.Image.LINEAR,
|
||||||
|
"bilinear": PIL.Image.BILINEAR,
|
||||||
|
"bicubic": PIL.Image.BICUBIC,
|
||||||
|
"lanczos": PIL.Image.LANCZOS,
|
||||||
|
}[interpolation]
|
||||||
|
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self._length
|
||||||
|
|
||||||
|
def __getitem__(self, i):
|
||||||
|
example = {}
|
||||||
|
image = Image.open(self.image_paths[i % self.num_images])
|
||||||
|
|
||||||
|
if not image.mode == "RGB":
|
||||||
|
image = image.convert("RGB")
|
||||||
|
|
||||||
|
placeholder_string = self.placeholder_token
|
||||||
|
if self.coarse_class_text:
|
||||||
|
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
|
||||||
|
|
||||||
|
if self.per_image_tokens and np.random.uniform() < self.mixing_prob:
|
||||||
|
text = random.choice(imagenet_dual_templates_small).format(placeholder_string, per_img_token_list[i % self.num_images])
|
||||||
|
else:
|
||||||
|
text = random.choice(imagenet_templates_small).format(placeholder_string)
|
||||||
|
|
||||||
|
example["caption"] = text
|
||||||
|
|
||||||
|
# default to score-sde preprocessing
|
||||||
|
img = np.array(image).astype(np.uint8)
|
||||||
|
|
||||||
|
if self.center_crop:
|
||||||
|
crop = min(img.shape[0], img.shape[1])
|
||||||
|
h, w, = img.shape[0], img.shape[1]
|
||||||
|
img = img[(h - crop) // 2:(h + crop) // 2,
|
||||||
|
(w - crop) // 2:(w + crop) // 2]
|
||||||
|
|
||||||
|
image = Image.fromarray(img)
|
||||||
|
if self.size is not None:
|
||||||
|
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||||
|
|
||||||
|
image = self.flip(image)
|
||||||
|
image = np.array(image).astype(np.uint8)
|
||||||
|
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||||
|
return example
|
129
ldm/data/personalized_style.py
Normal file
129
ldm/data/personalized_style.py
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import PIL
|
||||||
|
from PIL import Image
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from torchvision import transforms
|
||||||
|
|
||||||
|
import random
|
||||||
|
|
||||||
|
imagenet_templates_small = [
|
||||||
|
'a painting in the style of {}',
|
||||||
|
'a rendering in the style of {}',
|
||||||
|
'a cropped painting in the style of {}',
|
||||||
|
'the painting in the style of {}',
|
||||||
|
'a clean painting in the style of {}',
|
||||||
|
'a dirty painting in the style of {}',
|
||||||
|
'a dark painting in the style of {}',
|
||||||
|
'a picture in the style of {}',
|
||||||
|
'a cool painting in the style of {}',
|
||||||
|
'a close-up painting in the style of {}',
|
||||||
|
'a bright painting in the style of {}',
|
||||||
|
'a cropped painting in the style of {}',
|
||||||
|
'a good painting in the style of {}',
|
||||||
|
'a close-up painting in the style of {}',
|
||||||
|
'a rendition in the style of {}',
|
||||||
|
'a nice painting in the style of {}',
|
||||||
|
'a small painting in the style of {}',
|
||||||
|
'a weird painting in the style of {}',
|
||||||
|
'a large painting in the style of {}',
|
||||||
|
]
|
||||||
|
|
||||||
|
imagenet_dual_templates_small = [
|
||||||
|
'a painting in the style of {} with {}',
|
||||||
|
'a rendering in the style of {} with {}',
|
||||||
|
'a cropped painting in the style of {} with {}',
|
||||||
|
'the painting in the style of {} with {}',
|
||||||
|
'a clean painting in the style of {} with {}',
|
||||||
|
'a dirty painting in the style of {} with {}',
|
||||||
|
'a dark painting in the style of {} with {}',
|
||||||
|
'a cool painting in the style of {} with {}',
|
||||||
|
'a close-up painting in the style of {} with {}',
|
||||||
|
'a bright painting in the style of {} with {}',
|
||||||
|
'a cropped painting in the style of {} with {}',
|
||||||
|
'a good painting in the style of {} with {}',
|
||||||
|
'a painting of one {} in the style of {}',
|
||||||
|
'a nice painting in the style of {} with {}',
|
||||||
|
'a small painting in the style of {} with {}',
|
||||||
|
'a weird painting in the style of {} with {}',
|
||||||
|
'a large painting in the style of {} with {}',
|
||||||
|
]
|
||||||
|
|
||||||
|
per_img_token_list = [
|
||||||
|
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
|
||||||
|
]
|
||||||
|
|
||||||
|
class PersonalizedBase(Dataset):
|
||||||
|
def __init__(self,
|
||||||
|
data_root,
|
||||||
|
size=None,
|
||||||
|
repeats=100,
|
||||||
|
interpolation="bicubic",
|
||||||
|
flip_p=0.5,
|
||||||
|
set="train",
|
||||||
|
placeholder_token="*",
|
||||||
|
per_image_tokens=False,
|
||||||
|
center_crop=False,
|
||||||
|
):
|
||||||
|
|
||||||
|
self.data_root = data_root
|
||||||
|
|
||||||
|
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
||||||
|
|
||||||
|
# self._length = len(self.image_paths)
|
||||||
|
self.num_images = len(self.image_paths)
|
||||||
|
self._length = self.num_images
|
||||||
|
|
||||||
|
self.placeholder_token = placeholder_token
|
||||||
|
|
||||||
|
self.per_image_tokens = per_image_tokens
|
||||||
|
self.center_crop = center_crop
|
||||||
|
|
||||||
|
if per_image_tokens:
|
||||||
|
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||||
|
|
||||||
|
if set == "train":
|
||||||
|
self._length = self.num_images * repeats
|
||||||
|
|
||||||
|
self.size = size
|
||||||
|
self.interpolation = {"linear": PIL.Image.LINEAR,
|
||||||
|
"bilinear": PIL.Image.BILINEAR,
|
||||||
|
"bicubic": PIL.Image.BICUBIC,
|
||||||
|
"lanczos": PIL.Image.LANCZOS,
|
||||||
|
}[interpolation]
|
||||||
|
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self._length
|
||||||
|
|
||||||
|
def __getitem__(self, i):
|
||||||
|
example = {}
|
||||||
|
image = Image.open(self.image_paths[i % self.num_images])
|
||||||
|
|
||||||
|
if not image.mode == "RGB":
|
||||||
|
image = image.convert("RGB")
|
||||||
|
|
||||||
|
if self.per_image_tokens and np.random.uniform() < 0.25:
|
||||||
|
text = random.choice(imagenet_dual_templates_small).format(self.placeholder_token, per_img_token_list[i % self.num_images])
|
||||||
|
else:
|
||||||
|
text = random.choice(imagenet_templates_small).format(self.placeholder_token)
|
||||||
|
|
||||||
|
example["caption"] = text
|
||||||
|
|
||||||
|
# default to score-sde preprocessing
|
||||||
|
img = np.array(image).astype(np.uint8)
|
||||||
|
|
||||||
|
if self.center_crop:
|
||||||
|
crop = min(img.shape[0], img.shape[1])
|
||||||
|
h, w, = img.shape[0], img.shape[1]
|
||||||
|
img = img[(h - crop) // 2:(h + crop) // 2,
|
||||||
|
(w - crop) // 2:(w + crop) // 2]
|
||||||
|
|
||||||
|
image = Image.fromarray(img)
|
||||||
|
if self.size is not None:
|
||||||
|
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||||
|
|
||||||
|
image = self.flip(image)
|
||||||
|
image = np.array(image).astype(np.uint8)
|
||||||
|
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||||
|
return example
|
@ -7,7 +7,9 @@ https://github.com/CompVis/taming-transformers
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
from torch.optim.lr_scheduler import LambdaLR
|
from torch.optim.lr_scheduler import LambdaLR
|
||||||
@ -64,6 +66,7 @@ class DDPM(pl.LightningModule):
|
|||||||
cosine_s=8e-3,
|
cosine_s=8e-3,
|
||||||
given_betas=None,
|
given_betas=None,
|
||||||
original_elbo_weight=0.,
|
original_elbo_weight=0.,
|
||||||
|
embedding_reg_weight=0.,
|
||||||
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
||||||
l_simple_weight=1.,
|
l_simple_weight=1.,
|
||||||
conditioning_key=None,
|
conditioning_key=None,
|
||||||
@ -98,6 +101,7 @@ class DDPM(pl.LightningModule):
|
|||||||
self.v_posterior = v_posterior
|
self.v_posterior = v_posterior
|
||||||
self.original_elbo_weight = original_elbo_weight
|
self.original_elbo_weight = original_elbo_weight
|
||||||
self.l_simple_weight = l_simple_weight
|
self.l_simple_weight = l_simple_weight
|
||||||
|
self.embedding_reg_weight = embedding_reg_weight
|
||||||
|
|
||||||
if monitor is not None:
|
if monitor is not None:
|
||||||
self.monitor = monitor
|
self.monitor = monitor
|
||||||
@ -427,6 +431,7 @@ class LatentDiffusion(DDPM):
|
|||||||
def __init__(self,
|
def __init__(self,
|
||||||
first_stage_config,
|
first_stage_config,
|
||||||
cond_stage_config,
|
cond_stage_config,
|
||||||
|
personalization_config,
|
||||||
num_timesteps_cond=None,
|
num_timesteps_cond=None,
|
||||||
cond_stage_key="image",
|
cond_stage_key="image",
|
||||||
cond_stage_trainable=False,
|
cond_stage_trainable=False,
|
||||||
@ -436,6 +441,7 @@ class LatentDiffusion(DDPM):
|
|||||||
scale_factor=1.0,
|
scale_factor=1.0,
|
||||||
scale_by_std=False,
|
scale_by_std=False,
|
||||||
*args, **kwargs):
|
*args, **kwargs):
|
||||||
|
|
||||||
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
||||||
self.scale_by_std = scale_by_std
|
self.scale_by_std = scale_by_std
|
||||||
assert self.num_timesteps_cond <= kwargs['timesteps']
|
assert self.num_timesteps_cond <= kwargs['timesteps']
|
||||||
@ -450,6 +456,7 @@ class LatentDiffusion(DDPM):
|
|||||||
self.concat_mode = concat_mode
|
self.concat_mode = concat_mode
|
||||||
self.cond_stage_trainable = cond_stage_trainable
|
self.cond_stage_trainable = cond_stage_trainable
|
||||||
self.cond_stage_key = cond_stage_key
|
self.cond_stage_key = cond_stage_key
|
||||||
|
|
||||||
try:
|
try:
|
||||||
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
||||||
except:
|
except:
|
||||||
@ -460,6 +467,7 @@ class LatentDiffusion(DDPM):
|
|||||||
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
||||||
self.instantiate_first_stage(first_stage_config)
|
self.instantiate_first_stage(first_stage_config)
|
||||||
self.instantiate_cond_stage(cond_stage_config)
|
self.instantiate_cond_stage(cond_stage_config)
|
||||||
|
|
||||||
self.cond_stage_forward = cond_stage_forward
|
self.cond_stage_forward = cond_stage_forward
|
||||||
self.clip_denoised = False
|
self.clip_denoised = False
|
||||||
self.bbox_tokenizer = None
|
self.bbox_tokenizer = None
|
||||||
@ -469,6 +477,25 @@ class LatentDiffusion(DDPM):
|
|||||||
self.init_from_ckpt(ckpt_path, ignore_keys)
|
self.init_from_ckpt(ckpt_path, ignore_keys)
|
||||||
self.restarted_from_ckpt = True
|
self.restarted_from_ckpt = True
|
||||||
|
|
||||||
|
self.cond_stage_model.train = disabled_train
|
||||||
|
for param in self.cond_stage_model.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
self.model.eval()
|
||||||
|
self.model.train = disabled_train
|
||||||
|
for param in self.model.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
self.embedding_manager = self.instantiate_embedding_manager(personalization_config, self.cond_stage_model)
|
||||||
|
|
||||||
|
self.emb_ckpt_counter = 0
|
||||||
|
|
||||||
|
# if self.embedding_manager.is_clip:
|
||||||
|
# self.cond_stage_model.update_embedding_func(self.embedding_manager)
|
||||||
|
|
||||||
|
for param in self.embedding_manager.embedding_parameters():
|
||||||
|
param.requires_grad = True
|
||||||
|
|
||||||
def make_cond_schedule(self, ):
|
def make_cond_schedule(self, ):
|
||||||
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
||||||
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
||||||
@ -531,6 +558,15 @@ class LatentDiffusion(DDPM):
|
|||||||
raise SystemExit("* Couldn't load a dependency. Try running scripts/preload_models.py from an internet-conected machine.")
|
raise SystemExit("* Couldn't load a dependency. Try running scripts/preload_models.py from an internet-conected machine.")
|
||||||
self.cond_stage_model = model
|
self.cond_stage_model = model
|
||||||
|
|
||||||
|
|
||||||
|
def instantiate_embedding_manager(self, config, embedder):
|
||||||
|
model = instantiate_from_config(config, embedder=embedder)
|
||||||
|
|
||||||
|
if config.params.get("embedding_manager_ckpt", None): # do not load if missing OR empty string
|
||||||
|
model.load(config.params.embedding_manager_ckpt)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
||||||
denoise_row = []
|
denoise_row = []
|
||||||
for zd in tqdm(samples, desc=desc):
|
for zd in tqdm(samples, desc=desc):
|
||||||
@ -555,7 +591,7 @@ class LatentDiffusion(DDPM):
|
|||||||
def get_learned_conditioning(self, c):
|
def get_learned_conditioning(self, c):
|
||||||
if self.cond_stage_forward is None:
|
if self.cond_stage_forward is None:
|
||||||
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
||||||
c = self.cond_stage_model.encode(c)
|
c = self.cond_stage_model.encode(c, embedding_manager=self.embedding_manager)
|
||||||
if isinstance(c, DiagonalGaussianDistribution):
|
if isinstance(c, DiagonalGaussianDistribution):
|
||||||
c = c.mode()
|
c = c.mode()
|
||||||
else:
|
else:
|
||||||
@ -880,6 +916,7 @@ class LatentDiffusion(DDPM):
|
|||||||
if self.shorten_cond_schedule: # TODO: drop this option
|
if self.shorten_cond_schedule: # TODO: drop this option
|
||||||
tc = self.cond_ids[t].to(self.device)
|
tc = self.cond_ids[t].to(self.device)
|
||||||
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
||||||
|
|
||||||
return self.p_losses(x, c, t, *args, **kwargs)
|
return self.p_losses(x, c, t, *args, **kwargs)
|
||||||
|
|
||||||
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
||||||
@ -1046,6 +1083,14 @@ class LatentDiffusion(DDPM):
|
|||||||
loss += (self.original_elbo_weight * loss_vlb)
|
loss += (self.original_elbo_weight * loss_vlb)
|
||||||
loss_dict.update({f'{prefix}/loss': loss})
|
loss_dict.update({f'{prefix}/loss': loss})
|
||||||
|
|
||||||
|
if self.embedding_reg_weight > 0:
|
||||||
|
loss_embedding_reg = self.embedding_manager.embedding_to_coarse_loss().mean()
|
||||||
|
|
||||||
|
loss_dict.update({f'{prefix}/loss_emb_reg': loss_embedding_reg})
|
||||||
|
|
||||||
|
loss += (self.embedding_reg_weight * loss_embedding_reg)
|
||||||
|
loss_dict.update({f'{prefix}/loss': loss})
|
||||||
|
|
||||||
return loss, loss_dict
|
return loss, loss_dict
|
||||||
|
|
||||||
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
||||||
@ -1250,11 +1295,10 @@ class LatentDiffusion(DDPM):
|
|||||||
|
|
||||||
return samples, intermediates
|
return samples, intermediates
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
||||||
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False,
|
||||||
plot_diffusion_rows=True, **kwargs):
|
plot_diffusion_rows=False, **kwargs):
|
||||||
|
|
||||||
use_ddim = ddim_steps is not None
|
use_ddim = ddim_steps is not None
|
||||||
|
|
||||||
@ -1313,6 +1357,16 @@ class LatentDiffusion(DDPM):
|
|||||||
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
||||||
log["denoise_row"] = denoise_grid
|
log["denoise_row"] = denoise_grid
|
||||||
|
|
||||||
|
uc = self.get_learned_conditioning(len(c) * [""])
|
||||||
|
sample_scaled, _ = self.sample_log(cond=c,
|
||||||
|
batch_size=N,
|
||||||
|
ddim=use_ddim,
|
||||||
|
ddim_steps=ddim_steps,
|
||||||
|
eta=ddim_eta,
|
||||||
|
unconditional_guidance_scale=5.0,
|
||||||
|
unconditional_conditioning=uc)
|
||||||
|
log["samples_scaled"] = self.decode_first_stage(sample_scaled)
|
||||||
|
|
||||||
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
||||||
self.first_stage_model, IdentityFirstStage):
|
self.first_stage_model, IdentityFirstStage):
|
||||||
# also display when quantizing x0 while sampling
|
# also display when quantizing x0 while sampling
|
||||||
@ -1364,6 +1418,11 @@ class LatentDiffusion(DDPM):
|
|||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
lr = self.learning_rate
|
lr = self.learning_rate
|
||||||
|
|
||||||
|
if self.embedding_manager is not None:
|
||||||
|
params = list(self.embedding_manager.embedding_parameters())
|
||||||
|
# params = list(self.cond_stage_model.transformer.text_model.embeddings.embedding_manager.embedding_parameters())
|
||||||
|
else:
|
||||||
params = list(self.model.parameters())
|
params = list(self.model.parameters())
|
||||||
if self.cond_stage_trainable:
|
if self.cond_stage_trainable:
|
||||||
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
||||||
@ -1395,6 +1454,18 @@ class LatentDiffusion(DDPM):
|
|||||||
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
@rank_zero_only
|
||||||
|
def on_save_checkpoint(self, checkpoint):
|
||||||
|
checkpoint.clear()
|
||||||
|
|
||||||
|
if os.path.isdir(self.trainer.checkpoint_callback.dirpath):
|
||||||
|
self.embedding_manager.save(os.path.join(self.trainer.checkpoint_callback.dirpath, "embeddings.pt"))
|
||||||
|
|
||||||
|
if (self.global_step - self.emb_ckpt_counter) > 500:
|
||||||
|
self.embedding_manager.save(os.path.join(self.trainer.checkpoint_callback.dirpath, f"embeddings_gs-{self.global_step}.pt"))
|
||||||
|
|
||||||
|
self.emb_ckpt_counter += 500
|
||||||
|
|
||||||
|
|
||||||
class DiffusionWrapper(pl.LightningModule):
|
class DiffusionWrapper(pl.LightningModule):
|
||||||
def __init__(self, diff_model_config, conditioning_key):
|
def __init__(self, diff_model_config, conditioning_key):
|
||||||
|
@ -109,7 +109,7 @@ def checkpoint(func, inputs, params, flag):
|
|||||||
explicitly take as arguments.
|
explicitly take as arguments.
|
||||||
:param flag: if False, disable gradient checkpointing.
|
:param flag: if False, disable gradient checkpointing.
|
||||||
"""
|
"""
|
||||||
if flag:
|
if False: # disabled checkpointing to allow requires_grad = False for main model
|
||||||
args = tuple(inputs) + tuple(params)
|
args = tuple(inputs) + tuple(params)
|
||||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||||
else:
|
else:
|
||||||
|
165
ldm/modules/embedding_manager.py
Normal file
165
ldm/modules/embedding_manager.py
Normal file
@ -0,0 +1,165 @@
|
|||||||
|
from cmath import log
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
import sys
|
||||||
|
|
||||||
|
from ldm.data.personalized import per_img_token_list
|
||||||
|
from transformers import CLIPTokenizer
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
DEFAULT_PLACEHOLDER_TOKEN = ["*"]
|
||||||
|
|
||||||
|
PROGRESSIVE_SCALE = 2000
|
||||||
|
|
||||||
|
def get_clip_token_for_string(tokenizer, string):
|
||||||
|
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
|
||||||
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||||
|
tokens = batch_encoding["input_ids"]
|
||||||
|
sys.stdout.write(f"tokeme: {tokens}")
|
||||||
|
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
|
||||||
|
|
||||||
|
return tokens[0, 1]
|
||||||
|
|
||||||
|
def get_bert_token_for_string(tokenizer, string):
|
||||||
|
token = tokenizer(string)
|
||||||
|
# assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
|
||||||
|
|
||||||
|
token = token[0, 1]
|
||||||
|
|
||||||
|
return token
|
||||||
|
|
||||||
|
def get_embedding_for_clip_token(embedder, token):
|
||||||
|
return embedder(token.unsqueeze(0))[0, 0]
|
||||||
|
|
||||||
|
|
||||||
|
class EmbeddingManager(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embedder,
|
||||||
|
placeholder_strings=None,
|
||||||
|
initializer_words=None,
|
||||||
|
per_image_tokens=False,
|
||||||
|
num_vectors_per_token=1,
|
||||||
|
progressive_words=False,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.string_to_token_dict = {}
|
||||||
|
|
||||||
|
self.string_to_param_dict = nn.ParameterDict()
|
||||||
|
|
||||||
|
self.initial_embeddings = nn.ParameterDict() # These should not be optimized
|
||||||
|
|
||||||
|
self.progressive_words = progressive_words
|
||||||
|
self.progressive_counter = 0
|
||||||
|
|
||||||
|
self.max_vectors_per_token = num_vectors_per_token
|
||||||
|
|
||||||
|
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
|
||||||
|
self.is_clip = True
|
||||||
|
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
|
||||||
|
get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings)
|
||||||
|
token_dim = 1280
|
||||||
|
else: # using LDM's BERT encoder
|
||||||
|
self.is_clip = False
|
||||||
|
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
|
||||||
|
get_embedding_for_tkn = embedder.transformer.token_emb
|
||||||
|
token_dim = 1280
|
||||||
|
|
||||||
|
if per_image_tokens:
|
||||||
|
placeholder_strings.extend(per_img_token_list)
|
||||||
|
|
||||||
|
for idx, placeholder_string in enumerate(placeholder_strings):
|
||||||
|
|
||||||
|
token = get_token_for_string(placeholder_string)
|
||||||
|
|
||||||
|
if initializer_words and idx < len(initializer_words):
|
||||||
|
init_word_token = get_token_for_string(initializer_words[idx])
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
init_word_embedding = get_embedding_for_tkn(init_word_token.cpu())
|
||||||
|
|
||||||
|
token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True)
|
||||||
|
self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False)
|
||||||
|
else:
|
||||||
|
token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True))
|
||||||
|
|
||||||
|
self.string_to_token_dict[placeholder_string] = token
|
||||||
|
self.string_to_param_dict[placeholder_string] = token_params
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
tokenized_text,
|
||||||
|
embedded_text,
|
||||||
|
):
|
||||||
|
b, n, device = *tokenized_text.shape, tokenized_text.device
|
||||||
|
|
||||||
|
for placeholder_string, placeholder_token in self.string_to_token_dict.items():
|
||||||
|
|
||||||
|
placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device)
|
||||||
|
|
||||||
|
if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement
|
||||||
|
placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device))
|
||||||
|
embedded_text[placeholder_idx] = placeholder_embedding
|
||||||
|
else: # otherwise, need to insert and keep track of changing indices
|
||||||
|
if self.progressive_words:
|
||||||
|
self.progressive_counter += 1
|
||||||
|
max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE
|
||||||
|
else:
|
||||||
|
max_step_tokens = self.max_vectors_per_token
|
||||||
|
|
||||||
|
num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens)
|
||||||
|
|
||||||
|
placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device))
|
||||||
|
|
||||||
|
if placeholder_rows.nelement() == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True)
|
||||||
|
sorted_rows = placeholder_rows[sort_idx]
|
||||||
|
|
||||||
|
for idx in range(len(sorted_rows)):
|
||||||
|
row = sorted_rows[idx]
|
||||||
|
col = sorted_cols[idx]
|
||||||
|
|
||||||
|
new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n]
|
||||||
|
new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n]
|
||||||
|
|
||||||
|
embedded_text[row] = new_embed_row
|
||||||
|
tokenized_text[row] = new_token_row
|
||||||
|
|
||||||
|
return embedded_text
|
||||||
|
|
||||||
|
def save(self, ckpt_path):
|
||||||
|
torch.save({"string_to_token": self.string_to_token_dict,
|
||||||
|
"string_to_param": self.string_to_param_dict}, ckpt_path)
|
||||||
|
|
||||||
|
def load(self, ckpt_path):
|
||||||
|
ckpt = torch.load(ckpt_path, map_location='cpu')
|
||||||
|
|
||||||
|
self.string_to_token_dict = ckpt["string_to_token"]
|
||||||
|
self.string_to_param_dict = ckpt["string_to_param"]
|
||||||
|
|
||||||
|
def get_embedding_norms_squared(self):
|
||||||
|
all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim
|
||||||
|
param_norm_squared = (all_params * all_params).sum(axis=-1) # num_placeholders
|
||||||
|
|
||||||
|
return param_norm_squared
|
||||||
|
|
||||||
|
def embedding_parameters(self):
|
||||||
|
return self.string_to_param_dict.parameters()
|
||||||
|
|
||||||
|
def embedding_to_coarse_loss(self):
|
||||||
|
|
||||||
|
loss = 0.
|
||||||
|
num_embeddings = len(self.initial_embeddings)
|
||||||
|
|
||||||
|
for key in self.initial_embeddings:
|
||||||
|
optimized = self.string_to_param_dict[key]
|
||||||
|
coarse = self.initial_embeddings[key].clone().to(optimized.device)
|
||||||
|
|
||||||
|
loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings
|
||||||
|
|
||||||
|
return loss
|
397
ldm/modules/encoders/modules copy.py
Normal file
397
ldm/modules/encoders/modules copy.py
Normal file
@ -0,0 +1,397 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from functools import partial
|
||||||
|
import clip
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
from transformers import CLIPTokenizer, CLIPTextModel
|
||||||
|
import kornia
|
||||||
|
|
||||||
|
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||||||
|
|
||||||
|
def _expand_mask(mask, dtype, tgt_len = None):
|
||||||
|
"""
|
||||||
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||||
|
"""
|
||||||
|
bsz, src_len = mask.size()
|
||||||
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||||
|
|
||||||
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||||
|
|
||||||
|
inverted_mask = 1.0 - expanded_mask
|
||||||
|
|
||||||
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||||
|
|
||||||
|
def _build_causal_attention_mask(bsz, seq_len, dtype):
|
||||||
|
# lazily create causal attention mask, with full attention between the vision tokens
|
||||||
|
# pytorch uses additive attention mask; fill with -inf
|
||||||
|
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
||||||
|
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
||||||
|
mask.triu_(1) # zero out the lower diagonal
|
||||||
|
mask = mask.unsqueeze(1) # expand mask
|
||||||
|
return mask
|
||||||
|
|
||||||
|
class AbstractEncoder(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def encode(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class ClassEmbedder(nn.Module):
|
||||||
|
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
||||||
|
super().__init__()
|
||||||
|
self.key = key
|
||||||
|
self.embedding = nn.Embedding(n_classes, embed_dim)
|
||||||
|
|
||||||
|
def forward(self, batch, key=None):
|
||||||
|
if key is None:
|
||||||
|
key = self.key
|
||||||
|
# this is for use in crossattn
|
||||||
|
c = batch[key][:, None]
|
||||||
|
c = self.embedding(c)
|
||||||
|
return c
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEmbedder(AbstractEncoder):
|
||||||
|
"""Some transformer encoder layers"""
|
||||||
|
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
||||||
|
super().__init__()
|
||||||
|
self.device = device
|
||||||
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||||||
|
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
||||||
|
|
||||||
|
def forward(self, tokens):
|
||||||
|
tokens = tokens.to(self.device) # meh
|
||||||
|
z = self.transformer(tokens, return_embeddings=True)
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
return self(x)
|
||||||
|
|
||||||
|
|
||||||
|
class BERTTokenizer(AbstractEncoder):
|
||||||
|
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
||||||
|
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
||||||
|
super().__init__()
|
||||||
|
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
||||||
|
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||||
|
self.device = device
|
||||||
|
self.vq_interface = vq_interface
|
||||||
|
self.max_length = max_length
|
||||||
|
|
||||||
|
def forward(self, text):
|
||||||
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||||
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||||
|
tokens = batch_encoding["input_ids"].to(self.device)
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def encode(self, text):
|
||||||
|
tokens = self(text)
|
||||||
|
if not self.vq_interface:
|
||||||
|
return tokens
|
||||||
|
return None, None, [None, None, tokens]
|
||||||
|
|
||||||
|
def decode(self, text):
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
class BERTEmbedder(AbstractEncoder):
|
||||||
|
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
||||||
|
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
||||||
|
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
||||||
|
super().__init__()
|
||||||
|
self.use_tknz_fn = use_tokenizer
|
||||||
|
if self.use_tknz_fn:
|
||||||
|
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
||||||
|
self.device = device
|
||||||
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||||||
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||||
|
emb_dropout=embedding_dropout)
|
||||||
|
|
||||||
|
def forward(self, text, embedding_manager=None):
|
||||||
|
if self.use_tknz_fn:
|
||||||
|
tokens = self.tknz_fn(text)#.to(self.device)
|
||||||
|
else:
|
||||||
|
tokens = text
|
||||||
|
z = self.transformer(tokens, return_embeddings=True, embedding_manager=embedding_manager)
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode(self, text, **kwargs):
|
||||||
|
# output of length 77
|
||||||
|
return self(text, **kwargs)
|
||||||
|
|
||||||
|
class SpatialRescaler(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
n_stages=1,
|
||||||
|
method='bilinear',
|
||||||
|
multiplier=0.5,
|
||||||
|
in_channels=3,
|
||||||
|
out_channels=None,
|
||||||
|
bias=False):
|
||||||
|
super().__init__()
|
||||||
|
self.n_stages = n_stages
|
||||||
|
assert self.n_stages >= 0
|
||||||
|
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
||||||
|
self.multiplier = multiplier
|
||||||
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
||||||
|
self.remap_output = out_channels is not None
|
||||||
|
if self.remap_output:
|
||||||
|
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
||||||
|
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
||||||
|
|
||||||
|
def forward(self,x):
|
||||||
|
for stage in range(self.n_stages):
|
||||||
|
x = self.interpolator(x, scale_factor=self.multiplier)
|
||||||
|
|
||||||
|
|
||||||
|
if self.remap_output:
|
||||||
|
x = self.channel_mapper(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
return self(x)
|
||||||
|
|
||||||
|
class FrozenCLIPEmbedder(AbstractEncoder):
|
||||||
|
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||||
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
||||||
|
super().__init__()
|
||||||
|
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||||
|
self.transformer = CLIPTextModel.from_pretrained(version)
|
||||||
|
self.device = device
|
||||||
|
self.max_length = max_length
|
||||||
|
self.freeze()
|
||||||
|
|
||||||
|
def embedding_forward(
|
||||||
|
self,
|
||||||
|
input_ids = None,
|
||||||
|
position_ids = None,
|
||||||
|
inputs_embeds = None,
|
||||||
|
embedding_manager = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
|
||||||
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = self.position_ids[:, :seq_length]
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.token_embedding(input_ids)
|
||||||
|
|
||||||
|
if embedding_manager is not None:
|
||||||
|
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
||||||
|
|
||||||
|
|
||||||
|
position_embeddings = self.position_embedding(position_ids)
|
||||||
|
embeddings = inputs_embeds + position_embeddings
|
||||||
|
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings)
|
||||||
|
|
||||||
|
def encoder_forward(
|
||||||
|
self,
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask = None,
|
||||||
|
causal_attention_mask = None,
|
||||||
|
output_attentions = None,
|
||||||
|
output_hidden_states = None,
|
||||||
|
return_dict = None,
|
||||||
|
):
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
encoder_states = () if output_hidden_states else None
|
||||||
|
all_attentions = () if output_attentions else None
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
for idx, encoder_layer in enumerate(self.layers):
|
||||||
|
if output_hidden_states:
|
||||||
|
encoder_states = encoder_states + (hidden_states,)
|
||||||
|
|
||||||
|
layer_outputs = encoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask,
|
||||||
|
causal_attention_mask,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||||||
|
|
||||||
|
if output_hidden_states:
|
||||||
|
encoder_states = encoder_states + (hidden_states,)
|
||||||
|
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
|
||||||
|
|
||||||
|
|
||||||
|
def text_encoder_forward(
|
||||||
|
self,
|
||||||
|
input_ids = None,
|
||||||
|
attention_mask = None,
|
||||||
|
position_ids = None,
|
||||||
|
output_attentions = None,
|
||||||
|
output_hidden_states = None,
|
||||||
|
return_dict = None,
|
||||||
|
embedding_manager = None,
|
||||||
|
):
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if input_ids is None:
|
||||||
|
raise ValueError("You have to specify either input_ids")
|
||||||
|
|
||||||
|
input_shape = input_ids.size()
|
||||||
|
input_ids = input_ids.view(-1, input_shape[-1])
|
||||||
|
|
||||||
|
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager)
|
||||||
|
|
||||||
|
bsz, seq_len = input_shape
|
||||||
|
# CLIP's text model uses causal mask, prepare it here.
|
||||||
|
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
||||||
|
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
|
||||||
|
hidden_states.device
|
||||||
|
)
|
||||||
|
|
||||||
|
# expand attention_mask
|
||||||
|
if attention_mask is not None:
|
||||||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||||
|
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
||||||
|
|
||||||
|
last_hidden_state = self.encoder(
|
||||||
|
inputs_embeds=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
causal_attention_mask=causal_attention_mask,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
||||||
|
|
||||||
|
return last_hidden_state
|
||||||
|
|
||||||
|
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
|
||||||
|
|
||||||
|
def transformer_forward(
|
||||||
|
self,
|
||||||
|
input_ids = None,
|
||||||
|
attention_mask = None,
|
||||||
|
position_ids = None,
|
||||||
|
output_attentions = None,
|
||||||
|
output_hidden_states = None,
|
||||||
|
return_dict = None,
|
||||||
|
embedding_manager = None,
|
||||||
|
):
|
||||||
|
return self.text_model(
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
embedding_manager = embedding_manager
|
||||||
|
)
|
||||||
|
|
||||||
|
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
||||||
|
|
||||||
|
|
||||||
|
def freeze(self):
|
||||||
|
self.transformer = self.transformer.eval()
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def forward(self, text, **kwargs):
|
||||||
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||||
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||||
|
tokens = batch_encoding["input_ids"].to(self.device)
|
||||||
|
z = self.transformer(input_ids=tokens, **kwargs)
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode(self, text, **kwargs):
|
||||||
|
return self(text, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenCLIPTextEmbedder(nn.Module):
|
||||||
|
"""
|
||||||
|
Uses the CLIP transformer encoder for text.
|
||||||
|
"""
|
||||||
|
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
|
||||||
|
super().__init__()
|
||||||
|
self.model, _ = clip.load(version, jit=False, device="cpu")
|
||||||
|
self.device = device
|
||||||
|
self.max_length = max_length
|
||||||
|
self.n_repeat = n_repeat
|
||||||
|
self.normalize = normalize
|
||||||
|
|
||||||
|
def freeze(self):
|
||||||
|
self.model = self.model.eval()
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def forward(self, text):
|
||||||
|
tokens = clip.tokenize(text).to(self.device)
|
||||||
|
z = self.model.encode_text(tokens)
|
||||||
|
if self.normalize:
|
||||||
|
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode(self, text):
|
||||||
|
z = self(text)
|
||||||
|
if z.ndim==2:
|
||||||
|
z = z[:, None, :]
|
||||||
|
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenClipImageEmbedder(nn.Module):
|
||||||
|
"""
|
||||||
|
Uses the CLIP image encoder.
|
||||||
|
"""
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model,
|
||||||
|
jit=False,
|
||||||
|
device='cuda' if torch.cuda.is_available() else 'cpu',
|
||||||
|
antialias=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
||||||
|
|
||||||
|
self.antialias = antialias
|
||||||
|
|
||||||
|
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
||||||
|
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
||||||
|
|
||||||
|
def preprocess(self, x):
|
||||||
|
# normalize to [0,1]
|
||||||
|
x = kornia.geometry.resize(x, (224, 224),
|
||||||
|
interpolation='bicubic',align_corners=True,
|
||||||
|
antialias=self.antialias)
|
||||||
|
x = (x + 1.) / 2.
|
||||||
|
# renormalize according to clip
|
||||||
|
x = kornia.enhance.normalize(x, self.mean, self.std)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# x is assumed to be in range [-1,1]
|
||||||
|
return self.model.encode_image(self.preprocess(x))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from ldm.util import count_params
|
||||||
|
model = FrozenCLIPEmbedder()
|
||||||
|
count_params(model, verbose=True)
|
@ -8,6 +8,27 @@ import kornia
|
|||||||
|
|
||||||
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||||||
|
|
||||||
|
def _expand_mask(mask, dtype, tgt_len = None):
|
||||||
|
"""
|
||||||
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||||
|
"""
|
||||||
|
bsz, src_len = mask.size()
|
||||||
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||||
|
|
||||||
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||||
|
|
||||||
|
inverted_mask = 1.0 - expanded_mask
|
||||||
|
|
||||||
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||||
|
|
||||||
|
def _build_causal_attention_mask(bsz, seq_len, dtype):
|
||||||
|
# lazily create causal attention mask, with full attention between the vision tokens
|
||||||
|
# pytorch uses additive attention mask; fill with -inf
|
||||||
|
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
||||||
|
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
||||||
|
mask.triu_(1) # zero out the lower diagonal
|
||||||
|
mask = mask.unsqueeze(1) # expand mask
|
||||||
|
return mask
|
||||||
|
|
||||||
class AbstractEncoder(nn.Module):
|
class AbstractEncoder(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@ -98,18 +119,17 @@ class BERTEmbedder(AbstractEncoder):
|
|||||||
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||||
emb_dropout=embedding_dropout)
|
emb_dropout=embedding_dropout)
|
||||||
|
|
||||||
def forward(self, text):
|
def forward(self, text, embedding_manager=None):
|
||||||
if self.use_tknz_fn:
|
if self.use_tknz_fn:
|
||||||
tokens = self.tknz_fn(text)#.to(self.device)
|
tokens = self.tknz_fn(text)#.to(self.device)
|
||||||
else:
|
else:
|
||||||
tokens = text
|
tokens = text
|
||||||
z = self.transformer(tokens, return_embeddings=True)
|
z = self.transformer(tokens, return_embeddings=True, embedding_manager=embedding_manager)
|
||||||
return z
|
return z
|
||||||
|
|
||||||
def encode(self, text):
|
def encode(self, text, **kwargs):
|
||||||
# output of length 77
|
# output of length 77
|
||||||
return self(text)
|
return self(text, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
class SpatialRescaler(nn.Module):
|
class SpatialRescaler(nn.Module):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
@ -152,22 +172,165 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
|||||||
self.max_length = max_length
|
self.max_length = max_length
|
||||||
self.freeze()
|
self.freeze()
|
||||||
|
|
||||||
|
def embedding_forward(
|
||||||
|
self,
|
||||||
|
input_ids = None,
|
||||||
|
position_ids = None,
|
||||||
|
inputs_embeds = None,
|
||||||
|
embedding_manager = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
|
||||||
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = self.position_ids[:, :seq_length]
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.token_embedding(input_ids)
|
||||||
|
|
||||||
|
if embedding_manager is not None:
|
||||||
|
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
||||||
|
|
||||||
|
|
||||||
|
position_embeddings = self.position_embedding(position_ids)
|
||||||
|
embeddings = inputs_embeds + position_embeddings
|
||||||
|
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings)
|
||||||
|
|
||||||
|
def encoder_forward(
|
||||||
|
self,
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask = None,
|
||||||
|
causal_attention_mask = None,
|
||||||
|
output_attentions = None,
|
||||||
|
output_hidden_states = None,
|
||||||
|
return_dict = None,
|
||||||
|
):
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
encoder_states = () if output_hidden_states else None
|
||||||
|
all_attentions = () if output_attentions else None
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
for idx, encoder_layer in enumerate(self.layers):
|
||||||
|
if output_hidden_states:
|
||||||
|
encoder_states = encoder_states + (hidden_states,)
|
||||||
|
|
||||||
|
layer_outputs = encoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask,
|
||||||
|
causal_attention_mask,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||||||
|
|
||||||
|
if output_hidden_states:
|
||||||
|
encoder_states = encoder_states + (hidden_states,)
|
||||||
|
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
|
||||||
|
|
||||||
|
|
||||||
|
def text_encoder_forward(
|
||||||
|
self,
|
||||||
|
input_ids = None,
|
||||||
|
attention_mask = None,
|
||||||
|
position_ids = None,
|
||||||
|
output_attentions = None,
|
||||||
|
output_hidden_states = None,
|
||||||
|
return_dict = None,
|
||||||
|
embedding_manager = None,
|
||||||
|
):
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if input_ids is None:
|
||||||
|
raise ValueError("You have to specify either input_ids")
|
||||||
|
|
||||||
|
input_shape = input_ids.size()
|
||||||
|
input_ids = input_ids.view(-1, input_shape[-1])
|
||||||
|
|
||||||
|
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager)
|
||||||
|
|
||||||
|
bsz, seq_len = input_shape
|
||||||
|
# CLIP's text model uses causal mask, prepare it here.
|
||||||
|
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
||||||
|
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
|
||||||
|
hidden_states.device
|
||||||
|
)
|
||||||
|
|
||||||
|
# expand attention_mask
|
||||||
|
if attention_mask is not None:
|
||||||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||||
|
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
||||||
|
|
||||||
|
last_hidden_state = self.encoder(
|
||||||
|
inputs_embeds=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
causal_attention_mask=causal_attention_mask,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
||||||
|
|
||||||
|
return last_hidden_state
|
||||||
|
|
||||||
|
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
|
||||||
|
|
||||||
|
def transformer_forward(
|
||||||
|
self,
|
||||||
|
input_ids = None,
|
||||||
|
attention_mask = None,
|
||||||
|
position_ids = None,
|
||||||
|
output_attentions = None,
|
||||||
|
output_hidden_states = None,
|
||||||
|
return_dict = None,
|
||||||
|
embedding_manager = None,
|
||||||
|
):
|
||||||
|
return self.text_model(
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
embedding_manager = embedding_manager
|
||||||
|
)
|
||||||
|
|
||||||
|
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
||||||
|
|
||||||
|
|
||||||
def freeze(self):
|
def freeze(self):
|
||||||
self.transformer = self.transformer.eval()
|
self.transformer = self.transformer.eval()
|
||||||
for param in self.parameters():
|
for param in self.parameters():
|
||||||
param.requires_grad = False
|
param.requires_grad = False
|
||||||
|
|
||||||
def forward(self, text):
|
def forward(self, text, **kwargs):
|
||||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||||
tokens = batch_encoding["input_ids"].to(self.device)
|
tokens = batch_encoding["input_ids"].to(self.device)
|
||||||
outputs = self.transformer(input_ids=tokens)
|
z = self.transformer(input_ids=tokens, **kwargs)
|
||||||
|
|
||||||
z = outputs.last_hidden_state
|
|
||||||
return z
|
return z
|
||||||
|
|
||||||
def encode(self, text):
|
def encode(self, text, **kwargs):
|
||||||
return self(text)
|
return self(text, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
class FrozenCLIPTextEmbedder(nn.Module):
|
class FrozenCLIPTextEmbedder(nn.Module):
|
||||||
|
@ -485,7 +485,8 @@ class AttentionLayers(nn.Module):
|
|||||||
mask=None,
|
mask=None,
|
||||||
context_mask=None,
|
context_mask=None,
|
||||||
mems=None,
|
mems=None,
|
||||||
return_hiddens=False
|
return_hiddens=False,
|
||||||
|
**kwargs
|
||||||
):
|
):
|
||||||
hiddens = []
|
hiddens = []
|
||||||
intermediates = []
|
intermediates = []
|
||||||
@ -603,11 +604,19 @@ class TransformerWrapper(nn.Module):
|
|||||||
return_mems=False,
|
return_mems=False,
|
||||||
return_attn=False,
|
return_attn=False,
|
||||||
mems=None,
|
mems=None,
|
||||||
|
embedding_manager=None,
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
||||||
x = self.token_emb(x)
|
|
||||||
x += self.pos_emb(x)
|
embedded_x = self.token_emb(x)
|
||||||
|
|
||||||
|
if embedding_manager:
|
||||||
|
x = embedding_manager(x, embedded_x)
|
||||||
|
else:
|
||||||
|
x = embedded_x
|
||||||
|
|
||||||
|
x = x + self.pos_emb(x)
|
||||||
x = self.emb_dropout(x)
|
x = self.emb_dropout(x)
|
||||||
|
|
||||||
x = self.project_emb(x)
|
x = self.project_emb(x)
|
||||||
|
@ -89,6 +89,7 @@ class T2I:
|
|||||||
downsampling_factor
|
downsampling_factor
|
||||||
precision
|
precision
|
||||||
strength
|
strength
|
||||||
|
embedding_path
|
||||||
|
|
||||||
The vast majority of these arguments default to reasonable values.
|
The vast majority of these arguments default to reasonable values.
|
||||||
"""
|
"""
|
||||||
@ -113,6 +114,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
precision='autocast',
|
precision='autocast',
|
||||||
full_precision=False,
|
full_precision=False,
|
||||||
strength=0.75, # default in scripts/img2img.py
|
strength=0.75, # default in scripts/img2img.py
|
||||||
|
embedding_path=None,
|
||||||
latent_diffusion_weights=False # just to keep track of this parameter when regenerating prompt
|
latent_diffusion_weights=False # just to keep track of this parameter when regenerating prompt
|
||||||
):
|
):
|
||||||
self.outdir = outdir
|
self.outdir = outdir
|
||||||
@ -133,6 +135,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
self.precision = precision
|
self.precision = precision
|
||||||
self.full_precision = full_precision
|
self.full_precision = full_precision
|
||||||
self.strength = strength
|
self.strength = strength
|
||||||
|
self.embedding_path = embedding_path
|
||||||
self.model = None # empty for now
|
self.model = None # empty for now
|
||||||
self.sampler = None
|
self.sampler = None
|
||||||
self.latent_diffusion_weights=latent_diffusion_weights
|
self.latent_diffusion_weights=latent_diffusion_weights
|
||||||
@ -143,7 +146,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
|
|
||||||
def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None,
|
def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None,
|
||||||
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
||||||
cfg_scale=None,ddim_eta=None,strength=None,init_img=None,skip_normalize=False):
|
cfg_scale=None,ddim_eta=None,strength=None,embedding_path=None,init_img=None,skip_normalize=False):
|
||||||
"""
|
"""
|
||||||
Generate an image from the prompt, writing iteration images into the outdir
|
Generate an image from the prompt, writing iteration images into the outdir
|
||||||
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
|
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
|
||||||
@ -158,6 +161,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
batch_size = batch_size or self.batch_size
|
batch_size = batch_size or self.batch_size
|
||||||
iterations = iterations or self.iterations
|
iterations = iterations or self.iterations
|
||||||
strength = strength or self.strength # not actually used here, but preserved for code refactoring
|
strength = strength or self.strength # not actually used here, but preserved for code refactoring
|
||||||
|
embedding_path = embedding_path or self.embedding_path
|
||||||
|
|
||||||
model = self.load_model() # will instantiate the model or return it from cache
|
model = self.load_model() # will instantiate the model or return it from cache
|
||||||
|
|
||||||
@ -268,7 +272,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
# There is lots of shared code between this and txt2img and should be refactored.
|
# There is lots of shared code between this and txt2img and should be refactored.
|
||||||
def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None,
|
def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None,
|
||||||
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
||||||
cfg_scale=None,ddim_eta=None,strength=None,skip_normalize=False):
|
cfg_scale=None,ddim_eta=None,strength=None,embedding_path=None,skip_normalize=False):
|
||||||
"""
|
"""
|
||||||
Generate an image from the prompt and the initial image, writing iteration images into the outdir
|
Generate an image from the prompt and the initial image, writing iteration images into the outdir
|
||||||
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
|
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
|
||||||
@ -281,6 +285,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
batch_size = batch_size or self.batch_size
|
batch_size = batch_size or self.batch_size
|
||||||
iterations = iterations or self.iterations
|
iterations = iterations or self.iterations
|
||||||
strength = strength or self.strength
|
strength = strength or self.strength
|
||||||
|
embedding_path = embedding_path or self.embedding_path
|
||||||
|
|
||||||
if init_img is None:
|
if init_img is None:
|
||||||
print("no init_img provided!")
|
print("no init_img provided!")
|
||||||
@ -431,6 +436,7 @@ The vast majority of these arguments default to reasonable values.
|
|||||||
config = OmegaConf.load(self.config)
|
config = OmegaConf.load(self.config)
|
||||||
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||||
model = self._load_model_from_config(config,self.weights)
|
model = self._load_model_from_config(config,self.weights)
|
||||||
|
model.embedding_manager.load(self.embedding_path)
|
||||||
self.model = model.to(self.device)
|
self.model = model.to(self.device)
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
raise SystemExit
|
raise SystemExit
|
||||||
|
287
ldm/stable_txt2img.py
Normal file
287
ldm/stable_txt2img.py
Normal file
@ -0,0 +1,287 @@
|
|||||||
|
import argparse, os, sys, glob
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
from itertools import islice
|
||||||
|
from einops import rearrange
|
||||||
|
from torchvision.utils import make_grid
|
||||||
|
import time
|
||||||
|
from pytorch_lightning import seed_everything
|
||||||
|
from torch import autocast
|
||||||
|
from contextlib import contextmanager, nullcontext
|
||||||
|
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
|
|
||||||
|
|
||||||
|
def chunk(it, size):
|
||||||
|
it = iter(it)
|
||||||
|
return iter(lambda: tuple(islice(it, size)), ())
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_from_config(config, ckpt, verbose=False):
|
||||||
|
print(f"Loading model from {ckpt}")
|
||||||
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||||
|
if "global_step" in pl_sd:
|
||||||
|
print(f"Global Step: {pl_sd['global_step']}")
|
||||||
|
sd = pl_sd["state_dict"]
|
||||||
|
model = instantiate_from_config(config.model)
|
||||||
|
m, u = model.load_state_dict(sd, strict=False)
|
||||||
|
if len(m) > 0 and verbose:
|
||||||
|
print("missing keys:")
|
||||||
|
print(m)
|
||||||
|
if len(u) > 0 and verbose:
|
||||||
|
print("unexpected keys:")
|
||||||
|
print(u)
|
||||||
|
|
||||||
|
model.cuda()
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--prompt",
|
||||||
|
type=str,
|
||||||
|
nargs="?",
|
||||||
|
default="a painting of a virus monster playing guitar",
|
||||||
|
help="the prompt to render"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--outdir",
|
||||||
|
type=str,
|
||||||
|
nargs="?",
|
||||||
|
help="dir to write results to",
|
||||||
|
default="outputs/txt2img-samples"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip_grid",
|
||||||
|
action='store_true',
|
||||||
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip_save",
|
||||||
|
action='store_true',
|
||||||
|
help="do not save individual samples. For speed measurements.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--ddim_steps",
|
||||||
|
type=int,
|
||||||
|
default=50,
|
||||||
|
help="number of ddim sampling steps",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--plms",
|
||||||
|
action='store_true',
|
||||||
|
help="use plms sampling",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--laion400m",
|
||||||
|
action='store_true',
|
||||||
|
help="uses the LAION400M model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--fixed_code",
|
||||||
|
action='store_true',
|
||||||
|
help="if enabled, uses the same starting code across samples ",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--ddim_eta",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--n_iter",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="sample this often",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--H",
|
||||||
|
type=int,
|
||||||
|
default=512,
|
||||||
|
help="image height, in pixel space",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--W",
|
||||||
|
type=int,
|
||||||
|
default=512,
|
||||||
|
help="image width, in pixel space",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--C",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="latent channels",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--f",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="downsampling factor",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--n_samples",
|
||||||
|
type=int,
|
||||||
|
default=3,
|
||||||
|
help="how many samples to produce for each given prompt. A.k.a. batch size",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--n_rows",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="rows in the grid (default: n_samples)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--scale",
|
||||||
|
type=float,
|
||||||
|
default=7.5,
|
||||||
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--from-file",
|
||||||
|
type=str,
|
||||||
|
help="if specified, load prompts from this file",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--config",
|
||||||
|
type=str,
|
||||||
|
default="configs/stable-diffusion/v1-inference.yaml",
|
||||||
|
help="path to config which constructs model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--ckpt",
|
||||||
|
type=str,
|
||||||
|
default="models/ldm/stable-diffusion-v1/model.ckpt",
|
||||||
|
help="path to checkpoint of model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="the seed (for reproducible sampling)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--precision",
|
||||||
|
type=str,
|
||||||
|
help="evaluate at this precision",
|
||||||
|
choices=["full", "autocast"],
|
||||||
|
default="autocast"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding_path",
|
||||||
|
type=str,
|
||||||
|
help="Path to a pre-trained embedding manager checkpoint")
|
||||||
|
|
||||||
|
opt = parser.parse_args()
|
||||||
|
|
||||||
|
if opt.laion400m:
|
||||||
|
print("Falling back to LAION 400M model...")
|
||||||
|
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
|
||||||
|
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
|
||||||
|
opt.outdir = "outputs/txt2img-samples-laion400m"
|
||||||
|
|
||||||
|
seed_everything(opt.seed)
|
||||||
|
|
||||||
|
config = OmegaConf.load(f"{opt.config}")
|
||||||
|
model = load_model_from_config(config, f"{opt.ckpt}")
|
||||||
|
model.embedding_manager.load(opt.embedding_path)
|
||||||
|
|
||||||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
|
if opt.plms:
|
||||||
|
sampler = PLMSSampler(model)
|
||||||
|
else:
|
||||||
|
sampler = DDIMSampler(model)
|
||||||
|
|
||||||
|
os.makedirs(opt.outdir, exist_ok=True)
|
||||||
|
outpath = opt.outdir
|
||||||
|
|
||||||
|
batch_size = opt.n_samples
|
||||||
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
||||||
|
if not opt.from_file:
|
||||||
|
prompt = opt.prompt
|
||||||
|
assert prompt is not None
|
||||||
|
data = [batch_size * [prompt]]
|
||||||
|
|
||||||
|
else:
|
||||||
|
print(f"reading prompts from {opt.from_file}")
|
||||||
|
with open(opt.from_file, "r") as f:
|
||||||
|
data = f.read().splitlines()
|
||||||
|
data = list(chunk(data, batch_size))
|
||||||
|
|
||||||
|
sample_path = os.path.join(outpath, "samples")
|
||||||
|
os.makedirs(sample_path, exist_ok=True)
|
||||||
|
base_count = len(os.listdir(sample_path))
|
||||||
|
grid_count = len(os.listdir(outpath)) - 1
|
||||||
|
|
||||||
|
start_code = None
|
||||||
|
if opt.fixed_code:
|
||||||
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
||||||
|
|
||||||
|
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
||||||
|
with torch.no_grad():
|
||||||
|
with precision_scope("cuda"):
|
||||||
|
with model.ema_scope():
|
||||||
|
tic = time.time()
|
||||||
|
all_samples = list()
|
||||||
|
for n in trange(opt.n_iter, desc="Sampling"):
|
||||||
|
for prompts in tqdm(data, desc="data"):
|
||||||
|
uc = None
|
||||||
|
if opt.scale != 1.0:
|
||||||
|
uc = model.get_learned_conditioning(batch_size * [""])
|
||||||
|
if isinstance(prompts, tuple):
|
||||||
|
prompts = list(prompts)
|
||||||
|
c = model.get_learned_conditioning(prompts)
|
||||||
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
||||||
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
||||||
|
conditioning=c,
|
||||||
|
batch_size=opt.n_samples,
|
||||||
|
shape=shape,
|
||||||
|
verbose=False,
|
||||||
|
unconditional_guidance_scale=opt.scale,
|
||||||
|
unconditional_conditioning=uc,
|
||||||
|
eta=opt.ddim_eta,
|
||||||
|
x_T=start_code)
|
||||||
|
|
||||||
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
|
if not opt.skip_save:
|
||||||
|
for x_sample in x_samples_ddim:
|
||||||
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
|
Image.fromarray(x_sample.astype(np.uint8)).save(
|
||||||
|
os.path.join(sample_path, f"{base_count:05}.jpg"))
|
||||||
|
base_count += 1
|
||||||
|
|
||||||
|
if not opt.skip_grid:
|
||||||
|
all_samples.append(x_samples_ddim)
|
||||||
|
|
||||||
|
if not opt.skip_grid:
|
||||||
|
# additionally, save as grid
|
||||||
|
grid = torch.stack(all_samples, 0)
|
||||||
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||||
|
grid = make_grid(grid, nrow=n_rows)
|
||||||
|
|
||||||
|
# to image
|
||||||
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||||
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}-{grid_count:04}.jpg'))
|
||||||
|
grid_count += 1
|
||||||
|
|
||||||
|
toc = time.time()
|
||||||
|
|
||||||
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||||
|
f" \nEnjoy.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -12,6 +12,7 @@ from queue import Queue
|
|||||||
|
|
||||||
from inspect import isfunction
|
from inspect import isfunction
|
||||||
from PIL import Image, ImageDraw, ImageFont
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
|
||||||
def log_txt_as_img(wh, xc, size=10):
|
def log_txt_as_img(wh, xc, size=10):
|
||||||
# wh a tuple of (width, height)
|
# wh a tuple of (width, height)
|
||||||
# xc a list of captions to plot
|
# xc a list of captions to plot
|
||||||
@ -20,7 +21,7 @@ def log_txt_as_img(wh, xc, size=10):
|
|||||||
for bi in range(b):
|
for bi in range(b):
|
||||||
txt = Image.new("RGB", wh, color="white")
|
txt = Image.new("RGB", wh, color="white")
|
||||||
draw = ImageDraw.Draw(txt)
|
draw = ImageDraw.Draw(txt)
|
||||||
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
font = ImageFont.load_default()
|
||||||
nc = int(40 * (wh[0] / 256))
|
nc = int(40 * (wh[0] / 256))
|
||||||
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
||||||
|
|
||||||
@ -73,14 +74,14 @@ def count_params(model, verbose=False):
|
|||||||
return total_params
|
return total_params
|
||||||
|
|
||||||
|
|
||||||
def instantiate_from_config(config):
|
def instantiate_from_config(config, **kwargs):
|
||||||
if not "target" in config:
|
if not "target" in config:
|
||||||
if config == '__is_first_stage__':
|
if config == '__is_first_stage__':
|
||||||
return None
|
return None
|
||||||
elif config == "__is_unconditional__":
|
elif config == "__is_unconditional__":
|
||||||
return None
|
return None
|
||||||
raise KeyError("Expected key `target` to instantiate.")
|
raise KeyError("Expected key `target` to instantiate.")
|
||||||
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
|
||||||
|
|
||||||
|
|
||||||
def get_obj_from_str(string, reload=False):
|
def get_obj_from_str(string, reload=False):
|
||||||
|
64
main.py
64
main.py
@ -2,6 +2,7 @@ import argparse, os, sys, datetime, glob, importlib, csv
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import time
|
import time
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
import torchvision
|
import torchvision
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
|
|
||||||
@ -20,6 +21,22 @@ from pytorch_lightning.utilities import rank_zero_info
|
|||||||
from ldm.data.base import Txt2ImgIterableBaseDataset
|
from ldm.data.base import Txt2ImgIterableBaseDataset
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
|
def load_model_from_config(config, ckpt, verbose=False):
|
||||||
|
print(f"Loading model from {ckpt}")
|
||||||
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||||
|
sd = pl_sd["state_dict"]
|
||||||
|
config.model.params.ckpt_path = ckpt
|
||||||
|
model = instantiate_from_config(config.model)
|
||||||
|
m, u = model.load_state_dict(sd, strict=False)
|
||||||
|
if len(m) > 0 and verbose:
|
||||||
|
print("missing keys:")
|
||||||
|
print(m)
|
||||||
|
if len(u) > 0 and verbose:
|
||||||
|
print("unexpected keys:")
|
||||||
|
print(u)
|
||||||
|
|
||||||
|
model.cuda()
|
||||||
|
return model
|
||||||
|
|
||||||
def get_parser(**parser_kwargs):
|
def get_parser(**parser_kwargs):
|
||||||
def str2bool(v):
|
def str2bool(v):
|
||||||
@ -120,6 +137,23 @@ def get_parser(**parser_kwargs):
|
|||||||
default=True,
|
default=True,
|
||||||
help="scale base-lr by ngpu * batch_size * n_accumulate",
|
help="scale base-lr by ngpu * batch_size * n_accumulate",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--datadir_in_name",
|
||||||
|
type=str2bool,
|
||||||
|
nargs="?",
|
||||||
|
const=True,
|
||||||
|
default=True,
|
||||||
|
help="Prepend the final directory in the data_root to the output directory name")
|
||||||
|
|
||||||
|
parser.add_argument("--actual_resume", type=str, default="", help="Path to model to actually resume from")
|
||||||
|
parser.add_argument("--data_root", type=str, required=True, help="Path to directory with training images")
|
||||||
|
|
||||||
|
parser.add_argument("--embedding_manager_ckpt", type=str, default="", help="Initialize embedding manager from a checkpoint")
|
||||||
|
parser.add_argument("--placeholder_tokens", type=str, nargs="+", default=["*"])
|
||||||
|
|
||||||
|
parser.add_argument("--init_word", type=str, help="Word to use as source for initial token embedding.")
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -502,6 +536,10 @@ if __name__ == "__main__":
|
|||||||
name = "_" + cfg_name
|
name = "_" + cfg_name
|
||||||
else:
|
else:
|
||||||
name = ""
|
name = ""
|
||||||
|
|
||||||
|
if opt.datadir_in_name:
|
||||||
|
now = os.path.basename(os.path.normpath(opt.data_root)) + now
|
||||||
|
|
||||||
nowname = now + name + opt.postfix
|
nowname = now + name + opt.postfix
|
||||||
logdir = os.path.join(opt.logdir, nowname)
|
logdir = os.path.join(opt.logdir, nowname)
|
||||||
|
|
||||||
@ -532,6 +570,17 @@ if __name__ == "__main__":
|
|||||||
lightning_config.trainer = trainer_config
|
lightning_config.trainer = trainer_config
|
||||||
|
|
||||||
# model
|
# model
|
||||||
|
|
||||||
|
# config.model.params.personalization_config.params.init_word = opt.init_word
|
||||||
|
config.model.params.personalization_config.params.embedding_manager_ckpt = opt.embedding_manager_ckpt
|
||||||
|
config.model.params.personalization_config.params.placeholder_tokens = opt.placeholder_tokens
|
||||||
|
|
||||||
|
if opt.init_word:
|
||||||
|
config.model.params.personalization_config.params.initializer_words[0] = opt.init_word
|
||||||
|
|
||||||
|
if opt.actual_resume:
|
||||||
|
model = load_model_from_config(config, opt.actual_resume)
|
||||||
|
else:
|
||||||
model = instantiate_from_config(config.model)
|
model = instantiate_from_config(config.model)
|
||||||
|
|
||||||
# trainer and callbacks
|
# trainer and callbacks
|
||||||
@ -578,7 +627,7 @@ if __name__ == "__main__":
|
|||||||
if hasattr(model, "monitor"):
|
if hasattr(model, "monitor"):
|
||||||
print(f"Monitoring {model.monitor} as checkpoint metric.")
|
print(f"Monitoring {model.monitor} as checkpoint metric.")
|
||||||
default_modelckpt_cfg["params"]["monitor"] = model.monitor
|
default_modelckpt_cfg["params"]["monitor"] = model.monitor
|
||||||
default_modelckpt_cfg["params"]["save_top_k"] = 3
|
default_modelckpt_cfg["params"]["save_top_k"] = 1
|
||||||
|
|
||||||
if "modelcheckpoint" in lightning_config:
|
if "modelcheckpoint" in lightning_config:
|
||||||
modelckpt_cfg = lightning_config.modelcheckpoint
|
modelckpt_cfg = lightning_config.modelcheckpoint
|
||||||
@ -655,11 +704,16 @@ if __name__ == "__main__":
|
|||||||
del callbacks_cfg['ignore_keys_callback']
|
del callbacks_cfg['ignore_keys_callback']
|
||||||
|
|
||||||
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
|
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
|
||||||
|
trainer_kwargs["max_steps"] = opt.max_steps
|
||||||
|
|
||||||
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
|
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
|
||||||
trainer.logdir = logdir ###
|
trainer.logdir = logdir ###
|
||||||
|
|
||||||
# data
|
# data
|
||||||
|
config.data.params.train.params.data_root = opt.data_root
|
||||||
|
config.data.params.validation.params.data_root = opt.data_root
|
||||||
|
data = instantiate_from_config(config.data)
|
||||||
|
|
||||||
data = instantiate_from_config(config.data)
|
data = instantiate_from_config(config.data)
|
||||||
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
||||||
# calling these ourselves should not be necessary but it is.
|
# calling these ourselves should not be necessary but it is.
|
||||||
@ -710,8 +764,8 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
import signal
|
import signal
|
||||||
|
|
||||||
signal.signal(signal.SIGUSR1, melk)
|
signal.signal(signal.SIGTERM, melk)
|
||||||
signal.signal(signal.SIGUSR2, divein)
|
signal.signal(signal.SIGTERM, divein)
|
||||||
|
|
||||||
# run
|
# run
|
||||||
if opt.train:
|
if opt.train:
|
||||||
@ -737,5 +791,5 @@ if __name__ == "__main__":
|
|||||||
dst = os.path.join(dst, "debug_runs", name)
|
dst = os.path.join(dst, "debug_runs", name)
|
||||||
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
||||||
os.rename(logdir, dst)
|
os.rename(logdir, dst)
|
||||||
if trainer.global_rank == 0:
|
# if trainer.global_rank == 0:
|
||||||
print(trainer.profiler.summary())
|
# print(trainer.profiler.summary())
|
||||||
|
@ -9,6 +9,7 @@ kornia==0.6.0
|
|||||||
numpy==1.19.2
|
numpy==1.19.2
|
||||||
omegaconf==2.1.1
|
omegaconf==2.1.1
|
||||||
opencv-python==4.1.2.30
|
opencv-python==4.1.2.30
|
||||||
|
pillow==9.0.1
|
||||||
pudb==2019.2
|
pudb==2019.2
|
||||||
pytorch
|
pytorch
|
||||||
pytorch-lightning==1.4.2
|
pytorch-lightning==1.4.2
|
||||||
|
@ -57,7 +57,8 @@ def main():
|
|||||||
weights=weights,
|
weights=weights,
|
||||||
full_precision=opt.full_precision,
|
full_precision=opt.full_precision,
|
||||||
config=config,
|
config=config,
|
||||||
latent_diffusion_weights=opt.laion400m # this is solely for recreating the prompt
|
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
||||||
|
embedding_path=opt.embedding_path
|
||||||
)
|
)
|
||||||
|
|
||||||
# make sure the output directory exists
|
# make sure the output directory exists
|
||||||
@ -268,6 +269,10 @@ def create_argv_parser():
|
|||||||
type=str,
|
type=str,
|
||||||
default="outputs/img-samples",
|
default="outputs/img-samples",
|
||||||
help="directory in which to place generated images and a log of prompts and seeds")
|
help="directory in which to place generated images and a log of prompts and seeds")
|
||||||
|
|
||||||
|
parser.add_argument('--embedding_path',
|
||||||
|
type=str,
|
||||||
|
help="Path to a pre-trained embedding manager checkpoint - can only be set on command line")
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
83
scripts/merge_embeddings.py
Normal file
83
scripts/merge_embeddings.py
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
from ldm.modules.encoders.modules import BERTTokenizer
|
||||||
|
from ldm.modules.embedding_manager import EmbeddingManager
|
||||||
|
|
||||||
|
import argparse, os
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
def get_placeholder_loop(placeholder_string, tokenizer):
|
||||||
|
|
||||||
|
new_placeholder = None
|
||||||
|
|
||||||
|
while True:
|
||||||
|
if new_placeholder is None:
|
||||||
|
new_placeholder = input(f"Placeholder string {placeholder_string} was already used. Please enter a replacement string: ")
|
||||||
|
else:
|
||||||
|
new_placeholder = input(f"Placeholder string '{new_placeholder}' maps to more than a single token. Please enter another string: ")
|
||||||
|
|
||||||
|
token = tokenizer(new_placeholder)
|
||||||
|
|
||||||
|
if torch.count_nonzero(token) == 3:
|
||||||
|
return new_placeholder, token[0, 1]
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--manager_ckpts",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
required=True,
|
||||||
|
help="Paths to a set of embedding managers to be merged."
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--output_path",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Output path for the merged manager",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
tokenizer = BERTTokenizer(vq_interface=False, max_length=77)
|
||||||
|
EmbeddingManager = partial(EmbeddingManager, tokenizer, ["*"])
|
||||||
|
|
||||||
|
string_to_token_dict = {}
|
||||||
|
string_to_param_dict = torch.nn.ParameterDict()
|
||||||
|
|
||||||
|
placeholder_to_src = {}
|
||||||
|
|
||||||
|
for manager_ckpt in args.manager_ckpts:
|
||||||
|
print(f"Parsing {manager_ckpt}...")
|
||||||
|
|
||||||
|
manager = EmbeddingManager()
|
||||||
|
manager.load(manager_ckpt)
|
||||||
|
|
||||||
|
for placeholder_string in manager.string_to_token_dict:
|
||||||
|
if not placeholder_string in string_to_token_dict:
|
||||||
|
string_to_token_dict[placeholder_string] = manager.string_to_token_dict[placeholder_string]
|
||||||
|
string_to_param_dict[placeholder_string] = manager.string_to_param_dict[placeholder_string]
|
||||||
|
|
||||||
|
placeholder_to_src[placeholder_string] = manager_ckpt
|
||||||
|
else:
|
||||||
|
new_placeholder, new_token = get_placeholder_loop(placeholder_string, tokenizer)
|
||||||
|
string_to_token_dict[new_placeholder] = new_token
|
||||||
|
string_to_param_dict[new_placeholder] = manager.string_to_param_dict[placeholder_string]
|
||||||
|
|
||||||
|
placeholder_to_src[new_placeholder] = manager_ckpt
|
||||||
|
|
||||||
|
print("Saving combined manager...")
|
||||||
|
merged_manager = EmbeddingManager()
|
||||||
|
merged_manager.string_to_param_dict = string_to_param_dict
|
||||||
|
merged_manager.string_to_token_dict = string_to_token_dict
|
||||||
|
merged_manager.save(args.output_path)
|
||||||
|
|
||||||
|
print("Managers merged. Final list of placeholders: ")
|
||||||
|
print(placeholder_to_src)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
17
train.ps1
Normal file
17
train.ps1
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
conda activate ldm
|
||||||
|
pip install -e .
|
||||||
|
$env:PL_TORCH_DISTRIBUTED_BACKEND="gloo"
|
||||||
|
python ./main.py --base ./configs/stable-diffusion/v1-finetune.yaml `
|
||||||
|
-t `
|
||||||
|
--actual_resume ./models/ldm/stable-diffusion-v1/model.ckpt `
|
||||||
|
-n my_cat `
|
||||||
|
--gpus 0, `
|
||||||
|
--data_root D:/textual-inversion/my_cat `
|
||||||
|
--init_Word 'Isla Fisher'
|
||||||
|
# python ./scripts/train_personalization.py --base ./configs/stable-diffusion/v1-finetune.yaml `
|
||||||
|
# -t `
|
||||||
|
# --actual_resume ../stable-diffusion-dream/models/ldm/stable-diffusion-v1/model.ckpt `
|
||||||
|
# --gpus 1 `
|
||||||
|
# --data_root D:/textual-inversion/isla_fisher `
|
||||||
|
# --resume 'logs/my_cat2022-08-23T01-46-37_my_cat' `
|
||||||
|
# --init_Word 'cat'
|
Loading…
Reference in New Issue
Block a user