Add rescale cfg support to denoise

This commit is contained in:
Sergey Borisov 2024-07-21 17:33:43 +03:00
parent f9c61f1b6c
commit 9a1420280e
4 changed files with 46 additions and 5 deletions

View File

@ -59,6 +59,7 @@ from invokeai.backend.stable_diffusion.diffusion.custom_atttention import Custom
from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
@ -790,6 +791,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
ext_manager.add_extension(PreviewExt(step_callback)) ext_manager.add_extension(PreviewExt(step_callback))
### cfg rescale
if self.cfg_rescale_multiplier > 0:
ext_manager.add_extension(RescaleCFGExt(self.cfg_rescale_multiplier))
# ext: t2i/ip adapter # ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx) ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)

View File

@ -76,12 +76,12 @@ class StableDiffusionBackend:
both_noise_pred = self.run_unet(ctx, ext_manager, ConditioningMode.Both) both_noise_pred = self.run_unet(ctx, ext_manager, ConditioningMode.Both)
ctx.negative_noise_pred, ctx.positive_noise_pred = both_noise_pred.chunk(2) ctx.negative_noise_pred, ctx.positive_noise_pred = both_noise_pred.chunk(2)
# ext: override apply_cfg # ext: override combine_noise_preds
ctx.noise_pred = self.apply_cfg(ctx) ctx.noise_pred = self.combine_noise_preds(ctx)
# ext: cfg_rescale [modify_noise_prediction] # ext: cfg_rescale [modify_noise_prediction]
# TODO: rename # TODO: rename
ext_manager.run_callback(ExtensionCallbackType.POST_APPLY_CFG, ctx) ext_manager.run_callback(ExtensionCallbackType.POST_COMBINE_NOISE_PREDS, ctx)
# compute the previous noisy sample x_t -> x_t-1 # compute the previous noisy sample x_t -> x_t-1
step_output = ctx.scheduler.step(ctx.noise_pred, ctx.timestep, ctx.latents, **ctx.inputs.scheduler_step_kwargs) step_output = ctx.scheduler.step(ctx.noise_pred, ctx.timestep, ctx.latents, **ctx.inputs.scheduler_step_kwargs)
@ -95,7 +95,7 @@ class StableDiffusionBackend:
return step_output return step_output
@staticmethod @staticmethod
def apply_cfg(ctx: DenoiseContext) -> torch.Tensor: def combine_noise_preds(ctx: DenoiseContext) -> torch.Tensor:
guidance_scale = ctx.inputs.conditioning_data.guidance_scale guidance_scale = ctx.inputs.conditioning_data.guidance_scale
if isinstance(guidance_scale, list): if isinstance(guidance_scale, list):
guidance_scale = guidance_scale[ctx.step_index] guidance_scale = guidance_scale[ctx.step_index]

View File

@ -9,4 +9,4 @@ class ExtensionCallbackType(Enum):
POST_STEP = "post_step" POST_STEP = "post_step"
PRE_UNET = "pre_unet" PRE_UNET = "pre_unet"
POST_UNET = "post_unet" POST_UNET = "post_unet"
POST_APPLY_CFG = "post_apply_cfg" POST_COMBINE_NOISE_PREDS = "post_combine_noise_preds"

View File

@ -0,0 +1,36 @@
from __future__ import annotations
from typing import TYPE_CHECKING
import torch
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class RescaleCFGExt(ExtensionBase):
def __init__(self, rescale_multiplier: float):
super().__init__()
self.rescale_multiplier = rescale_multiplier
@staticmethod
def _rescale_cfg(total_noise_pred: torch.Tensor, pos_noise_pred: torch.Tensor, multiplier: float = 0.7):
"""Implementation of Algorithm 2 from https://arxiv.org/pdf/2305.08891.pdf."""
ro_pos = torch.std(pos_noise_pred, dim=(1, 2, 3), keepdim=True)
ro_cfg = torch.std(total_noise_pred, dim=(1, 2, 3), keepdim=True)
x_rescaled = total_noise_pred * (ro_pos / ro_cfg)
x_final = multiplier * x_rescaled + (1.0 - multiplier) * total_noise_pred
return x_final
@callback(ExtensionCallbackType.POST_COMBINE_NOISE_PREDS)
def rescale_noise_pred(self, ctx: DenoiseContext):
if self.rescale_multiplier > 0:
ctx.noise_pred = self._rescale_cfg(
ctx.noise_pred,
ctx.positive_noise_pred,
self.rescale_multiplier,
)