mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into lstein/feat/simple-mm2-api
This commit is contained in:
@ -13,7 +13,6 @@ from pydantic import BaseModel, Field
|
||||
from invokeai.app.invocations.upscale import ESRGAN_MODELS
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
|
||||
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
from invokeai.backend.util.logging import logging
|
||||
from invokeai.version import __version__
|
||||
|
||||
@ -109,9 +108,7 @@ async def get_config() -> AppConfig:
|
||||
upscaling_models.append(str(Path(model).stem))
|
||||
upscaler = Upscaler(upscaling_method="esrgan", upscaling_models=upscaling_models)
|
||||
|
||||
nsfw_methods = []
|
||||
if SafetyChecker.safety_checker_available():
|
||||
nsfw_methods.append("nsfw_checker")
|
||||
nsfw_methods = ["nsfw_checker"]
|
||||
|
||||
watermarking_methods = ["invisible_watermark"]
|
||||
|
||||
|
@ -6,13 +6,12 @@ from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request,
|
||||
from fastapi.responses import FileResponse
|
||||
from fastapi.routing import APIRouter
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, ValidationError
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
|
||||
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID, WorkflowWithoutIDValidator
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
@ -49,6 +48,7 @@ async def upload_image(
|
||||
|
||||
metadata = None
|
||||
workflow = None
|
||||
graph = None
|
||||
|
||||
contents = await file.read()
|
||||
try:
|
||||
@ -63,21 +63,27 @@ async def upload_image(
|
||||
# TODO: retain non-invokeai metadata on upload?
|
||||
# attempt to parse metadata from image
|
||||
metadata_raw = pil_image.info.get("invokeai_metadata", None)
|
||||
if metadata_raw:
|
||||
try:
|
||||
metadata = MetadataFieldValidator.validate_json(metadata_raw)
|
||||
except ValidationError:
|
||||
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
|
||||
pass
|
||||
if isinstance(metadata_raw, str):
|
||||
metadata = metadata_raw
|
||||
else:
|
||||
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
|
||||
pass
|
||||
|
||||
# attempt to parse workflow from image
|
||||
workflow_raw = pil_image.info.get("invokeai_workflow", None)
|
||||
if workflow_raw is not None:
|
||||
try:
|
||||
workflow = WorkflowWithoutIDValidator.validate_json(workflow_raw)
|
||||
except ValidationError:
|
||||
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
|
||||
pass
|
||||
if isinstance(workflow_raw, str):
|
||||
workflow = workflow_raw
|
||||
else:
|
||||
ApiDependencies.invoker.services.logger.warn("Failed to parse workflow for uploaded image")
|
||||
pass
|
||||
|
||||
# attempt to extract graph from image
|
||||
graph_raw = pil_image.info.get("invokeai_graph", None)
|
||||
if isinstance(graph_raw, str):
|
||||
graph = graph_raw
|
||||
else:
|
||||
ApiDependencies.invoker.services.logger.warn("Failed to parse graph for uploaded image")
|
||||
pass
|
||||
|
||||
try:
|
||||
image_dto = ApiDependencies.invoker.services.images.create(
|
||||
@ -88,6 +94,7 @@ async def upload_image(
|
||||
board_id=board_id,
|
||||
metadata=metadata,
|
||||
workflow=workflow,
|
||||
graph=graph,
|
||||
is_intermediate=is_intermediate,
|
||||
)
|
||||
|
||||
@ -185,14 +192,21 @@ async def get_image_metadata(
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
||||
class WorkflowAndGraphResponse(BaseModel):
|
||||
workflow: Optional[str] = Field(description="The workflow used to generate the image, as stringified JSON")
|
||||
graph: Optional[str] = Field(description="The graph used to generate the image, as stringified JSON")
|
||||
|
||||
|
||||
@images_router.get(
|
||||
"/i/{image_name}/workflow", operation_id="get_image_workflow", response_model=Optional[WorkflowWithoutID]
|
||||
"/i/{image_name}/workflow", operation_id="get_image_workflow", response_model=WorkflowAndGraphResponse
|
||||
)
|
||||
async def get_image_workflow(
|
||||
image_name: str = Path(description="The name of image whose workflow to get"),
|
||||
) -> Optional[WorkflowWithoutID]:
|
||||
) -> WorkflowAndGraphResponse:
|
||||
try:
|
||||
return ApiDependencies.invoker.services.images.get_workflow(image_name)
|
||||
workflow = ApiDependencies.invoker.services.images.get_workflow(image_name)
|
||||
graph = ApiDependencies.invoker.services.images.get_graph(image_name)
|
||||
return WorkflowAndGraphResponse(workflow=workflow, graph=graph)
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
@ -6,7 +6,7 @@ import pathlib
|
||||
import shutil
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional, Type
|
||||
|
||||
from fastapi import Body, Path, Query, Response, UploadFile
|
||||
from fastapi.responses import FileResponse
|
||||
@ -16,6 +16,7 @@ from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
|
||||
from starlette.exceptions import HTTPException
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
|
||||
from invokeai.app.services.model_install import ModelInstallJob
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
@ -52,6 +53,13 @@ class ModelsList(BaseModel):
|
||||
model_config = ConfigDict(use_enum_values=True)
|
||||
|
||||
|
||||
def add_cover_image_to_model_config(config: AnyModelConfig, dependencies: Type[ApiDependencies]) -> AnyModelConfig:
|
||||
"""Add a cover image URL to a model configuration."""
|
||||
cover_image = dependencies.invoker.services.model_images.get_url(config.key)
|
||||
config.cover_image = cover_image
|
||||
return config
|
||||
|
||||
|
||||
##############################################################################
|
||||
# These are example inputs and outputs that are used in places where Swagger
|
||||
# is unable to generate a correct example.
|
||||
@ -118,8 +126,7 @@ async def list_model_records(
|
||||
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
|
||||
)
|
||||
for model in found_models:
|
||||
cover_image = ApiDependencies.invoker.services.model_images.get_url(model.key)
|
||||
model.cover_image = cover_image
|
||||
model = add_cover_image_to_model_config(model, ApiDependencies)
|
||||
return ModelsList(models=found_models)
|
||||
|
||||
|
||||
@ -160,12 +167,9 @@ async def get_model_record(
|
||||
key: str = Path(description="Key of the model record to fetch."),
|
||||
) -> AnyModelConfig:
|
||||
"""Get a model record"""
|
||||
record_store = ApiDependencies.invoker.services.model_manager.store
|
||||
try:
|
||||
config: AnyModelConfig = record_store.get_model(key)
|
||||
cover_image = ApiDependencies.invoker.services.model_images.get_url(key)
|
||||
config.cover_image = cover_image
|
||||
return config
|
||||
config = ApiDependencies.invoker.services.model_manager.store.get_model(key)
|
||||
return add_cover_image_to_model_config(config, ApiDependencies)
|
||||
except UnknownModelException as e:
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
@ -294,14 +298,15 @@ async def update_model_record(
|
||||
installer = ApiDependencies.invoker.services.model_manager.install
|
||||
try:
|
||||
record_store.update_model(key, changes=changes)
|
||||
model_response: AnyModelConfig = installer.sync_model_path(key)
|
||||
config = installer.sync_model_path(key)
|
||||
config = add_cover_image_to_model_config(config, ApiDependencies)
|
||||
logger.info(f"Updated model: {key}")
|
||||
except UnknownModelException as e:
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
except ValueError as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
return model_response
|
||||
return config
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
@ -648,6 +653,14 @@ async def convert_model(
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
|
||||
# Update the model image if the model had one
|
||||
try:
|
||||
model_image = ApiDependencies.invoker.services.model_images.get(key)
|
||||
ApiDependencies.invoker.services.model_images.save(model_image, new_key)
|
||||
ApiDependencies.invoker.services.model_images.delete(key)
|
||||
except ModelImageFileNotFoundException:
|
||||
pass
|
||||
|
||||
# delete the original safetensors file
|
||||
installer.delete(key)
|
||||
|
||||
@ -655,7 +668,8 @@ async def convert_model(
|
||||
shutil.rmtree(cache_path)
|
||||
|
||||
# return the config record for the new diffusers directory
|
||||
new_config: AnyModelConfig = store.get_model(new_key)
|
||||
new_config = store.get_model(new_key)
|
||||
new_config = add_cover_image_to_model_config(new_config, ApiDependencies)
|
||||
return new_config
|
||||
|
||||
|
||||
|
@ -164,6 +164,12 @@ def custom_openapi() -> dict[str, Any]:
|
||||
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema_json
|
||||
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
# Add a reference to the output type to additionalProperties of the invoker schema
|
||||
for invoker in all_invocations:
|
||||
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
|
||||
@ -172,6 +178,8 @@ def custom_openapi() -> dict[str, Any]:
|
||||
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
|
||||
invoker_schema["output"] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["properties"][invoker.get_type()] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["required"].append(invoker.get_type())
|
||||
invoker_schema["class"] = "invocation"
|
||||
|
||||
# This code no longer seems to be necessary?
|
||||
|
@ -1,6 +1,5 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Literal, Optional
|
||||
|
||||
import cv2
|
||||
@ -504,7 +503,7 @@ class ImageInverseLerpInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
title="Blur NSFW Image",
|
||||
tags=["image", "nsfw"],
|
||||
category="image",
|
||||
version="1.2.2",
|
||||
version="1.2.3",
|
||||
)
|
||||
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Add blur to NSFW-flagged images"""
|
||||
@ -516,23 +515,12 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
logger = context.logger
|
||||
logger.debug("Running NSFW checker")
|
||||
if SafetyChecker.has_nsfw_concept(image):
|
||||
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
|
||||
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
||||
caution = self._get_caution_img()
|
||||
blurry_image.paste(caution, (0, 0), caution)
|
||||
image = blurry_image
|
||||
image = SafetyChecker.blur_if_nsfw(image)
|
||||
|
||||
image_dto = context.images.save(image=image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
def _get_caution_img(self) -> Image.Image:
|
||||
import invokeai.app.assets.images as image_assets
|
||||
|
||||
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
|
||||
return caution.resize((caution.width // 2, caution.height // 2))
|
||||
|
||||
|
||||
@invocation(
|
||||
"img_watermark",
|
||||
|
@ -586,13 +586,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Scheduler,
|
||||
) -> StableDiffusionGeneratorPipeline:
|
||||
# TODO:
|
||||
# configure_model_padding(
|
||||
# unet,
|
||||
# self.seamless,
|
||||
# self.seamless_axes,
|
||||
# )
|
||||
|
||||
class FakeVae:
|
||||
class FakeVaeConfig:
|
||||
def __init__(self) -> None:
|
||||
|
@ -190,6 +190,75 @@ class LoRALoaderInvocation(BaseInvocation):
|
||||
return output
|
||||
|
||||
|
||||
@invocation_output("lora_selector_output")
|
||||
class LoRASelectorOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
lora: LoRAField = OutputField(description="LoRA model and weight", title="LoRA")
|
||||
|
||||
|
||||
@invocation("lora_selector", title="LoRA Selector", tags=["model"], category="model", version="1.0.0")
|
||||
class LoRASelectorInvocation(BaseInvocation):
|
||||
"""Selects a LoRA model and weight."""
|
||||
|
||||
lora: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
|
||||
)
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LoRASelectorOutput:
|
||||
return LoRASelectorOutput(lora=LoRAField(lora=self.lora, weight=self.weight))
|
||||
|
||||
|
||||
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.0.0")
|
||||
class LoRACollectionLoader(BaseInvocation):
|
||||
"""Applies a collection of LoRAs to the provided UNet and CLIP models."""
|
||||
|
||||
loras: LoRAField | list[LoRAField] = InputField(
|
||||
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
)
|
||||
clip: Optional[CLIPField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.clip,
|
||||
input=Input.Connection,
|
||||
title="CLIP",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LoRALoaderOutput:
|
||||
output = LoRALoaderOutput()
|
||||
loras = self.loras if isinstance(self.loras, list) else [self.loras]
|
||||
added_loras: list[str] = []
|
||||
|
||||
for lora in loras:
|
||||
if lora.lora.key in added_loras:
|
||||
continue
|
||||
|
||||
if not context.models.exists(lora.lora.key):
|
||||
raise Exception(f"Unknown lora: {lora.lora.key}!")
|
||||
|
||||
assert lora.lora.base in (BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2)
|
||||
|
||||
added_loras.append(lora.lora.key)
|
||||
|
||||
if self.unet is not None:
|
||||
if output.unet is None:
|
||||
output.unet = self.unet.model_copy(deep=True)
|
||||
output.unet.loras.append(lora)
|
||||
|
||||
if self.clip is not None:
|
||||
if output.clip is None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
output.clip.loras.append(lora)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@invocation_output("sdxl_lora_loader_output")
|
||||
class SDXLLoRALoaderOutput(BaseInvocationOutput):
|
||||
"""SDXL LoRA Loader Output"""
|
||||
@ -279,6 +348,72 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
|
||||
return output
|
||||
|
||||
|
||||
@invocation(
|
||||
"sdxl_lora_collection_loader",
|
||||
title="SDXL LoRA Collection Loader",
|
||||
tags=["model"],
|
||||
category="model",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SDXLLoRACollectionLoader(BaseInvocation):
|
||||
"""Applies a collection of SDXL LoRAs to the provided UNet and CLIP models."""
|
||||
|
||||
loras: LoRAField | list[LoRAField] = InputField(
|
||||
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
)
|
||||
clip: Optional[CLIPField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.clip,
|
||||
input=Input.Connection,
|
||||
title="CLIP",
|
||||
)
|
||||
clip2: Optional[CLIPField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.clip,
|
||||
input=Input.Connection,
|
||||
title="CLIP 2",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SDXLLoRALoaderOutput:
|
||||
output = SDXLLoRALoaderOutput()
|
||||
loras = self.loras if isinstance(self.loras, list) else [self.loras]
|
||||
added_loras: list[str] = []
|
||||
|
||||
for lora in loras:
|
||||
if lora.lora.key in added_loras:
|
||||
continue
|
||||
|
||||
if not context.models.exists(lora.lora.key):
|
||||
raise Exception(f"Unknown lora: {lora.lora.key}!")
|
||||
|
||||
assert lora.lora.base is BaseModelType.StableDiffusionXL
|
||||
|
||||
added_loras.append(lora.lora.key)
|
||||
|
||||
if self.unet is not None:
|
||||
if output.unet is None:
|
||||
output.unet = self.unet.model_copy(deep=True)
|
||||
output.unet.loras.append(lora)
|
||||
|
||||
if self.clip is not None:
|
||||
if output.clip is None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
output.clip.loras.append(lora)
|
||||
|
||||
if self.clip2 is not None:
|
||||
if output.clip2 is None:
|
||||
output.clip2 = self.clip2.model_copy(deep=True)
|
||||
output.clip2.loras.append(lora)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.2")
|
||||
class VAELoaderInvocation(BaseInvocation):
|
||||
"""Loads a VAE model, outputting a VaeLoaderOutput"""
|
||||
|
@ -122,6 +122,8 @@ class EventServiceBase:
|
||||
source_node_id: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
user_id: str | None,
|
||||
project_id: str | None,
|
||||
) -> None:
|
||||
"""Emitted when an invocation has completed"""
|
||||
self.__emit_queue_event(
|
||||
@ -135,6 +137,8 @@ class EventServiceBase:
|
||||
"source_node_id": source_node_id,
|
||||
"error_type": error_type,
|
||||
"error": error,
|
||||
"user_id": user_id,
|
||||
"project_id": project_id,
|
||||
},
|
||||
)
|
||||
|
||||
|
@ -4,9 +4,6 @@ from typing import Optional
|
||||
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
|
||||
|
||||
|
||||
class ImageFileStorageBase(ABC):
|
||||
"""Low-level service responsible for storing and retrieving image files."""
|
||||
@ -33,8 +30,9 @@ class ImageFileStorageBase(ABC):
|
||||
self,
|
||||
image: PILImageType,
|
||||
image_name: str,
|
||||
metadata: Optional[MetadataField] = None,
|
||||
workflow: Optional[WorkflowWithoutID] = None,
|
||||
metadata: Optional[str] = None,
|
||||
workflow: Optional[str] = None,
|
||||
graph: Optional[str] = None,
|
||||
thumbnail_size: int = 256,
|
||||
) -> None:
|
||||
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
|
||||
@ -46,6 +44,11 @@ class ImageFileStorageBase(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
|
||||
def get_workflow(self, image_name: str) -> Optional[str]:
|
||||
"""Gets the workflow of an image."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_graph(self, image_name: str) -> Optional[str]:
|
||||
"""Gets the graph of an image."""
|
||||
pass
|
||||
|
@ -7,9 +7,7 @@ from PIL import Image, PngImagePlugin
|
||||
from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
|
||||
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
|
||||
|
||||
from .image_files_base import ImageFileStorageBase
|
||||
@ -56,8 +54,9 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
self,
|
||||
image: PILImageType,
|
||||
image_name: str,
|
||||
metadata: Optional[MetadataField] = None,
|
||||
workflow: Optional[WorkflowWithoutID] = None,
|
||||
metadata: Optional[str] = None,
|
||||
workflow: Optional[str] = None,
|
||||
graph: Optional[str] = None,
|
||||
thumbnail_size: int = 256,
|
||||
) -> None:
|
||||
try:
|
||||
@ -68,13 +67,14 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
info_dict = {}
|
||||
|
||||
if metadata is not None:
|
||||
metadata_json = metadata.model_dump_json()
|
||||
info_dict["invokeai_metadata"] = metadata_json
|
||||
pnginfo.add_text("invokeai_metadata", metadata_json)
|
||||
info_dict["invokeai_metadata"] = metadata
|
||||
pnginfo.add_text("invokeai_metadata", metadata)
|
||||
if workflow is not None:
|
||||
workflow_json = workflow.model_dump_json()
|
||||
info_dict["invokeai_workflow"] = workflow_json
|
||||
pnginfo.add_text("invokeai_workflow", workflow_json)
|
||||
info_dict["invokeai_workflow"] = workflow
|
||||
pnginfo.add_text("invokeai_workflow", workflow)
|
||||
if graph is not None:
|
||||
info_dict["invokeai_graph"] = graph
|
||||
pnginfo.add_text("invokeai_graph", graph)
|
||||
|
||||
# When saving the image, the image object's info field is not populated. We need to set it
|
||||
image.info = info_dict
|
||||
@ -129,11 +129,18 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
path = path if isinstance(path, Path) else Path(path)
|
||||
return path.exists()
|
||||
|
||||
def get_workflow(self, image_name: str) -> WorkflowWithoutID | None:
|
||||
def get_workflow(self, image_name: str) -> str | None:
|
||||
image = self.get(image_name)
|
||||
workflow = image.info.get("invokeai_workflow", None)
|
||||
if workflow is not None:
|
||||
return WorkflowWithoutID.model_validate_json(workflow)
|
||||
if isinstance(workflow, str):
|
||||
return workflow
|
||||
return None
|
||||
|
||||
def get_graph(self, image_name: str) -> str | None:
|
||||
image = self.get(image_name)
|
||||
graph = image.info.get("invokeai_graph", None)
|
||||
if isinstance(graph, str):
|
||||
return graph
|
||||
return None
|
||||
|
||||
def __validate_storage_folders(self) -> None:
|
||||
|
@ -80,7 +80,7 @@ class ImageRecordStorageBase(ABC):
|
||||
starred: Optional[bool] = False,
|
||||
session_id: Optional[str] = None,
|
||||
node_id: Optional[str] = None,
|
||||
metadata: Optional[MetadataField] = None,
|
||||
metadata: Optional[str] = None,
|
||||
) -> datetime:
|
||||
"""Saves an image record."""
|
||||
pass
|
||||
|
@ -328,10 +328,9 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
starred: Optional[bool] = False,
|
||||
session_id: Optional[str] = None,
|
||||
node_id: Optional[str] = None,
|
||||
metadata: Optional[MetadataField] = None,
|
||||
metadata: Optional[str] = None,
|
||||
) -> datetime:
|
||||
try:
|
||||
metadata_json = metadata.model_dump_json() if metadata is not None else None
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
@ -358,7 +357,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
height,
|
||||
node_id,
|
||||
session_id,
|
||||
metadata_json,
|
||||
metadata,
|
||||
is_intermediate,
|
||||
starred,
|
||||
has_workflow,
|
||||
|
@ -12,7 +12,6 @@ from invokeai.app.services.image_records.image_records_common import (
|
||||
)
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
|
||||
|
||||
|
||||
class ImageServiceABC(ABC):
|
||||
@ -51,8 +50,9 @@ class ImageServiceABC(ABC):
|
||||
session_id: Optional[str] = None,
|
||||
board_id: Optional[str] = None,
|
||||
is_intermediate: Optional[bool] = False,
|
||||
metadata: Optional[MetadataField] = None,
|
||||
workflow: Optional[WorkflowWithoutID] = None,
|
||||
metadata: Optional[str] = None,
|
||||
workflow: Optional[str] = None,
|
||||
graph: Optional[str] = None,
|
||||
) -> ImageDTO:
|
||||
"""Creates an image, storing the file and its metadata."""
|
||||
pass
|
||||
@ -87,7 +87,12 @@ class ImageServiceABC(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
|
||||
def get_workflow(self, image_name: str) -> Optional[str]:
|
||||
"""Gets an image's workflow."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_graph(self, image_name: str) -> Optional[str]:
|
||||
"""Gets an image's workflow."""
|
||||
pass
|
||||
|
||||
|
@ -5,7 +5,6 @@ from PIL.Image import Image as PILImageType
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
|
||||
|
||||
from ..image_files.image_files_common import (
|
||||
ImageFileDeleteException,
|
||||
@ -42,8 +41,9 @@ class ImageService(ImageServiceABC):
|
||||
session_id: Optional[str] = None,
|
||||
board_id: Optional[str] = None,
|
||||
is_intermediate: Optional[bool] = False,
|
||||
metadata: Optional[MetadataField] = None,
|
||||
workflow: Optional[WorkflowWithoutID] = None,
|
||||
metadata: Optional[str] = None,
|
||||
workflow: Optional[str] = None,
|
||||
graph: Optional[str] = None,
|
||||
) -> ImageDTO:
|
||||
if image_origin not in ResourceOrigin:
|
||||
raise InvalidOriginException
|
||||
@ -64,7 +64,7 @@ class ImageService(ImageServiceABC):
|
||||
image_category=image_category,
|
||||
width=width,
|
||||
height=height,
|
||||
has_workflow=workflow is not None,
|
||||
has_workflow=workflow is not None or graph is not None,
|
||||
# Meta fields
|
||||
is_intermediate=is_intermediate,
|
||||
# Nullable fields
|
||||
@ -75,7 +75,7 @@ class ImageService(ImageServiceABC):
|
||||
if board_id is not None:
|
||||
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
|
||||
self.__invoker.services.image_files.save(
|
||||
image_name=image_name, image=image, metadata=metadata, workflow=workflow
|
||||
image_name=image_name, image=image, metadata=metadata, workflow=workflow, graph=graph
|
||||
)
|
||||
image_dto = self.get_dto(image_name)
|
||||
|
||||
@ -157,7 +157,7 @@ class ImageService(ImageServiceABC):
|
||||
self.__invoker.services.logger.error("Problem getting image metadata")
|
||||
raise e
|
||||
|
||||
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
|
||||
def get_workflow(self, image_name: str) -> Optional[str]:
|
||||
try:
|
||||
return self.__invoker.services.image_files.get_workflow(image_name)
|
||||
except ImageFileNotFoundException:
|
||||
@ -167,6 +167,16 @@ class ImageService(ImageServiceABC):
|
||||
self.__invoker.services.logger.error("Problem getting image workflow")
|
||||
raise
|
||||
|
||||
def get_graph(self, image_name: str) -> Optional[str]:
|
||||
try:
|
||||
return self.__invoker.services.image_files.get_graph(image_name)
|
||||
except ImageFileNotFoundException:
|
||||
self.__invoker.services.logger.error("Image file not found")
|
||||
raise
|
||||
except Exception:
|
||||
self.__invoker.services.logger.error("Problem getting image graph")
|
||||
raise
|
||||
|
||||
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
|
||||
try:
|
||||
return str(self.__invoker.services.image_files.get_path(image_name, thumbnail))
|
||||
|
@ -237,6 +237,8 @@ class DefaultSessionProcessor(SessionProcessorBase):
|
||||
source_node_id=source_invocation_id,
|
||||
error_type=e.__class__.__name__,
|
||||
error=error,
|
||||
user_id=None,
|
||||
project_id=None,
|
||||
)
|
||||
pass
|
||||
|
||||
|
@ -181,9 +181,9 @@ class ImagesInterface(InvocationContextInterface):
|
||||
# If `metadata` is provided directly, use that. Else, use the metadata provided by `WithMetadata`, falling back to None.
|
||||
metadata_ = None
|
||||
if metadata:
|
||||
metadata_ = metadata
|
||||
elif isinstance(self._data.invocation, WithMetadata):
|
||||
metadata_ = self._data.invocation.metadata
|
||||
metadata_ = metadata.model_dump_json()
|
||||
elif isinstance(self._data.invocation, WithMetadata) and self._data.invocation.metadata:
|
||||
metadata_ = self._data.invocation.metadata.model_dump_json()
|
||||
|
||||
# If `board_id` is provided directly, use that. Else, use the board provided by `WithBoard`, falling back to None.
|
||||
board_id_ = None
|
||||
@ -192,6 +192,14 @@ class ImagesInterface(InvocationContextInterface):
|
||||
elif isinstance(self._data.invocation, WithBoard) and self._data.invocation.board:
|
||||
board_id_ = self._data.invocation.board.board_id
|
||||
|
||||
workflow_ = None
|
||||
if self._data.queue_item.workflow:
|
||||
workflow_ = self._data.queue_item.workflow.model_dump_json()
|
||||
|
||||
graph_ = None
|
||||
if self._data.queue_item.session.graph:
|
||||
graph_ = self._data.queue_item.session.graph.model_dump_json()
|
||||
|
||||
return self._services.images.create(
|
||||
image=image,
|
||||
is_intermediate=self._data.invocation.is_intermediate,
|
||||
@ -199,7 +207,8 @@ class ImagesInterface(InvocationContextInterface):
|
||||
board_id=board_id_,
|
||||
metadata=metadata_,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
workflow=self._data.queue_item.workflow,
|
||||
workflow=workflow_,
|
||||
graph=graph_,
|
||||
session_id=self._data.queue_item.session_id,
|
||||
node_id=self._data.invocation.id,
|
||||
)
|
||||
|
Reference in New Issue
Block a user