First pass at ControlNet "guess mode" implementation.

This commit is contained in:
user1 2023-06-11 02:00:39 -07:00
parent 46cac6468e
commit 8b7fac75ed
3 changed files with 93 additions and 25 deletions

View File

@ -1,7 +1,7 @@
# InvokeAI nodes for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import float
from builtins import float, bool
import numpy as np
from typing import Literal, Optional, Union, List
@ -94,6 +94,7 @@ CONTROLNET_DEFAULT_MODELS = [
]
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
# CONTROLNET_MODE_VALUES = Literal[tuple(["BALANCED", "PROMPT", "CONTROL"])]
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image")
@ -104,6 +105,7 @@ class ControlField(BaseModel):
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
guess_mode: bool = Field(default=False, description="Toggle for guess mode")
@validator("control_weight")
def abs_le_one(cls, v):
"""validate that all abs(values) are <=1"""
@ -149,6 +151,7 @@ class ControlNetInvocation(BaseInvocation):
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
guess_mode: bool = Field(default=False, description="Toggle for guess mode")
# fmt: on
class Config(InvocationConfig):
@ -174,6 +177,7 @@ class ControlNetInvocation(BaseInvocation):
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
guess_mode=self.guess_mode,
),
)

View File

@ -337,12 +337,14 @@ class TextToLatentsInvocation(BaseInvocation):
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
guess_mode=control_info.guess_mode,
)
control_item = ControlNetData(model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent)
end_step_percent=control_info.end_step_percent,
guess_mode=control_info.guess_mode,)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data

View File

@ -217,10 +217,12 @@ class GeneratorToCallbackinator(Generic[ParamType, ReturnType, CallbackType]):
@dataclass
class ControlNetData:
model: ControlNetModel = Field(default=None)
image_tensor: torch.Tensor= Field(default=None)
weight: Union[float, List[float]]= Field(default=1.0)
image_tensor: torch.Tensor = Field(default=None)
weight: Union[float, List[float]] = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
# FIXME: replace with guess_mode with enum control_mode: BALANCED, MORE_PROMPT, MORE_CONTROL
guess_mode: bool = Field(default=False) # guess_mode can work with or without prompt
@dataclass(frozen=True)
class ConditioningData:
@ -656,21 +658,34 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# TODO: should this scaling happen here or inside self._unet_forward?
# i.e. before or after passing it to InvokeAIDiffuserComponent
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
unet_latent_input = self.scheduler.scale_model_input(latents, timestep)
# # guess mode handling from diffusers
# if guess_mode and do_classifier_free_guidance:
# # Infer ControlNet only for the conditional batch.
# control_model_input = latents
# control_model_input = self.scheduler.scale_model_input(control_model_input, t)
# controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
# else:
# control_model_input = unet_latent_input
# controlnet_prompt_embeds = prompt_embeds
# default is no controlnet, so set controlnet processing output to None
down_block_res_samples, mid_block_res_sample = None, None
if control_data is not None:
# FIXME: make sure guidance_scale < 1.0 is handled correctly if doing per-step guidance setting
# FIXME: make sure guidance_scale <= 1.0 is handled correctly if doing per-step guidance setting
# UPDATE: I think this is fixed now with pydantic validator for cfg_scale?
# So we should _never_ have guidance_scale <= 1.0
# if conditioning_data.guidance_scale > 1.0:
if conditioning_data.guidance_scale is not None:
# expand the latents input to control model if doing classifier free guidance
# (which I think for now is always true, there is conditional elsewhere that stops execution if
# classifier_free_guidance is <= 1.0 ?)
latent_control_input = torch.cat([latent_model_input] * 2)
else:
latent_control_input = latent_model_input
# if conditioning_data.guidance_scale is not None:
# if guess_mode is False:
# # expand the latents input to control model if doing classifier free guidance
# # (which I think for now is always true, there is conditional elsewhere that stops execution if
# # classifier_free_guidance is <= 1.0 ?)
# control_latent_input = torch.cat([unet_latent_input] * 2)
# else:
# control_latent_input = unet_latent_input
# control_data should be type List[ControlNetData]
# this loop covers both ControlNet (one ControlNetData in list)
# and MultiControlNet (multiple ControlNetData in list)
@ -680,24 +695,62 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
last_control_step = math.ceil(control_datum.end_step_percent * total_step_count)
# only apply controlnet if current step is within the controlnet's begin/end step range
if step_index >= first_control_step and step_index <= last_control_step:
# print("running controlnet", i, "for step", step_index)
guess_mode = control_datum.guess_mode
if guess_mode:
control_latent_input = unet_latent_input
else:
# expand the latents input to control model if doing classifier free guidance
# (which I think for now is always true, there is conditional elsewhere that stops execution if
# classifier_free_guidance is <= 1.0 ?)
control_latent_input = torch.cat([unet_latent_input] * 2)
print("running controlnet", i, "for step", step_index)
print("guess mode: ", guess_mode)
print("guess mode type: ", type(guess_mode))
if guess_mode: # only using prompt conditioning in unconditioned
encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings])
else:
encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings,
conditioning_data.text_embeddings])
print("encoder_hidden_states.shape", encoder_hidden_states.shape)
if isinstance(control_datum.weight, list):
# if controlnet has multiple weights, use the weight for the current step
controlnet_weight = control_datum.weight[step_index]
else:
# if controlnet has a single weight, use it for all steps
controlnet_weight = control_datum.weight
# guess mode handling from diffusers controlnet pipeline:
# if guess_mode and do_classifier_free_guidance:
# # Infer ControlNet only for the conditional batch.
# latent_control_input = latents
# latent_control_input = self.scheduler.scale_model_input(control_model_input, t)
# controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
# else:
# control_model_input = unet_latent_input
# controlnet_prompt_embeds = prompt_embeds
# controlnet(s) inference
down_samples, mid_sample = control_datum.model(
sample=latent_control_input,
sample=control_latent_input,
timestep=timestep,
encoder_hidden_states=torch.cat([conditioning_data.unconditioned_embeddings,
conditioning_data.text_embeddings]),
# encoder_hidden_states=torch.cat([conditioning_data.unconditioned_embeddings,
# conditioning_data.text_embeddings]),
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=control_datum.image_tensor,
conditioning_scale=controlnet_weight,
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
# cross_attention_kwargs,
guess_mode=False,
guess_mode=guess_mode,
return_dict=False,
)
print("finished ControlNetModel() call, step", step_index)
if guess_mode:
# Inferred ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_samples]
mid_sample = torch.cat([torch.zeros_like(mid_sample), mid_sample])
if down_block_res_samples is None and mid_block_res_sample is None:
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
else:
@ -708,13 +761,21 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
]
mid_block_res_sample += mid_sample
# guess mode handling from diffusers controlnet pipeline:
# if guess_mode and do_classifier_free_guidance:
# # Inferred ControlNet only for the conditional batch.
# # To apply the output of ControlNet to both the unconditional and conditional batches,
# # add 0 to the unconditional batch to keep it unchanged.
# down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
# mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.invokeai_diffuser.do_diffusion_step(
latent_model_input,
t,
conditioning_data.unconditioned_embeddings,
conditioning_data.text_embeddings,
conditioning_data.guidance_scale,
x=unet_latent_input,
sigma=t,
unconditioning=conditioning_data.unconditioned_embeddings,
conditioning=conditioning_data.text_embeddings,
unconditional_guidance_scale=conditioning_data.guidance_scale,
step_index=step_index,
total_step_count=total_step_count,
down_block_additional_residuals=down_block_res_samples, # from controlnet(s)
@ -1038,6 +1099,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
device="cuda",
dtype=torch.float16,
do_classifier_free_guidance=True,
guess_mode=False,
):
if not isinstance(image, torch.Tensor):
@ -1068,6 +1130,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance:
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image