mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
integrate correctly into app API and add features
- Create abstract base class InvocationStatsServiceBase - Store InvocationStatsService in the InvocationServices object - Collect and report stats on simultaneous graph execution independently for each graph id - Track VRAM usage for each node - Handle cancellations and other exceptions gracefully
This commit is contained in:
@ -2,7 +2,6 @@
|
|||||||
|
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
from logging import Logger
|
from logging import Logger
|
||||||
import os
|
|
||||||
from invokeai.app.services.board_image_record_storage import (
|
from invokeai.app.services.board_image_record_storage import (
|
||||||
SqliteBoardImageRecordStorage,
|
SqliteBoardImageRecordStorage,
|
||||||
)
|
)
|
||||||
@ -30,6 +29,7 @@ from ..services.invoker import Invoker
|
|||||||
from ..services.processor import DefaultInvocationProcessor
|
from ..services.processor import DefaultInvocationProcessor
|
||||||
from ..services.sqlite import SqliteItemStorage
|
from ..services.sqlite import SqliteItemStorage
|
||||||
from ..services.model_manager_service import ModelManagerService
|
from ..services.model_manager_service import ModelManagerService
|
||||||
|
from ..services.invocation_stats import InvocationStatsService
|
||||||
from .events import FastAPIEventService
|
from .events import FastAPIEventService
|
||||||
|
|
||||||
|
|
||||||
@ -128,6 +128,7 @@ class ApiDependencies:
|
|||||||
graph_execution_manager=graph_execution_manager,
|
graph_execution_manager=graph_execution_manager,
|
||||||
processor=DefaultInvocationProcessor(),
|
processor=DefaultInvocationProcessor(),
|
||||||
configuration=config,
|
configuration=config,
|
||||||
|
performance_statistics=InvocationStatsService(graph_execution_manager),
|
||||||
logger=logger,
|
logger=logger,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -32,6 +32,7 @@ class InvocationServices:
|
|||||||
logger: "Logger"
|
logger: "Logger"
|
||||||
model_manager: "ModelManagerServiceBase"
|
model_manager: "ModelManagerServiceBase"
|
||||||
processor: "InvocationProcessorABC"
|
processor: "InvocationProcessorABC"
|
||||||
|
performance_statistics: "InvocationStatsServiceBase"
|
||||||
queue: "InvocationQueueABC"
|
queue: "InvocationQueueABC"
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
@ -47,6 +48,7 @@ class InvocationServices:
|
|||||||
logger: "Logger",
|
logger: "Logger",
|
||||||
model_manager: "ModelManagerServiceBase",
|
model_manager: "ModelManagerServiceBase",
|
||||||
processor: "InvocationProcessorABC",
|
processor: "InvocationProcessorABC",
|
||||||
|
performance_statistics: "InvocationStatsServiceBase",
|
||||||
queue: "InvocationQueueABC",
|
queue: "InvocationQueueABC",
|
||||||
):
|
):
|
||||||
self.board_images = board_images
|
self.board_images = board_images
|
||||||
@ -61,4 +63,5 @@ class InvocationServices:
|
|||||||
self.logger = logger
|
self.logger = logger
|
||||||
self.model_manager = model_manager
|
self.model_manager = model_manager
|
||||||
self.processor = processor
|
self.processor = processor
|
||||||
|
self.performance_statistics = performance_statistics
|
||||||
self.queue = queue
|
self.queue = queue
|
||||||
|
@ -3,99 +3,196 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
Usage:
|
Usage:
|
||||||
statistics = InvocationStats() # keep track of performance metrics
|
|
||||||
...
|
statistics = InvocationStatsService(graph_execution_manager)
|
||||||
with statistics.collect_stats(invocation, graph_execution_state):
|
with statistics.collect_stats(invocation, graph_execution_state.id):
|
||||||
outputs = invocation.invoke(
|
... execute graphs...
|
||||||
InvocationContext(
|
|
||||||
services=self.__invoker.services,
|
|
||||||
graph_execution_state_id=graph_execution_state.id,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
...
|
|
||||||
statistics.log_stats()
|
statistics.log_stats()
|
||||||
|
|
||||||
Typical output:
|
Typical output:
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> Node Calls Seconds
|
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> main_model_loader 1 0.006s
|
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> clip_skip 1 0.005s
|
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> compel 2 0.351s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> rand_int 1 0.001s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> range_of_size 1 0.001s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> iterate 1 0.001s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> noise 1 0.002s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> t2l 1 3.117s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> l2i 1 0.377s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> TOTAL: 3.865s
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
|
||||||
[2023-08-01 17:34:44,585]::[InvokeAI]::INFO --> Max VRAM used for execution: 3.12G.
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
|
||||||
[2023-08-01 17:34:44,586]::[InvokeAI]::INFO --> Current VRAM utilization 2.31G.
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
|
||||||
|
|
||||||
|
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
|
||||||
|
writes to the system log is stored in InvocationServices.performance_statistics.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import time
|
import time
|
||||||
from typing import Dict, List
|
from abc import ABC, abstractmethod
|
||||||
|
from contextlib import AbstractContextManager
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from .graph import GraphExecutionState
|
|
||||||
from .invocation_queue import InvocationQueueItem
|
|
||||||
from ..invocations.baseinvocation import BaseInvocation
|
|
||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
import invokeai.backend.util.logging as logger
|
||||||
|
|
||||||
|
from ..invocations.baseinvocation import BaseInvocation
|
||||||
|
from .graph import GraphExecutionState
|
||||||
|
from .item_storage import ItemStorageABC
|
||||||
|
|
||||||
class InvocationStats:
|
|
||||||
|
class InvocationStatsServiceBase(ABC):
|
||||||
|
"Abstract base class for recording node memory/time performance statistics"
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
|
||||||
|
"""
|
||||||
|
Initialize the InvocationStatsService and reset counters to zero
|
||||||
|
:param graph_execution_manager: Graph execution manager for this session
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def collect_stats(
|
||||||
|
self,
|
||||||
|
invocation: BaseInvocation,
|
||||||
|
graph_execution_state_id: str,
|
||||||
|
) -> AbstractContextManager:
|
||||||
|
"""
|
||||||
|
Return a context object that will capture the statistics on the execution
|
||||||
|
of invocaation. Use with: to place around the part of the code that executes the invocation.
|
||||||
|
:param invocation: BaseInvocation object from the current graph.
|
||||||
|
:param graph_execution_state: GraphExecutionState object from the current session.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def reset_stats(self, graph_execution_state_id: str):
|
||||||
|
"""
|
||||||
|
Reset all statistics for the indicated graph
|
||||||
|
:param graph_execution_state_id
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def reset_all_stats(self):
|
||||||
|
"""Zero all statistics"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def update_invocation_stats(
|
||||||
|
self,
|
||||||
|
graph_id: str,
|
||||||
|
invocation_type: str,
|
||||||
|
time_used: float,
|
||||||
|
vram_used: float,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Add timing information on execution of a node. Usually
|
||||||
|
used internally.
|
||||||
|
:param graph_id: ID of the graph that is currently executing
|
||||||
|
:param invocation_type: String literal type of the node
|
||||||
|
:param time_used: Time used by node's exection (sec)
|
||||||
|
:param vram_used: Maximum VRAM used during exection (GB)
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def log_stats(self):
|
||||||
|
"""
|
||||||
|
Write out the accumulated statistics to the log or somewhere else.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class NodeStats:
|
||||||
|
"""Class for tracking execution stats of an invocation node"""
|
||||||
|
|
||||||
|
calls: int = 0
|
||||||
|
time_used: float = 0.0 # seconds
|
||||||
|
max_vram: float = 0.0 # GB
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class NodeLog:
|
||||||
|
"""Class for tracking node usage"""
|
||||||
|
|
||||||
|
# {node_type => NodeStats}
|
||||||
|
nodes: Dict[str, NodeStats] = field(default_factory=dict)
|
||||||
|
|
||||||
|
|
||||||
|
class InvocationStatsService(InvocationStatsServiceBase):
|
||||||
"""Accumulate performance information about a running graph. Collects time spent in each node,
|
"""Accumulate performance information about a running graph. Collects time spent in each node,
|
||||||
as well as the maximum and current VRAM utilisation for CUDA systems"""
|
as well as the maximum and current VRAM utilisation for CUDA systems"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
|
||||||
self._stats: Dict[str, int] = {}
|
self.graph_execution_manager = graph_execution_manager
|
||||||
|
# {graph_id => NodeLog}
|
||||||
|
self._stats: Dict[str, NodeLog] = {}
|
||||||
|
|
||||||
class StatsContext:
|
class StatsContext:
|
||||||
def __init__(self, invocation: BaseInvocation, collector):
|
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
|
||||||
self.invocation = invocation
|
self.invocation = invocation
|
||||||
self.collector = collector
|
self.collector = collector
|
||||||
|
self.graph_id = graph_id
|
||||||
self.start_time = 0
|
self.start_time = 0
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
self.start_time = time.time()
|
self.start_time = time.time()
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
|
||||||
def __exit__(self, *args):
|
def __exit__(self, *args):
|
||||||
self.collector.log_time(self.invocation.type, time.time() - self.start_time)
|
self.collector.update_invocation_stats(
|
||||||
|
self.graph_id,
|
||||||
|
self.invocation.type,
|
||||||
|
time.time() - self.start_time,
|
||||||
|
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
|
||||||
|
)
|
||||||
|
|
||||||
def collect_stats(
|
def collect_stats(
|
||||||
self,
|
self,
|
||||||
invocation: BaseInvocation,
|
invocation: BaseInvocation,
|
||||||
graph_execution_state: GraphExecutionState,
|
graph_execution_state_id: str,
|
||||||
) -> StatsContext:
|
) -> StatsContext:
|
||||||
"""
|
"""
|
||||||
Return a context object that will capture the statistics.
|
Return a context object that will capture the statistics.
|
||||||
:param invocation: BaseInvocation object from the current graph.
|
:param invocation: BaseInvocation object from the current graph.
|
||||||
:param graph_execution_state: GraphExecutionState object from the current session.
|
:param graph_execution_state: GraphExecutionState object from the current session.
|
||||||
"""
|
"""
|
||||||
if len(graph_execution_state.executed) == 0: # new graph is starting
|
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
|
||||||
self.reset_stats()
|
self._stats[graph_execution_state_id] = NodeLog()
|
||||||
self._current_graph_state = graph_execution_state
|
return self.StatsContext(invocation, graph_execution_state_id, self)
|
||||||
sc = self.StatsContext(invocation, self)
|
|
||||||
return self.StatsContext(invocation, self)
|
|
||||||
|
|
||||||
def reset_stats(self):
|
def reset_all_stats(self):
|
||||||
"""Zero the statistics. Ordinarily called internally."""
|
"""Zero all statistics"""
|
||||||
if torch.cuda.is_available():
|
self._stats = {}
|
||||||
torch.cuda.reset_peak_memory_stats()
|
|
||||||
self._stats: Dict[str, List[int, float]] = {}
|
|
||||||
|
|
||||||
def log_time(self, invocation_type: str, time_used: float):
|
def reset_stats(self, graph_execution_id: str):
|
||||||
|
"""Zero the statistics for the indicated graph."""
|
||||||
|
try:
|
||||||
|
self._stats.pop(graph_execution_id)
|
||||||
|
except KeyError:
|
||||||
|
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
|
||||||
|
|
||||||
|
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float):
|
||||||
"""
|
"""
|
||||||
Add timing information on execution of a node. Usually
|
Add timing information on execution of a node. Usually
|
||||||
used internally.
|
used internally.
|
||||||
|
:param graph_id: ID of the graph that is currently executing
|
||||||
:param invocation_type: String literal type of the node
|
:param invocation_type: String literal type of the node
|
||||||
:param time_used: Floating point seconds used by node's exection
|
:param time_used: Floating point seconds used by node's exection
|
||||||
"""
|
"""
|
||||||
if not self._stats.get(invocation_type):
|
if not self._stats[graph_id].nodes.get(invocation_type):
|
||||||
self._stats[invocation_type] = [0, 0.0]
|
self._stats[graph_id].nodes[invocation_type] = NodeStats()
|
||||||
self._stats[invocation_type][0] += 1
|
stats = self._stats[graph_id].nodes[invocation_type]
|
||||||
self._stats[invocation_type][1] += time_used
|
stats.calls += 1
|
||||||
|
stats.time_used += time_used
|
||||||
|
stats.max_vram = max(stats.max_vram, vram_used)
|
||||||
|
|
||||||
def log_stats(self):
|
def log_stats(self):
|
||||||
"""
|
"""
|
||||||
@ -103,13 +200,24 @@ class InvocationStats:
|
|||||||
Stats will only be printed if when the execution of the graph
|
Stats will only be printed if when the execution of the graph
|
||||||
is complete.
|
is complete.
|
||||||
"""
|
"""
|
||||||
if self._current_graph_state.is_complete():
|
completed = set()
|
||||||
logger.info("Node Calls Seconds")
|
for graph_id, node_log in self._stats.items():
|
||||||
for node_type, (calls, time_used) in self._stats.items():
|
current_graph_state = self.graph_execution_manager.get(graph_id)
|
||||||
logger.info(f"{node_type:<20} {calls:>5} {time_used:4.3f}s")
|
if not current_graph_state.is_complete():
|
||||||
|
continue
|
||||||
|
|
||||||
total_time = sum([ticks for _, ticks in self._stats.values()])
|
total_time = 0
|
||||||
logger.info(f"TOTAL: {total_time:4.3f}s")
|
logger.info(f"Graph stats: {graph_id}")
|
||||||
|
logger.info("Node Calls Seconds VRAM Used")
|
||||||
|
for node_type, stats in self._stats[graph_id].nodes.items():
|
||||||
|
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:4.3f}s {stats.max_vram:4.2f}G")
|
||||||
|
total_time += stats.time_used
|
||||||
|
|
||||||
|
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:4.3f}s")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
logger.info("Max VRAM used for execution: " + "%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9))
|
|
||||||
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
|
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
|
||||||
|
|
||||||
|
completed.add(graph_id)
|
||||||
|
|
||||||
|
for graph_id in completed:
|
||||||
|
del self._stats[graph_id]
|
||||||
|
@ -1,15 +1,15 @@
|
|||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
from threading import Event, Thread, BoundedSemaphore
|
from threading import BoundedSemaphore, Event, Thread
|
||||||
|
|
||||||
from ..invocations.baseinvocation import InvocationContext
|
|
||||||
from .invocation_queue import InvocationQueueItem
|
|
||||||
from .invoker import InvocationProcessorABC, Invoker
|
|
||||||
from .invocation_stats import InvocationStats
|
|
||||||
from ..models.exceptions import CanceledException
|
|
||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
import invokeai.backend.util.logging as logger
|
||||||
|
|
||||||
|
from ..invocations.baseinvocation import InvocationContext
|
||||||
|
from ..models.exceptions import CanceledException
|
||||||
|
from .invocation_queue import InvocationQueueItem
|
||||||
|
from .invocation_stats import InvocationStatsServiceBase
|
||||||
|
from .invoker import InvocationProcessorABC, Invoker
|
||||||
|
|
||||||
|
|
||||||
class DefaultInvocationProcessor(InvocationProcessorABC):
|
class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||||
__invoker_thread: Thread
|
__invoker_thread: Thread
|
||||||
@ -36,7 +36,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
|||||||
def __process(self, stop_event: Event):
|
def __process(self, stop_event: Event):
|
||||||
try:
|
try:
|
||||||
self.__threadLimit.acquire()
|
self.__threadLimit.acquire()
|
||||||
statistics = InvocationStats() # keep track of performance metrics
|
statistics: InvocationStatsServiceBase = self.__invoker.services.performance_statistics
|
||||||
|
|
||||||
while not stop_event.is_set():
|
while not stop_event.is_set():
|
||||||
try:
|
try:
|
||||||
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
|
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
|
||||||
@ -85,7 +86,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
|||||||
|
|
||||||
# Invoke
|
# Invoke
|
||||||
try:
|
try:
|
||||||
with statistics.collect_stats(invocation, graph_execution_state):
|
with statistics.collect_stats(invocation, graph_execution_state.id):
|
||||||
outputs = invocation.invoke(
|
outputs = invocation.invoke(
|
||||||
InvocationContext(
|
InvocationContext(
|
||||||
services=self.__invoker.services,
|
services=self.__invoker.services,
|
||||||
@ -116,7 +117,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
except CanceledException:
|
except CanceledException:
|
||||||
statistics.reset_stats()
|
statistics.reset_stats(graph_execution_state.id)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@ -138,7 +139,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
|||||||
error_type=e.__class__.__name__,
|
error_type=e.__class__.__name__,
|
||||||
error=error,
|
error=error,
|
||||||
)
|
)
|
||||||
statistics.reset_stats()
|
statistics.reset_stats(graph_execution_state.id)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
# Check queue to see if this is canceled, and skip if so
|
# Check queue to see if this is canceled, and skip if so
|
||||||
|
Reference in New Issue
Block a user