Get multi-prompt attention working simultaneously with IP-adapter.

This commit is contained in:
Ryan Dick
2024-02-29 14:54:13 -05:00
parent f44d3da9b1
commit 8989a6cdc6
8 changed files with 154 additions and 471 deletions

View File

@ -1,185 +0,0 @@
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
# tencent-ailab comment:
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
# Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict
# loading.
class AttnProcessor2_0(DiffusersAttnProcessor2_0, nn.Module):
def __init__(self):
DiffusersAttnProcessor2_0.__init__(self)
nn.Module.__init__(self)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Re-definition of DiffusersAttnProcessor2_0.__call__(...) that accepts and ignores the
ip_adapter_image_prompt_embeds parameter.
"""
return DiffusersAttnProcessor2_0.__call__(
self, attn, hidden_states, encoder_hidden_states, attention_mask, temb
)
class IPAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, weights: list[IPAttentionProcessorWeights], scales: list[float]):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
assert len(weights) == len(scales)
self._weights = weights
self._scales = scales
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Apply IP-Adapter attention.
Args:
ip_adapter_image_prompt_embeds (torch.Tensor): The image prompt embeddings.
Shape: (batch_size, num_ip_images, seq_len, ip_embedding_len).
"""
# If true, we are doing cross-attention, if false we are doing self-attention.
is_cross_attention = encoder_hidden_states is not None
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if is_cross_attention:
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
assert ip_adapter_image_prompt_embeds is not None
assert len(ip_adapter_image_prompt_embeds) == len(self._weights)
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._weights, self._scales, strict=True
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.
assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1]
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states

View File

@ -23,13 +23,12 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ( from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
IPAdapterConditioningInfo, IPAdapterConditioningInfo,
TextConditioningData, TextConditioningData,
) )
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_attention import apply_regional_prompt_attn
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from ..util import auto_detect_slice_size, normalize_device from ..util import auto_detect_slice_size, normalize_device
@ -427,11 +426,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
raise ValueError( raise ValueError(
"Prompt-to-prompt cross-attention control (`.swap()`) and regional prompting cannot be used simultaneously." "Prompt-to-prompt cross-attention control (`.swap()`) and regional prompting cannot be used simultaneously."
) )
if use_ip_adapter and use_regional_prompting:
# TODO(ryand): Implement this.
raise NotImplementedError("Coming soon.")
ip_adapter_unet_patcher = None unet_attention_patcher = None
self.use_ip_adapter = use_ip_adapter self.use_ip_adapter = use_ip_adapter
attn_ctx = nullcontext() attn_ctx = nullcontext()
if use_cross_attention_control: if use_cross_attention_control:
@ -439,11 +435,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self.invokeai_diffuser.model, self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info, extra_conditioning_info=extra_conditioning_info,
) )
if use_ip_adapter: if use_ip_adapter or use_regional_prompting:
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data]) ip_adapters = [ipa.ip_adapter_model for ipa in ip_adapter_data] if use_ip_adapter else None
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model) unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
if use_regional_prompting: attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
attn_ctx = apply_regional_prompt_attn(self.invokeai_diffuser.model)
with attn_ctx: with attn_ctx:
if callback is not None: if callback is not None:
@ -471,7 +466,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_data=control_data, control_data=control_data,
ip_adapter_data=ip_adapter_data, ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data, t2i_adapter_data=t2i_adapter_data,
ip_adapter_unet_patcher=ip_adapter_unet_patcher, unet_attention_patcher=unet_attention_patcher,
) )
latents = step_output.prev_sample latents = step_output.prev_sample
predicted_original = getattr(step_output, "pred_original_sample", None) predicted_original = getattr(step_output, "pred_original_sample", None)
@ -503,7 +498,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_data: List[ControlNetData] = None, control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
ip_adapter_unet_patcher: Optional[UNetPatcher] = None, unet_attention_patcher: Optional[UNetAttentionPatcher] = None,
): ):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value # invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0] timestep = t[0]
@ -526,10 +521,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
) )
if step_index >= first_adapter_step and step_index <= last_adapter_step: if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range. # Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
ip_adapter_unet_patcher.set_scale(i, weight) unet_attention_patcher.set_scale(i, weight)
else: else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect. # Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
ip_adapter_unet_patcher.set_scale(i, 0.0) unet_attention_patcher.set_scale(i, 0.0)
# Handle ControlNet(s) # Handle ControlNet(s)
down_block_additional_residuals = None down_block_additional_residuals = None

View File

@ -6,7 +6,7 @@ from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from diffusers.utils import USE_PEFT_BACKEND from diffusers.utils import USE_PEFT_BACKEND
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_attention import RegionalPromptData from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
class CustomAttnProcessor2_0(AttnProcessor2_0): class CustomAttnProcessor2_0(AttnProcessor2_0):
@ -149,10 +149,9 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# End unmodified block from AttnProcessor2_0. # End unmodified block from AttnProcessor2_0.
# Apply IP-Adapter conditioning. # Apply IP-Adapter conditioning.
if is_cross_attention: if is_cross_attention and self._is_ip_adapter_enabled():
if self._is_ip_adapter_enabled(): if self._is_ip_adapter_enabled():
assert ip_adapter_image_prompt_embeds is not None assert ip_adapter_image_prompt_embeds is not None
for ipa_embed, ipa_weights, scale in zip( for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._ip_adapter_weights, self._ip_adapter_scales, strict=True ip_adapter_image_prompt_embeds, self._ip_adapter_weights, self._ip_adapter_scales, strict=True
): ):

View File

@ -1,208 +0,0 @@
from contextlib import contextmanager
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from diffusers.utils import USE_PEFT_BACKEND
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningRegions,
)
class RegionalPromptData:
def __init__(self, attn_masks_by_seq_len: dict[int, torch.Tensor]):
self._attn_masks_by_seq_len = attn_masks_by_seq_len
@classmethod
def from_regions(
cls,
regions: list[TextConditioningRegions],
key_seq_len: int,
# TODO(ryand): Pass in a list of downscale factors?
max_downscale_factor: int = 8,
):
"""Construct a `RegionalPromptData` object.
Args:
regions (list[TextConditioningRegions]): regions[i] contains the prompt regions for the i'th sample in the
batch.
key_seq_len (int): The sequence length of the expected prompt embeddings (which act as the key in the
cross-attention layers). This is most likely equal to the max embedding range end, but we pass it
explicitly to be sure.
"""
attn_masks_by_seq_len = {}
# batch_attn_mask_by_seq_len[b][s] contains the attention mask for the b'th batch sample with a query sequence
# length of s.
batch_attn_masks_by_seq_len: list[dict[int, torch.Tensor]] = []
for batch_sample_regions in regions:
batch_attn_masks_by_seq_len.append({})
# Convert the bool masks to float masks so that max pooling can be applied.
batch_masks = batch_sample_regions.masks.to(dtype=torch.float32)
# Downsample the spatial dimensions by factors of 2 until max_downscale_factor is reached.
downscale_factor = 1
while downscale_factor <= max_downscale_factor:
_, num_prompts, h, w = batch_masks.shape
query_seq_len = h * w
# Flatten the spatial dimensions of the mask by reshaping to (1, num_prompts, query_seq_len, 1).
batch_query_masks = batch_masks.reshape((1, num_prompts, -1, 1))
# Create a cross-attention mask for each prompt that selects the corresponding embeddings from
# `encoder_hidden_states`.
# attn_mask shape: (batch_size, query_seq_len, key_seq_len)
# TODO(ryand): What device / dtype should this be?
attn_mask = torch.zeros((1, query_seq_len, key_seq_len))
for prompt_idx, embedding_range in enumerate(batch_sample_regions.ranges):
attn_mask[0, :, embedding_range.start : embedding_range.end] = batch_query_masks[
:, prompt_idx, :, :
]
batch_attn_masks_by_seq_len[-1][query_seq_len] = attn_mask
downscale_factor *= 2
if downscale_factor <= max_downscale_factor:
# We use max pooling because we downscale to a pretty low resolution, so we don't want small prompt
# regions to be lost entirely.
# TODO(ryand): In the future, we may want to experiment with other downsampling methods, and could
# potentially use a weighted mask rather than a binary mask.
batch_masks = F.max_pool2d(batch_masks, kernel_size=2, stride=2)
# Merge the batch_attn_masks_by_seq_len into a single attn_masks_by_seq_len.
for query_seq_len in batch_attn_masks_by_seq_len[0].keys():
attn_masks_by_seq_len[query_seq_len] = torch.cat(
[batch_attn_masks_by_seq_len[i][query_seq_len] for i in range(len(batch_attn_masks_by_seq_len))]
)
return cls(attn_masks_by_seq_len)
def get_attn_mask(self, query_seq_len: int) -> torch.Tensor:
"""Get the attention mask for the given query sequence length (i.e. downscaling level).
This is called during cross-attention, where query_seq_len is the length of the flattened spatial features, so
it changes at each downscaling level in the model.
key_seq_len is the length of the expected prompt embeddings.
Returns:
torch.Tensor: The masks.
shape: (batch_size, query_seq_len, key_seq_len).
dtype: float
The mask is a binary mask with values of 0.0 and 1.0.
"""
return self._attn_masks_by_seq_len[query_seq_len]
class RegionalPromptAttnProcessor2_0(AttnProcessor2_0):
"""An attention processor that supports regional prompt attention for PyTorch 2.0."""
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
regional_prompt_data: Optional[RegionalPromptData] = None,
) -> torch.FloatTensor:
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if encoder_hidden_states is not None and regional_prompt_data is not None:
# If encoder_hidden_states is not None, that means we are doing cross-attention case.
_, query_seq_len, _ = hidden_states.shape
prompt_region_attention_mask = regional_prompt_data.get_attn_mask(query_seq_len)
# TODO(ryand): Avoid redundant type/device conversion here.
prompt_region_attention_mask = prompt_region_attention_mask.to(
dtype=encoder_hidden_states.dtype, device=encoder_hidden_states.device
)
prompt_region_attention_mask[prompt_region_attention_mask < 0.5] = -10000.0
prompt_region_attention_mask[prompt_region_attention_mask >= 0.5] = 0.0
if attention_mask is None:
attention_mask = prompt_region_attention_mask
else:
attention_mask = prompt_region_attention_mask + attention_mask
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
@contextmanager
def apply_regional_prompt_attn(unet: UNet2DConditionModel):
"""A context manager that patches `unet` with RegionalPromptAttnProcessor2_0 attention processors."""
orig_attn_processors = unet.attn_processors
try:
unet.set_attn_processor(RegionalPromptAttnProcessor2_0())
yield None
finally:
unet.set_attn_processor(orig_attn_processors)

View File

@ -0,0 +1,93 @@
import torch
import torch.nn.functional as F
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningRegions,
)
class RegionalPromptData:
def __init__(self, attn_masks_by_seq_len: dict[int, torch.Tensor]):
self._attn_masks_by_seq_len = attn_masks_by_seq_len
@classmethod
def from_regions(
cls,
regions: list[TextConditioningRegions],
key_seq_len: int,
# TODO(ryand): Pass in a list of downscale factors?
max_downscale_factor: int = 8,
):
"""Construct a `RegionalPromptData` object.
Args:
regions (list[TextConditioningRegions]): regions[i] contains the prompt regions for the i'th sample in the
batch.
key_seq_len (int): The sequence length of the expected prompt embeddings (which act as the key in the
cross-attention layers). This is most likely equal to the max embedding range end, but we pass it
explicitly to be sure.
"""
attn_masks_by_seq_len = {}
# batch_attn_mask_by_seq_len[b][s] contains the attention mask for the b'th batch sample with a query sequence
# length of s.
batch_attn_masks_by_seq_len: list[dict[int, torch.Tensor]] = []
for batch_sample_regions in regions:
batch_attn_masks_by_seq_len.append({})
# Convert the bool masks to float masks so that max pooling can be applied.
batch_masks = batch_sample_regions.masks.to(dtype=torch.float32)
# Downsample the spatial dimensions by factors of 2 until max_downscale_factor is reached.
downscale_factor = 1
while downscale_factor <= max_downscale_factor:
_, num_prompts, h, w = batch_masks.shape
query_seq_len = h * w
# Flatten the spatial dimensions of the mask by reshaping to (1, num_prompts, query_seq_len, 1).
batch_query_masks = batch_masks.reshape((1, num_prompts, -1, 1))
# Create a cross-attention mask for each prompt that selects the corresponding embeddings from
# `encoder_hidden_states`.
# attn_mask shape: (batch_size, query_seq_len, key_seq_len)
# TODO(ryand): What device / dtype should this be?
attn_mask = torch.zeros((1, query_seq_len, key_seq_len))
for prompt_idx, embedding_range in enumerate(batch_sample_regions.ranges):
attn_mask[0, :, embedding_range.start : embedding_range.end] = batch_query_masks[
:, prompt_idx, :, :
]
batch_attn_masks_by_seq_len[-1][query_seq_len] = attn_mask
downscale_factor *= 2
if downscale_factor <= max_downscale_factor:
# We use max pooling because we downscale to a pretty low resolution, so we don't want small prompt
# regions to be lost entirely.
# TODO(ryand): In the future, we may want to experiment with other downsampling methods, and could
# potentially use a weighted mask rather than a binary mask.
batch_masks = F.max_pool2d(batch_masks, kernel_size=2, stride=2)
# Merge the batch_attn_masks_by_seq_len into a single attn_masks_by_seq_len.
for query_seq_len in batch_attn_masks_by_seq_len[0].keys():
attn_masks_by_seq_len[query_seq_len] = torch.cat(
[batch_attn_masks_by_seq_len[i][query_seq_len] for i in range(len(batch_attn_masks_by_seq_len))]
)
return cls(attn_masks_by_seq_len)
def get_attn_mask(self, query_seq_len: int) -> torch.Tensor:
"""Get the attention mask for the given query sequence length (i.e. downscaling level).
This is called during cross-attention, where query_seq_len is the length of the flattened spatial features, so
it changes at each downscaling level in the model.
key_seq_len is the length of the expected prompt embeddings.
Returns:
torch.Tensor: The masks.
shape: (batch_size, query_seq_len, key_seq_len).
dtype: float
The mask is a binary mask with values of 0.0 and 1.0.
"""
return self._attn_masks_by_seq_len[query_seq_len]

View File

@ -16,7 +16,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningData, TextConditioningData,
TextConditioningRegions, TextConditioningRegions,
) )
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_attention import RegionalPromptData from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
from .cross_attention_control import ( from .cross_attention_control import (
CrossAttentionType, CrossAttentionType,
@ -303,19 +303,13 @@ class InvokeAIDiffuserComponent:
x_twice = torch.cat([x] * 2) x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2) sigma_twice = torch.cat([sigma] * 2)
cross_attention_kwargs = None cross_attention_kwargs = {}
# TODO(ryand): Figure out interactions between regional prompting and IP-Adapter conditioning.
if ip_adapter_conditioning is not None: if ip_adapter_conditioning is not None:
# Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len). # Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len).
cross_attention_kwargs = { cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
"ip_adapter_image_prompt_embeds": [ torch.stack([ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds])
torch.stack( for ipa_conditioning in ip_adapter_conditioning
[ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds] ]
)
for ipa_conditioning in ip_adapter_conditioning
]
}
uncond_text = conditioning_data.uncond_text uncond_text = conditioning_data.uncond_text
cond_text = conditioning_data.cond_text cond_text = conditioning_data.cond_text
@ -352,9 +346,9 @@ class InvokeAIDiffuserComponent:
regions.append(r) regions.append(r)
_, key_seq_len, _ = both_conditionings.shape _, key_seq_len, _ = both_conditionings.shape
cross_attention_kwargs = { cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData.from_regions(
"regional_prompt_data": RegionalPromptData.from_regions(regions=regions, key_seq_len=key_seq_len) regions=regions, key_seq_len=key_seq_len
} )
both_results = self.model_forward_callback( both_results = self.model_forward_callback(
x_twice, x_twice,
@ -424,21 +418,19 @@ class InvokeAIDiffuserComponent:
# Unconditioned pass # Unconditioned pass
##################### #####################
cross_attention_kwargs = None cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the unconditioned pass. # Prepare IP-Adapter cross-attention kwargs for the unconditioned pass.
if ip_adapter_conditioning is not None: if ip_adapter_conditioning is not None:
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len). # Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs = { cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
"ip_adapter_image_prompt_embeds": [ torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0)
torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0) for ipa_conditioning in ip_adapter_conditioning
for ipa_conditioning in ip_adapter_conditioning ]
]
}
# Prepare cross-attention control kwargs for the unconditioned pass. # Prepare cross-attention control kwargs for the unconditioned pass.
if cross_attn_processor_context is not None: if cross_attn_processor_context is not None:
cross_attention_kwargs = {"swap_cross_attn_context": cross_attn_processor_context} cross_attention_kwargs["swap_cross_attn_context"] = cross_attn_processor_context
# Prepare SDXL conditioning kwargs for the unconditioned pass. # Prepare SDXL conditioning kwargs for the unconditioned pass.
added_cond_kwargs = None added_cond_kwargs = None
@ -451,11 +443,9 @@ class InvokeAIDiffuserComponent:
# Prepare prompt regions for the unconditioned pass. # Prepare prompt regions for the unconditioned pass.
if conditioning_data.uncond_regions is not None: if conditioning_data.uncond_regions is not None:
_, key_seq_len, _ = conditioning_data.uncond_text.embeds.shape _, key_seq_len, _ = conditioning_data.uncond_text.embeds.shape
cross_attention_kwargs = { cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData.from_regions(
"regional_prompt_data": RegionalPromptData.from_regions( regions=[conditioning_data.uncond_regions], key_seq_len=key_seq_len
regions=[conditioning_data.uncond_regions], key_seq_len=key_seq_len )
)
}
# Run unconditioned UNet denoising (i.e. negative prompt). # Run unconditioned UNet denoising (i.e. negative prompt).
unconditioned_next_x = self.model_forward_callback( unconditioned_next_x = self.model_forward_callback(
@ -473,22 +463,20 @@ class InvokeAIDiffuserComponent:
# Conditioned pass # Conditioned pass
################### ###################
cross_attention_kwargs = None cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the conditioned pass. # Prepare IP-Adapter cross-attention kwargs for the conditioned pass.
if ip_adapter_conditioning is not None: if ip_adapter_conditioning is not None:
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len). # Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs = { cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
"ip_adapter_image_prompt_embeds": [ torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0)
torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0) for ipa_conditioning in ip_adapter_conditioning
for ipa_conditioning in ip_adapter_conditioning ]
]
}
# Prepare cross-attention control kwargs for the conditioned pass. # Prepare cross-attention control kwargs for the conditioned pass.
if cross_attn_processor_context is not None: if cross_attn_processor_context is not None:
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
cross_attention_kwargs = {"swap_cross_attn_context": cross_attn_processor_context} cross_attention_kwargs["swap_cross_attn_context"] = cross_attn_processor_context
# Prepare SDXL conditioning kwargs for the conditioned pass. # Prepare SDXL conditioning kwargs for the conditioned pass.
added_cond_kwargs = None added_cond_kwargs = None
@ -501,11 +489,9 @@ class InvokeAIDiffuserComponent:
# Prepare prompt regions for the conditioned pass. # Prepare prompt regions for the conditioned pass.
if conditioning_data.cond_regions is not None: if conditioning_data.cond_regions is not None:
_, key_seq_len, _ = conditioning_data.cond_text.embeds.shape _, key_seq_len, _ = conditioning_data.cond_text.embeds.shape
cross_attention_kwargs = { cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData.from_regions(
"regional_prompt_data": RegionalPromptData.from_regions( regions=[conditioning_data.cond_regions], key_seq_len=key_seq_len
regions=[conditioning_data.cond_regions], key_seq_len=key_seq_len )
)
}
# Run conditioned UNet denoising (i.e. positive prompt). # Run conditioned UNet denoising (i.e. positive prompt).
conditioned_next_x = self.model_forward_callback( conditioned_next_x = self.model_forward_callback(

View File

@ -1,52 +1,55 @@
from contextlib import contextmanager from contextlib import contextmanager
from typing import Optional
from diffusers.models import UNet2DConditionModel from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.custom_attention import CustomAttnProcessor2_0
class UNetPatcher: class UNetAttentionPatcher:
"""A class that contains multiple IP-Adapters and can apply them to a UNet.""" """A class for patching a UNet with CustomAttnProcessor2_0 attention layers."""
def __init__(self, ip_adapters: list[IPAdapter]): def __init__(self, ip_adapters: Optional[list[IPAdapter]]):
self._ip_adapters = ip_adapters self._ip_adapters = ip_adapters
self._scales = [1.0] * len(self._ip_adapters) self._ip_adapter_scales = None
if self._ip_adapters is not None:
self._ip_adapter_scales = [1.0] * len(self._ip_adapters)
def set_scale(self, idx: int, value: float): def set_scale(self, idx: int, value: float):
self._scales[idx] = value self._ip_adapter_scales[idx] = value
def _prepare_attention_processors(self, unet: UNet2DConditionModel): def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention """Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
weights into them. weights into them (if IP-Adapters are being applied).
Note that the `unet` param is only used to determine attention block dimensions and naming. Note that the `unet` param is only used to determine attention block dimensions and naming.
""" """
# Construct a dict of attention processors based on the UNet's architecture. # Construct a dict of attention processors based on the UNet's architecture.
attn_procs = {} attn_procs = {}
for idx, name in enumerate(unet.attn_processors.keys()): for idx, name in enumerate(unet.attn_processors.keys()):
if name.endswith("attn1.processor"): if name.endswith("attn1.processor") or self._ip_adapters is None:
attn_procs[name] = AttnProcessor2_0() # "attn1" processors do not use IP-Adapters.
attn_procs[name] = CustomAttnProcessor2_0()
else: else:
# Collect the weights from each IP Adapter for the idx'th attention processor. # Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = IPAttnProcessor2_0( attn_procs[name] = CustomAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters], [ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters],
self._scales, self._ip_adapter_scales,
) )
return attn_procs return attn_procs
@contextmanager @contextmanager
def apply_ip_adapter_attention(self, unet: UNet2DConditionModel): def apply_ip_adapter_attention(self, unet: UNet2DConditionModel):
"""A context manager that patches `unet` with IP-Adapter attention processors.""" """A context manager that patches `unet` with CustomAttnProcessor2_0 attention layers."""
attn_procs = self._prepare_attention_processors(unet) attn_procs = self._prepare_attention_processors(unet)
orig_attn_processors = unet.attn_processors orig_attn_processors = unet.attn_processors
try: try:
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from the # Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from
# passed dict. So, if you wanted to keep the dict for future use, you'd have to make a moderately-shallow copy # the passed dict. So, if you wanted to keep the dict for future use, you'd have to make a
# of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`. # moderately-shallow copy of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
unet.set_attn_processor(attn_procs) unet.set_attn_processor(attn_procs)
yield None yield None
finally: finally:

View File

@ -1,8 +1,8 @@
import pytest import pytest
import torch import torch
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from invokeai.backend.util.test_utils import install_and_load_model from invokeai.backend.util.test_utils import install_and_load_model
@ -77,7 +77,7 @@ def test_ip_adapter_unet_patch(model_params, model_installer, torch_device):
ip_embeds = torch.randn((1, 3, 4, 768)).to(torch_device) ip_embeds = torch.randn((1, 3, 4, 768)).to(torch_device)
cross_attention_kwargs = {"ip_adapter_image_prompt_embeds": [ip_embeds]} cross_attention_kwargs = {"ip_adapter_image_prompt_embeds": [ip_embeds]}
ip_adapter_unet_patcher = UNetPatcher([ip_adapter]) ip_adapter_unet_patcher = UNetAttentionPatcher([ip_adapter])
with ip_adapter_unet_patcher.apply_ip_adapter_attention(unet): with ip_adapter_unet_patcher.apply_ip_adapter_attention(unet):
output = unet(**dummy_unet_input, cross_attention_kwargs=cross_attention_kwargs).sample output = unet(**dummy_unet_input, cross_attention_kwargs=cross_attention_kwargs).sample