diff --git a/invokeai/app/invocations/controlnet_image_processors.py b/invokeai/app/invocations/controlnet_image_processors.py index d4da0c25a1..7b6cfaaaf1 100644 --- a/invokeai/app/invocations/controlnet_image_processors.py +++ b/invokeai/app/invocations/controlnet_image_processors.py @@ -35,7 +35,7 @@ from invokeai.app.invocations.fields import ( WithBoard, WithMetadata, ) -from invokeai.app.invocations.model import ModelField +from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.services.shared.invocation_context import InvocationContext @@ -55,7 +55,7 @@ CONTROLNET_RESIZE_VALUES = Literal[ class ControlField(BaseModel): image: ImageField = Field(description="The control image") - control_model: ModelField = Field(description="The ControlNet model to use") + control_model: ModelIdentifierField = Field(description="The ControlNet model to use") control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") begin_step_percent: float = Field( default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)" @@ -91,7 +91,7 @@ class ControlNetInvocation(BaseInvocation): """Collects ControlNet info to pass to other nodes""" image: ImageField = InputField(description="The control image") - control_model: ModelField = InputField( + control_model: ModelIdentifierField = InputField( description=FieldDescriptions.controlnet_model, input=Input.Direct, ui_type=UIType.ControlNetModel ) control_weight: Union[float, List[float]] = InputField( diff --git a/invokeai/app/invocations/ip_adapter.py b/invokeai/app/invocations/ip_adapter.py index e7d33654f5..c12352071f 100644 --- a/invokeai/app/invocations/ip_adapter.py +++ b/invokeai/app/invocations/ip_adapter.py @@ -11,7 +11,7 @@ from invokeai.app.invocations.baseinvocation import ( invocation_output, ) from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType -from invokeai.app.invocations.model import ModelField +from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.services.shared.invocation_context import InvocationContext @@ -20,8 +20,8 @@ from invokeai.backend.model_manager.config import BaseModelType, IPAdapterConfig class IPAdapterField(BaseModel): image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).") - ip_adapter_model: ModelField = Field(description="The IP-Adapter model to use.") - image_encoder_model: ModelField = Field(description="The name of the CLIP image encoder model.") + ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.") + image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.") weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") begin_step_percent: float = Field( default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" @@ -54,7 +54,7 @@ class IPAdapterInvocation(BaseInvocation): # Inputs image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).") - ip_adapter_model: ModelField = InputField( + ip_adapter_model: ModelIdentifierField = InputField( description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, @@ -97,7 +97,7 @@ class IPAdapterInvocation(BaseInvocation): ip_adapter=IPAdapterField( image=self.image, ip_adapter_model=self.ip_adapter_model, - image_encoder_model=ModelField(key=image_encoder_models[0].key), + image_encoder_model=ModelIdentifierField(key=image_encoder_models[0].key), weight=self.weight, begin_step_percent=self.begin_step_percent, end_step_percent=self.end_step_percent, diff --git a/invokeai/app/invocations/latent.py b/invokeai/app/invocations/latent.py index f21e28cfa4..94cd5a75f0 100644 --- a/invokeai/app/invocations/latent.py +++ b/invokeai/app/invocations/latent.py @@ -76,7 +76,7 @@ from .baseinvocation import ( invocation_output, ) from .controlnet_image_processors import ControlField -from .model import ModelField, UNetField, VAEField +from .model import ModelIdentifierField, UNetField, VAEField if choose_torch_device() == torch.device("mps"): from torch import mps @@ -245,7 +245,7 @@ class CreateGradientMaskInvocation(BaseInvocation): def get_scheduler( context: InvocationContext, - scheduler_info: ModelField, + scheduler_info: ModelIdentifierField, scheduler_name: str, seed: int, ) -> Scheduler: diff --git a/invokeai/app/invocations/model.py b/invokeai/app/invocations/model.py index 7806f61a8f..0ae2d27229 100644 --- a/invokeai/app/invocations/model.py +++ b/invokeai/app/invocations/model.py @@ -6,7 +6,7 @@ from pydantic import BaseModel, Field from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.shared.models import FreeUConfig -from invokeai.backend.model_manager.config import SubModelType +from invokeai.backend.model_manager.config import BaseModelType, ModelType, SubModelType from .baseinvocation import ( BaseInvocation, @@ -16,33 +16,39 @@ from .baseinvocation import ( ) -class ModelField(BaseModel): - key: str = Field(description="Key of the model") - submodel_type: Optional[SubModelType] = Field(description="Submodel type", default=None) +class ModelIdentifierField(BaseModel): + key: str = Field(description="The model's unique key") + hash: str = Field(description="The model's BLAKE3 hash") + name: str = Field(description="The model's name") + base: BaseModelType = Field(description="The model's base model type") + type: ModelType = Field(description="The model's type") + submodel_type: Optional[SubModelType] = Field( + description="The submodel to load, if this is a main model", default=None + ) class LoRAField(BaseModel): - lora: ModelField = Field(description="Info to load lora model") + lora: ModelIdentifierField = Field(description="Info to load lora model") weight: float = Field(description="Weight to apply to lora model") class UNetField(BaseModel): - unet: ModelField = Field(description="Info to load unet submodel") - scheduler: ModelField = Field(description="Info to load scheduler submodel") + unet: ModelIdentifierField = Field(description="Info to load unet submodel") + scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel") loras: List[LoRAField] = Field(description="LoRAs to apply on model loading") seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless') freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration") class CLIPField(BaseModel): - tokenizer: ModelField = Field(description="Info to load tokenizer submodel") - text_encoder: ModelField = Field(description="Info to load text_encoder submodel") + tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel") + text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel") skipped_layers: int = Field(description="Number of skipped layers in text_encoder") loras: List[LoRAField] = Field(description="LoRAs to apply on model loading") class VAEField(BaseModel): - vae: ModelField = Field(description="Info to load vae submodel") + vae: ModelIdentifierField = Field(description="Info to load vae submodel") seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless') @@ -84,7 +90,7 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput): class MainModelLoaderInvocation(BaseInvocation): """Loads a main model, outputting its submodels.""" - model: ModelField = InputField( + model: ModelIdentifierField = InputField( description=FieldDescriptions.main_model, input=Input.Direct, ui_type=UIType.MainModel ) # TODO: precision? @@ -119,7 +125,7 @@ class LoRALoaderOutput(BaseInvocationOutput): class LoRALoaderInvocation(BaseInvocation): """Apply selected lora to unet and text_encoder.""" - lora: ModelField = InputField( + lora: ModelIdentifierField = InputField( description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel ) weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight) @@ -190,7 +196,7 @@ class SDXLLoRALoaderOutput(BaseInvocationOutput): class SDXLLoRALoaderInvocation(BaseInvocation): """Apply selected lora to unet and text_encoder.""" - lora: ModelField = InputField( + lora: ModelIdentifierField = InputField( description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel ) weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight) @@ -264,7 +270,7 @@ class SDXLLoRALoaderInvocation(BaseInvocation): class VAELoaderInvocation(BaseInvocation): """Loads a VAE model, outputting a VaeLoaderOutput""" - vae_model: ModelField = InputField( + vae_model: ModelIdentifierField = InputField( description=FieldDescriptions.vae_model, input=Input.Direct, title="VAE", ui_type=UIType.VAEModel ) diff --git a/invokeai/app/invocations/sdxl.py b/invokeai/app/invocations/sdxl.py index 17b6ef2053..9676a6cec0 100644 --- a/invokeai/app/invocations/sdxl.py +++ b/invokeai/app/invocations/sdxl.py @@ -8,7 +8,7 @@ from .baseinvocation import ( invocation, invocation_output, ) -from .model import CLIPField, ModelField, UNetField, VAEField +from .model import CLIPField, ModelIdentifierField, UNetField, VAEField @invocation_output("sdxl_model_loader_output") @@ -34,7 +34,7 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput): class SDXLModelLoaderInvocation(BaseInvocation): """Loads an sdxl base model, outputting its submodels.""" - model: ModelField = InputField( + model: ModelIdentifierField = InputField( description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel ) # TODO: precision? @@ -72,7 +72,7 @@ class SDXLModelLoaderInvocation(BaseInvocation): class SDXLRefinerModelLoaderInvocation(BaseInvocation): """Loads an sdxl refiner model, outputting its submodels.""" - model: ModelField = InputField( + model: ModelIdentifierField = InputField( description=FieldDescriptions.sdxl_refiner_model, input=Input.Direct, ui_type=UIType.SDXLRefinerModel ) # TODO: precision? diff --git a/invokeai/app/invocations/t2i_adapter.py b/invokeai/app/invocations/t2i_adapter.py index d399d17864..71eb31c3aa 100644 --- a/invokeai/app/invocations/t2i_adapter.py +++ b/invokeai/app/invocations/t2i_adapter.py @@ -10,14 +10,14 @@ from invokeai.app.invocations.baseinvocation import ( ) from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType -from invokeai.app.invocations.model import ModelField +from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.services.shared.invocation_context import InvocationContext class T2IAdapterField(BaseModel): image: ImageField = Field(description="The T2I-Adapter image prompt.") - t2i_adapter_model: ModelField = Field(description="The T2I-Adapter model to use.") + t2i_adapter_model: ModelIdentifierField = Field(description="The T2I-Adapter model to use.") weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter") begin_step_percent: float = Field( default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)" @@ -52,7 +52,7 @@ class T2IAdapterInvocation(BaseInvocation): # Inputs image: ImageField = InputField(description="The IP-Adapter image prompt.") - t2i_adapter_model: ModelField = InputField( + t2i_adapter_model: ModelIdentifierField = InputField( description="The T2I-Adapter model.", title="T2I-Adapter Model", input=Input.Direct, diff --git a/invokeai/app/services/shared/invocation_context.py b/invokeai/app/services/shared/invocation_context.py index abf131a125..4e445a693a 100644 --- a/invokeai/app/services/shared/invocation_context.py +++ b/invokeai/app/services/shared/invocation_context.py @@ -22,7 +22,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Condit if TYPE_CHECKING: from invokeai.app.invocations.baseinvocation import BaseInvocation - from invokeai.app.invocations.model import ModelField + from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem """ @@ -300,7 +300,7 @@ class ConditioningInterface(InvocationContextInterface): class ModelsInterface(InvocationContextInterface): - def exists(self, identifier: Union[str, "ModelField"]) -> bool: + def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool: """Checks if a model exists. Args: @@ -314,7 +314,9 @@ class ModelsInterface(InvocationContextInterface): return self._services.model_manager.store.exists(identifier.key) - def load(self, identifier: Union[str, "ModelField"], submodel_type: Optional[SubModelType] = None) -> LoadedModel: + def load( + self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None + ) -> LoadedModel: """Loads a model. Args: @@ -361,7 +363,7 @@ class ModelsInterface(InvocationContextInterface): return self._services.model_manager.load.load_model(configs[0], submodel_type, self._data) - def get_config(self, identifier: Union[str, "ModelField"]) -> AnyModelConfig: + def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig: """Gets a model's config. Args: diff --git a/invokeai/invocation_api/__init__.py b/invokeai/invocation_api/__init__.py index c15beb446e..300ecd751b 100644 --- a/invokeai/invocation_api/__init__.py +++ b/invokeai/invocation_api/__init__.py @@ -36,7 +36,7 @@ from invokeai.app.invocations.model import ( CLIPField, CLIPOutput, LoRALoaderOutput, - ModelField, + ModelIdentifierField, ModelLoaderOutput, SDXLLoRALoaderOutput, UNetField, @@ -114,7 +114,7 @@ __all__ = [ "MetadataItemOutput", "MetadataOutput", # invokeai.app.invocations.model - "ModelField", + "ModelIdentifierField", "UNetField", "CLIPField", "VAEField",