resolve merge conflicts

This commit is contained in:
Lincoln Stein
2023-08-20 15:26:52 -04:00
105 changed files with 473 additions and 453 deletions

View File

@ -1,11 +1,15 @@
"""
Initialization file for the invokeai.backend.stable_diffusion package
"""
from .diffusers_pipeline import (
from .diffusers_pipeline import ( # noqa: F401
ConditioningData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
)
from .diffusion import InvokeAIDiffuserComponent
from .diffusion.cross_attention_map_saving import AttentionMapSaver
from .diffusion.shared_invokeai_diffusion import PostprocessingSettings, BasicConditioningInfo, SDXLConditioningInfo
from .diffusion import InvokeAIDiffuserComponent # noqa: F401
from .diffusion.cross_attention_map_saving import AttentionMapSaver # noqa: F401
from .diffusion.shared_invokeai_diffusion import ( # noqa: F401
PostprocessingSettings,
BasicConditioningInfo,
SDXLConditioningInfo,
)

View File

@ -1,9 +1,9 @@
"""
Initialization file for invokeai.models.diffusion
"""
from .cross_attention_control import InvokeAICrossAttentionMixin
from .cross_attention_map_saving import AttentionMapSaver
from .shared_invokeai_diffusion import (
from .cross_attention_control import InvokeAICrossAttentionMixin # noqa: F401
from .cross_attention_map_saving import AttentionMapSaver # noqa: F401
from .shared_invokeai_diffusion import ( # noqa: F401
InvokeAIDiffuserComponent,
PostprocessingSettings,
BasicConditioningInfo,

View File

@ -4,6 +4,7 @@
import enum
import math
from dataclasses import dataclass, field
from typing import Callable, Optional
import diffusers
@ -12,6 +13,11 @@ import torch
from compel.cross_attention_control import Arguments
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
SlicedAttnProcessor,
)
from torch import nn
import invokeai.backend.util.logging as logger
@ -522,14 +528,6 @@ class AttnProcessor:
return hidden_states
"""
from dataclasses import dataclass, field
import torch
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
SlicedAttnProcessor,
)
@dataclass

View File

@ -5,8 +5,6 @@ import torch
from torchvision.transforms.functional import InterpolationMode
from torchvision.transforms.functional import resize as tv_resize
from .cross_attention_control import CrossAttentionType, get_cross_attention_modules
class AttentionMapSaver:
def __init__(self, token_ids: range, latents_shape: torch.Size):

View File

@ -3,15 +3,12 @@ from __future__ import annotations
from contextlib import contextmanager
from dataclasses import dataclass
import math
from typing import Any, Callable, Dict, Optional, Union, List
from typing import Any, Callable, Optional, Union
import numpy as np
import torch
from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import AttentionProcessor
from typing_extensions import TypeAlias
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from .cross_attention_control import (
@ -579,7 +576,7 @@ class InvokeAIDiffuserComponent:
latents.to(device="cpu")
if (
h_symmetry_time_pct != None
h_symmetry_time_pct is not None
and self.last_percent_through < h_symmetry_time_pct
and percent_through >= h_symmetry_time_pct
):
@ -595,7 +592,7 @@ class InvokeAIDiffuserComponent:
)
if (
v_symmetry_time_pct != None
v_symmetry_time_pct is not None
and self.last_percent_through < v_symmetry_time_pct
and percent_through >= v_symmetry_time_pct
):

View File

@ -1,6 +1,6 @@
from ldm.modules.image_degradation.bsrgan import (
from ldm.modules.image_degradation.bsrgan import ( # noqa: F401
degradation_bsrgan_variant as degradation_fn_bsr,
)
from ldm.modules.image_degradation.bsrgan_light import (
from ldm.modules.image_degradation.bsrgan_light import ( # noqa: F401
degradation_bsrgan_variant as degradation_fn_bsr_light,
)

View File

@ -573,14 +573,15 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
jpeg_prob, scale2_prob = 0.9, 0.25
# isp_prob = 0.25 # uncomment with `if i== 6` block below
# sf_ori = sf # uncomment with `if i== 6` block below
h1, w1 = image.shape[:2]
image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
hq = image.copy()
# hq = image.copy() # uncomment with `if i== 6` block below
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
@ -777,7 +778,7 @@ if __name__ == "__main__":
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
print(img_lq.shape)
print("bicubic", img_lq_bicubic.shape)
print(img_hq.shape)
# print(img_hq.shape)
lq_nearest = cv2.resize(
util.single2uint(img_lq),
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
@ -788,5 +789,6 @@ if __name__ == "__main__":
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0,
)
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
# img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest], axis=1)
util.imsave(img_concat, str(i) + ".png")

View File

@ -577,14 +577,15 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
jpeg_prob, scale2_prob = 0.9, 0.25
# isp_prob = 0.25 # uncomment with `if i== 6` block below
# sf_ori = sf # uncomment with `if i== 6` block below
h1, w1 = image.shape[:2]
image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
hq = image.copy()
# hq = image.copy() # uncomment with `if i== 6` block below
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:

View File

@ -8,8 +8,6 @@ import numpy as np
import torch
from torchvision.utils import make_grid
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
import invokeai.backend.util.logging as logger
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@ -50,6 +48,8 @@ def get_timestamp():
def imshow(x, title=None, cbar=False, figsize=None):
import matplotlib.pyplot as plt
plt.figure(figsize=figsize)
plt.imshow(np.squeeze(x), interpolation="nearest", cmap="gray")
if title:
@ -60,6 +60,8 @@ def imshow(x, title=None, cbar=False, figsize=None):
def surf(Z, cmap="rainbow", figsize=None):
import matplotlib.pyplot as plt
plt.figure(figsize=figsize)
ax3 = plt.axes(projection="3d")

View File

@ -1 +1 @@
from .schedulers import SCHEDULER_MAP
from .schedulers import SCHEDULER_MAP # noqa: F401