Remove civit ai from tests and documentation

This commit is contained in:
Brandon Rising 2024-03-07 11:24:30 -05:00 committed by psychedelicious
parent afd08c5f46
commit 952d97741e
6 changed files with 25 additions and 180 deletions

View File

@ -16,11 +16,6 @@ model. These are the:
information. It is also responsible for managing the InvokeAI information. It is also responsible for managing the InvokeAI
`models` directory and its contents. `models` directory and its contents.
* _ModelMetadataStore_ and _ModelMetaDataFetch_ Backend modules that
are able to retrieve metadata from online model repositories,
transform them into Pydantic models, and cache them to the InvokeAI
SQL database.
* _DownloadQueueServiceBase_ * _DownloadQueueServiceBase_
A multithreaded downloader responsible A multithreaded downloader responsible
for downloading models from a remote source to disk. The download for downloading models from a remote source to disk. The download
@ -382,17 +377,14 @@ functionality:
* Downloading a model from an arbitrary URL and installing it in * Downloading a model from an arbitrary URL and installing it in
`models_dir`. `models_dir`.
* Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link
* Special handling for HuggingFace repo_ids to recursively download * Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative the contents of the repository, paying attention to alternative
variants such as fp16. variants such as fp16.
* Saving tags and other metadata about the model into the invokeai database * Saving tags and other metadata about the model into the invokeai database
when fetching from a repo that provides that type of information, when fetching from a repo that provides that type of information,
(currently only Civitai and HuggingFace). (currently only HuggingFace).
### Initializing the installer ### Initializing the installer
@ -436,7 +428,6 @@ required parameters:
| `app_config` | InvokeAIAppConfig | InvokeAI app configuration object | | `app_config` | InvokeAIAppConfig | InvokeAI app configuration object |
| `record_store` | ModelRecordServiceBase | Config record storage database | | `record_store` | ModelRecordServiceBase | Config record storage database |
| `download_queue` | DownloadQueueServiceBase | Download queue object | | `download_queue` | DownloadQueueServiceBase | Download queue object |
| `metadata_store` | Optional[ModelMetadataStore] | Metadata storage object |
|`session` | Optional[requests.Session] | Swap in a different Session object (usually for debugging) | |`session` | Optional[requests.Session] | Swap in a different Session object (usually for debugging) |
Once initialized, the installer will provide the following methods: Once initialized, the installer will provide the following methods:
@ -580,8 +571,7 @@ The `AnyHttpUrl` class can be imported from `pydantic.networks`.
Ordinarily, no metadata is retrieved from these sources. However, Ordinarily, no metadata is retrieved from these sources. However,
there is special-case code in the installer that looks for HuggingFace there is special-case code in the installer that looks for HuggingFace
and Civitai URLs and fetches the corresponding model metadata from and fetches the corresponding model metadata from the corresponding repo.
the corresponding repo.
#### HFModelSource #### HFModelSource
@ -1228,9 +1218,9 @@ queue and have not yet reached a terminal state.
The modules found under `invokeai.backend.model_manager.metadata` The modules found under `invokeai.backend.model_manager.metadata`
provide a straightforward API for fetching model metadatda from online provide a straightforward API for fetching model metadatda from online
repositories. Currently two repositories are supported: HuggingFace repositories. Currently only HuggingFace is supported. However, the
and Civitai. However, the modules are easily extended for additional modules are easily extended for additional repos, provided that they
repos, provided that they have defined APIs for metadata access. have defined APIs for metadata access.
Metadata comprises any descriptive information that is not essential Metadata comprises any descriptive information that is not essential
for getting the model to run. For example "author" is metadata, while for getting the model to run. For example "author" is metadata, while
@ -1242,37 +1232,16 @@ model's config, as defined in `invokeai.backend.model_manager.config`.
``` ```
from invokeai.backend.model_manager.metadata import ( from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata, AnyModelRepoMetadata,
CivitaiMetadataFetch,
CivitaiMetadata
ModelMetadataStore,
) )
# to access the initialized sql database # to access the initialized sql database
from invokeai.app.api.dependencies import ApiDependencies from invokeai.app.api.dependencies import ApiDependencies
civitai = CivitaiMetadataFetch() hf = HuggingFaceMetadataFetch()
# fetch the metadata # fetch the metadata
model_metadata = civitai.from_url("https://civitai.com/models/215796") model_metadata = hf.from_id("<repo_id>")
# get some common metadata fields assert isinstance(model_metadata, HuggingFaceMetadata)
author = model_metadata.author
tags = model_metadata.tags
# get some Civitai-specific fields
assert isinstance(model_metadata, CivitaiMetadata)
trained_words = model_metadata.trained_words
base_model = model_metadata.base_model_trained_on
thumbnail = model_metadata.thumbnail_url
# cache the metadata to the database using the key corresponding to
# an existing model config record in the `model_config` table
sql_cache = ModelMetadataStore(ApiDependencies.invoker.services.db)
sql_cache.add_metadata('fb237ace520b6716adc98bcb16e8462c', model_metadata)
# now we can search the database by tag, author or model name
# matches will contain a list of model keys that match the search
matches = sql_cache.search_by_tag({"tool", "turbo"})
``` ```
### Structure of the Metadata objects ### Structure of the Metadata objects
@ -1309,52 +1278,14 @@ This descends from `ModelMetadataBase` and adds the following fields:
| `last_modified`| datetime | Date of last commit of this model to the repo | | `last_modified`| datetime | Date of last commit of this model to the repo |
| `files` | List[Path] | List of the files in the model repo | | `files` | List[Path] | List of the files in the model repo |
#### `CivitaiMetadata`
This descends from `ModelMetadataBase` and adds the following fields:
| **Field Name** | **Type** | **Description** |
|----------------|-----------------|------------------|
| `type` | Literal["civitai"] | Used for the discriminated union of metadata classes|
| `id` | int | Civitai model id |
| `version_name` | str | Name of this version of the model (distinct from model name) |
| `version_id` | int | Civitai model version id (distinct from model id) |
| `created` | datetime | Date this version of the model was created |
| `updated` | datetime | Date this version of the model was last updated |
| `published` | datetime | Date this version of the model was published to Civitai |
| `description` | str | Model description. Quite verbose and contains HTML tags |
| `version_description` | str | Model version description, usually describes changes to the model |
| `nsfw` | bool | Whether the model tends to generate NSFW content |
| `restrictions` | LicenseRestrictions | An object that describes what is and isn't allowed with this model |
| `trained_words`| Set[str] | Trigger words for this model, if any |
| `download_url` | AnyHttpUrl | URL for downloading this version of the model |
| `base_model_trained_on` | str | Name of the model that this version was trained on |
| `thumbnail_url` | AnyHttpUrl | URL to access a representative thumbnail image of the model's output |
| `weight_min` | int | For LoRA sliders, the minimum suggested weight to apply |
| `weight_max` | int | For LoRA sliders, the maximum suggested weight to apply |
Note that `weight_min` and `weight_max` are not currently populated
and take the default values of (-1.0, +2.0). The issue is that these
values aren't part of the structured data but appear in the text
description. Some regular expression or LLM coding may be able to
extract these values.
Also be aware that `base_model_trained_on` is free text and doesn't
correspond to our `ModelType` enum.
`CivitaiMetadata` also defines some convenience properties relating to
licensing restrictions: `credit_required`, `allow_commercial_use`,
`allow_derivatives` and `allow_different_license`.
#### `AnyModelRepoMetadata` #### `AnyModelRepoMetadata`
This is a discriminated Union of `CivitaiMetadata` and This is a discriminated Union of `HuggingFaceMetadata`.
`HuggingFaceMetadata`.
### Fetching Metadata from Online Repos ### Fetching Metadata from Online Repos
The `HuggingFaceMetadataFetch` and `CivitaiMetadataFetch` classes will The `HuggingFaceMetadataFetch` class will
retrieve metadata from their corresponding repositories and return retrieve metadata from its corresponding repository and return
`AnyModelRepoMetadata` objects. Their base class `AnyModelRepoMetadata` objects. Their base class
`ModelMetadataFetchBase` is an abstract class that defines two `ModelMetadataFetchBase` is an abstract class that defines two
methods: `from_url()` and `from_id()`. The former accepts the type of methods: `from_url()` and `from_id()`. The former accepts the type of
@ -1372,96 +1303,17 @@ provide a `requests.Session` argument. This allows you to customize
the low-level HTTP fetch requests and is used, for instance, in the the low-level HTTP fetch requests and is used, for instance, in the
testing suite to avoid hitting the internet. testing suite to avoid hitting the internet.
The HuggingFace and Civitai fetcher subclasses add additional The HuggingFace fetcher subclass add additional repo-specific fetching methods:
repo-specific fetching methods:
#### HuggingFaceMetadataFetch #### HuggingFaceMetadataFetch
This overrides its base class `from_json()` method to return a This overrides its base class `from_json()` method to return a
`HuggingFaceMetadata` object directly. `HuggingFaceMetadata` object directly.
#### CivitaiMetadataFetch
This adds the following methods:
`from_civitai_modelid()` This takes the ID of a model, finds the
default version of the model, and then retrieves the metadata for
that version, returning a `CivitaiMetadata` object directly.
`from_civitai_versionid()` This takes the ID of a model version and
retrieves its metadata. Functionally equivalent to `from_id()`, the
only difference is that it returna a `CivitaiMetadata` object rather
than an `AnyModelRepoMetadata`.
### Metadata Storage ### Metadata Storage
The `ModelMetadataStore` provides a simple facility to store model The `ModelConfigBase` stores this response in the `source_api_response` field
metadata in the `invokeai.db` database. The data is stored as a JSON as a JSON blob.
blob, with a few common fields (`name`, `author`, `tags`) broken out
to be searchable.
When a metadata object is saved to the database, it is identified
using the model key, _and this key must correspond to an existing
model key in the model_config table_. There is a foreign key integrity
constraint between the `model_config.id` field and the
`model_metadata.id` field such that if you attempt to save metadata
under an unknown key, the attempt will result in an
`UnknownModelException`. Likewise, when a model is deleted from
`model_config`, the deletion of the corresponding metadata record will
be triggered.
Tags are stored in a normalized fashion in the tables `model_tags` and
`tags`. Triggers keep the tag table in sync with the `model_metadata`
table.
To create the storage object, initialize it with the InvokeAI
`SqliteDatabase` object. This is often done this way:
```
from invokeai.app.api.dependencies import ApiDependencies
metadata_store = ModelMetadataStore(ApiDependencies.invoker.services.db)
```
You can then access the storage with the following methods:
#### `add_metadata(key, metadata)`
Add the metadata using a previously-defined model key.
There is currently no `delete_metadata()` method. The metadata will
persist until the matching config is deleted from the `model_config`
table.
#### `get_metadata(key) -> AnyModelRepoMetadata`
Retrieve the metadata corresponding to the model key.
#### `update_metadata(key, new_metadata)`
Update an existing metadata record with new metadata.
#### `search_by_tag(tags: Set[str]) -> Set[str]`
Given a set of tags, find models that are tagged with them. If
multiple tags are provided then a matching model must be tagged with
*all* the tags in the set. This method returns a set of model keys and
is intended to be used in conjunction with the `ModelRecordService`:
```
model_config_store = ApiDependencies.invoker.services.model_records
matches = metadata_store.search_by_tag({'license:other'})
models = [model_config_store.get(x) for x in matches]
```
#### `search_by_name(name: str) -> Set[str]
Find all model metadata records that have the given name and return a
set of keys to the corresponding model config objects.
#### `search_by_author(author: str) -> Set[str]
Find all model metadata records that have the given author and return
a set of keys to the corresponding model config objects.
*** ***

View File

@ -589,7 +589,7 @@ class ModelInstallService(ModelInstallServiceBase):
) )
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob: def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from Civitai or HuggingFace will be handled specially # URLs from HuggingFace will be handled specially
metadata = None metadata = None
fetcher = None fetcher = None
try: try:

View File

@ -10,12 +10,10 @@ from invokeai.backend.model_manager.metadata import(
HuggingFaceMetadata, HuggingFaceMetadata,
) )
from invokeai.backend.model_manager.metadata.fetch import CivitaiMetadataFetch from invokeai.backend.model_manager.metadata.fetch import HuggingFaceMetadataFetch
data = CivitaiMetadataFetch().from_url("https://civitai.com/models/206883/split") data = HuggingFaceMetadataFetch().from_id("<REPO_ID>")
assert isinstance(data, CivitaiMetadata) assert isinstance(data, HuggingFaceMetadata)
if data.allow_commercial_use:
print("Commercial use of this model is allowed")
""" """
from .fetch import HuggingFaceMetadataFetch, ModelMetadataFetchBase from .fetch import HuggingFaceMetadataFetch, ModelMetadataFetchBase

View File

@ -3,15 +3,11 @@ Initialization file for invokeai.backend.model_manager.metadata.fetch
Usage: Usage:
from invokeai.backend.model_manager.metadata.fetch import ( from invokeai.backend.model_manager.metadata.fetch import (
CivitaiMetadataFetch,
HuggingFaceMetadataFetch, HuggingFaceMetadataFetch,
) )
from invokeai.backend.model_manager.metadata import CivitaiMetadata
data = CivitaiMetadataFetch().from_url("https://civitai.com/models/206883/split") data = HuggingFaceMetadataFetch().from_id("<repo_id>")
assert isinstance(data, CivitaiMetadata) assert isinstance(data, HuggingFaceMetadata)
if data.allow_commercial_use:
print("Commercial use of this model is allowed")
""" """
from .fetch_base import ModelMetadataFetchBase from .fetch_base import ModelMetadataFetchBase

View File

@ -5,11 +5,10 @@ This module is the base class for subclasses that fetch metadata from model repo
Usage: Usage:
from invokeai.backend.model_manager.metadata.fetch import CivitAIMetadataFetch from invokeai.backend.model_manager.metadata.fetch import HuggingFaceMetadataFetch
fetcher = CivitaiMetadataFetch() data = HuggingFaceMetadataFetch().from_id("<REPO_ID>")
metadata = fetcher.from_url("https://civitai.com/models/206883/split") assert isinstance(data, HuggingFaceMetadata)
print(metadata.trained_words)
""" """
from abc import ABC, abstractmethod from abc import ABC, abstractmethod

View File

@ -184,7 +184,7 @@ def mm2_record_store(mm2_app_config: InvokeAIAppConfig) -> ModelRecordServiceBas
variant=ModelVariantType.Normal, variant=ModelVariantType.Normal,
hash="111222333444", hash="111222333444",
source="https://civitai.com/models/206883/split", source="https://civitai.com/models/206883/split",
source_type=ModelSourceType.CivitAI, source_type=ModelSourceType.Url,
) )
config3 = MainDiffusersConfig( config3 = MainDiffusersConfig(
key="test_config_3", key="test_config_3",