mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
This commit is contained in:
parent
1ad4eb3a7b
commit
9a796364da
@ -7,14 +7,13 @@ from typing import Literal, Optional, Union, List
|
|||||||
from PIL import Image, ImageFilter, ImageOps
|
from PIL import Image, ImageFilter, ImageOps
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
from ..models.image import ImageField, ImageType
|
from ..models.image import ImageField, ImageType, ImageCategory
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
InvocationConfig,
|
InvocationConfig,
|
||||||
)
|
)
|
||||||
|
|
||||||
from controlnet_aux import (
|
from controlnet_aux import (
|
||||||
CannyDetector,
|
CannyDetector,
|
||||||
HEDdetector,
|
HEDdetector,
|
||||||
@ -26,10 +25,11 @@ from controlnet_aux import (
|
|||||||
OpenposeDetector,
|
OpenposeDetector,
|
||||||
PidiNetDetector,
|
PidiNetDetector,
|
||||||
ContentShuffleDetector,
|
ContentShuffleDetector,
|
||||||
# ZoeDetector, # FIXME: uncomment once ZoeDetector is availabel in official controlnet_aux release
|
ZoeDetector,
|
||||||
|
MediapipeFaceDetector,
|
||||||
)
|
)
|
||||||
|
|
||||||
from .image import ImageOutput, build_image_output, PILInvocationConfig
|
from .image import ImageOutput, PILInvocationConfig
|
||||||
|
|
||||||
CONTROLNET_DEFAULT_MODELS = [
|
CONTROLNET_DEFAULT_MODELS = [
|
||||||
###########################################
|
###########################################
|
||||||
@ -161,33 +161,41 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
|
|||||||
return image
|
return image
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
raw_image = context.services.images.get(
|
|
||||||
|
raw_image = context.services.images.get_pil_image(
|
||||||
self.image.image_type, self.image.image_name
|
self.image.image_type, self.image.image_name
|
||||||
)
|
)
|
||||||
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
||||||
processed_image = self.run_processor(raw_image)
|
processed_image = self.run_processor(raw_image)
|
||||||
|
|
||||||
|
# FIXME: what happened to image metadata?
|
||||||
|
# metadata = context.services.metadata.build_metadata(
|
||||||
|
# session_id=context.graph_execution_state_id, node=self
|
||||||
|
# )
|
||||||
|
|
||||||
# currently can't see processed image in node UI without a showImage node,
|
# currently can't see processed image in node UI without a showImage node,
|
||||||
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
|
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
|
||||||
# image_type = ImageType.INTERMEDIATE
|
image_dto = context.services.images.create(
|
||||||
image_type = ImageType.RESULT
|
image=processed_image,
|
||||||
image_name = context.services.images.create_name(
|
image_type=ImageType.RESULT,
|
||||||
context.graph_execution_state_id, self.id
|
image_category=ImageCategory.GENERAL,
|
||||||
|
session_id=context.graph_execution_state_id,
|
||||||
|
node_id=self.id,
|
||||||
|
is_intermediate=self.is_intermediate
|
||||||
)
|
)
|
||||||
metadata = context.services.metadata.build_metadata(
|
|
||||||
session_id=context.graph_execution_state_id, node=self
|
|
||||||
)
|
|
||||||
context.services.images.save(image_type, image_name, processed_image, metadata)
|
|
||||||
|
|
||||||
"""Builds an ImageOutput and its ImageField"""
|
"""Builds an ImageOutput and its ImageField"""
|
||||||
processed_image_field = ImageField(
|
processed_image_field = ImageField(
|
||||||
image_name=image_name,
|
image_name=image_dto.image_name,
|
||||||
image_type=image_type,
|
image_type=image_dto.image_type,
|
||||||
)
|
)
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
image=processed_image_field,
|
image=processed_image_field,
|
||||||
width=processed_image.width,
|
# width=processed_image.width,
|
||||||
height=processed_image.height,
|
width = image_dto.width,
|
||||||
mode=processed_image.mode,
|
# height=processed_image.height,
|
||||||
|
height = image_dto.height,
|
||||||
|
# mode=processed_image.mode,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -392,18 +400,17 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvoca
|
|||||||
return processed_image
|
return processed_image
|
||||||
|
|
||||||
|
|
||||||
# # FIXME: ZoeDetector was implemented _after_ most recent official release of controlnet_aux (v0.0.3)
|
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
|
||||||
# # so it is commented out until a new release is made
|
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
||||||
# class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
"""Applies Zoe depth processing to image"""
|
||||||
# """Applies Zoe depth processing to image"""
|
# fmt: off
|
||||||
# # fmt: off
|
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
|
||||||
# type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
|
# fmt: on
|
||||||
# # fmt: on
|
|
||||||
#
|
def run_processor(self, image):
|
||||||
# def run_processor(self, image):
|
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
||||||
# zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
processed_image = zoe_depth_processor(image)
|
||||||
# processed_image = zoe_depth_processor(image)
|
return processed_image
|
||||||
# return processed_image
|
|
||||||
|
|
||||||
|
|
||||||
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
||||||
|
@ -6,10 +6,11 @@ from typing import Literal, Optional, Union, List
|
|||||||
|
|
||||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
|
||||||
|
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field, validator
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.app.invocations.util.choose_model import choose_model
|
from invokeai.app.invocations.util.choose_model import choose_model
|
||||||
|
from invokeai.app.models.image import ImageCategory
|
||||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||||
|
|
||||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||||
@ -27,9 +28,9 @@ from ...backend.stable_diffusion.diffusers_pipeline import ControlNetData
|
|||||||
|
|
||||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from ..services.image_storage import ImageType
|
from ..services.image_file_storage import ImageType
|
||||||
from .baseinvocation import BaseInvocation, InvocationContext
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
from .image import ImageField, ImageOutput, build_image_output
|
from .image import ImageField, ImageOutput
|
||||||
from .compel import ConditioningField
|
from .compel import ConditioningField
|
||||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||||
@ -146,12 +147,17 @@ class NoiseInvocation(BaseInvocation):
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@validator("seed", pre=True)
|
||||||
|
def modulo_seed(cls, v):
|
||||||
|
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
|
||||||
|
return v % SEED_MAX
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
||||||
device = torch.device(choose_torch_device())
|
device = torch.device(choose_torch_device())
|
||||||
noise = get_noise(self.width, self.height, device, self.seed)
|
noise = get_noise(self.width, self.height, device, self.seed)
|
||||||
|
|
||||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
context.services.latents.set(name, noise)
|
context.services.latents.save(name, noise)
|
||||||
return build_noise_output(latents_name=name, latents=noise)
|
return build_noise_output(latents_name=name, latents=noise)
|
||||||
|
|
||||||
|
|
||||||
@ -168,19 +174,18 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
noise: Optional[LatentsField] = Field(description="The noise to use")
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||||
scheduler: SAMPLER_NAME_VALUES = Field(default="lms", description="The scheduler to use" )
|
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
|
||||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||||
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
|
||||||
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||||
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||||
control: Union[ControlField, List[ControlField]] = Field(default=None, description="The controlnet(s) to use")
|
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|
||||||
# Schema customisation
|
# Schema customisation
|
||||||
class Config(InvocationConfig):
|
class Config(InvocationConfig):
|
||||||
schema_extra = {
|
schema_extra = {
|
||||||
"ui": {
|
"ui": {
|
||||||
"tags": ["latents"],
|
"tags": ["latents", "image"],
|
||||||
"type_hints": {
|
"type_hints": {
|
||||||
"model": "model",
|
"model": "model",
|
||||||
"control": "control",
|
"control": "control",
|
||||||
@ -209,17 +214,17 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
scheduler_name=self.scheduler
|
scheduler_name=self.scheduler
|
||||||
)
|
)
|
||||||
|
|
||||||
if isinstance(model, DiffusionPipeline):
|
# if isinstance(model, DiffusionPipeline):
|
||||||
for component in [model.unet, model.vae]:
|
# for component in [model.unet, model.vae]:
|
||||||
configure_model_padding(component,
|
# configure_model_padding(component,
|
||||||
self.seamless,
|
# self.seamless,
|
||||||
self.seamless_axes
|
# self.seamless_axes
|
||||||
)
|
# )
|
||||||
else:
|
# else:
|
||||||
configure_model_padding(model,
|
# configure_model_padding(model,
|
||||||
self.seamless,
|
# self.seamless,
|
||||||
self.seamless_axes
|
# self.seamless_axes
|
||||||
)
|
# )
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
@ -292,7 +297,9 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
torch_dtype=model.unet.dtype).to(model.device)
|
torch_dtype=model.unet.dtype).to(model.device)
|
||||||
control_models.append(control_model)
|
control_models.append(control_model)
|
||||||
control_image_field = control_info.image
|
control_image_field = control_info.image
|
||||||
input_image = context.services.images.get(control_image_field.image_type, control_image_field.image_name)
|
input_image = context.services.images.get_pil_image(control_image_field.image_type,
|
||||||
|
control_image_field.image_name)
|
||||||
|
# self.image.image_type, self.image.image_name
|
||||||
# FIXME: still need to test with different widths, heights, devices, dtypes
|
# FIXME: still need to test with different widths, heights, devices, dtypes
|
||||||
# and add in batch_size, num_images_per_prompt?
|
# and add in batch_size, num_images_per_prompt?
|
||||||
# and do real check for classifier_free_guidance?
|
# and do real check for classifier_free_guidance?
|
||||||
@ -348,7 +355,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
context.services.latents.set(name, result_latents)
|
context.services.latents.save(name, result_latents)
|
||||||
return build_latents_output(latents_name=name, latents=result_latents)
|
return build_latents_output(latents_name=name, latents=result_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -361,6 +368,18 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
|||||||
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
|
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
|
||||||
strength: float = Field(default=0.5, description="The strength of the latents to use")
|
strength: float = Field(default=0.5, description="The strength of the latents to use")
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"tags": ["latents"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model",
|
||||||
|
"control": "control",
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||||
noise = context.services.latents.get(self.noise.latents_name)
|
noise = context.services.latents.get(self.noise.latents_name)
|
||||||
latent = context.services.latents.get(self.latents.latents_name)
|
latent = context.services.latents.get(self.latents.latents_name)
|
||||||
@ -402,7 +421,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
context.services.latents.set(name, result_latents)
|
context.services.latents.save(name, result_latents)
|
||||||
return build_latents_output(latents_name=name, latents=result_latents)
|
return build_latents_output(latents_name=name, latents=result_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -439,20 +458,30 @@ class LatentsToImageInvocation(BaseInvocation):
|
|||||||
np_image = model.decode_latents(latents)
|
np_image = model.decode_latents(latents)
|
||||||
image = model.numpy_to_pil(np_image)[0]
|
image = model.numpy_to_pil(np_image)[0]
|
||||||
|
|
||||||
image_type = ImageType.RESULT
|
# what happened to metadata?
|
||||||
image_name = context.services.images.create_name(
|
# metadata = context.services.metadata.build_metadata(
|
||||||
context.graph_execution_state_id, self.id
|
# session_id=context.graph_execution_state_id, node=self
|
||||||
)
|
|
||||||
|
|
||||||
metadata = context.services.metadata.build_metadata(
|
|
||||||
session_id=context.graph_execution_state_id, node=self
|
|
||||||
)
|
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
context.services.images.save(image_type, image_name, image, metadata)
|
# new (post Image service refactor) way of using services to save image
|
||||||
return build_image_output(
|
# and gnenerate unique image_name
|
||||||
image_type=image_type, image_name=image_name, image=image
|
image_dto = context.services.images.create(
|
||||||
|
image=image,
|
||||||
|
image_type=ImageType.RESULT,
|
||||||
|
image_category=ImageCategory.GENERAL,
|
||||||
|
session_id=context.graph_execution_state_id,
|
||||||
|
node_id=self.id,
|
||||||
|
is_intermediate=self.is_intermediate
|
||||||
|
)
|
||||||
|
|
||||||
|
return ImageOutput(
|
||||||
|
image=ImageField(
|
||||||
|
image_name=image_dto.image_name,
|
||||||
|
image_type=image_dto.image_type,
|
||||||
|
),
|
||||||
|
width=image_dto.width,
|
||||||
|
height=image_dto.height,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -487,7 +516,8 @@ class ResizeLatentsInvocation(BaseInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
context.services.latents.set(name, resized_latents)
|
# context.services.latents.set(name, resized_latents)
|
||||||
|
context.services.latents.save(name, resized_latents)
|
||||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -517,7 +547,8 @@ class ScaleLatentsInvocation(BaseInvocation):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
context.services.latents.set(name, resized_latents)
|
# context.services.latents.set(name, resized_latents)
|
||||||
|
context.services.latents.save(name, resized_latents)
|
||||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||||
|
|
||||||
|
|
||||||
@ -541,7 +572,10 @@ class ImageToLatentsInvocation(BaseInvocation):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||||
image = context.services.images.get(
|
# image = context.services.images.get(
|
||||||
|
# self.image.image_type, self.image.image_name
|
||||||
|
# )
|
||||||
|
image = context.services.images.get_pil_image(
|
||||||
self.image.image_type, self.image.image_name
|
self.image.image_type, self.image.image_name
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -561,5 +595,6 @@ class ImageToLatentsInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
context.services.latents.set(name, latents)
|
# context.services.latents.set(name, latents)
|
||||||
|
context.services.latents.save(name, latents)
|
||||||
return build_latents_output(latents_name=name, latents=latents)
|
return build_latents_output(latents_name=name, latents=latents)
|
||||||
|
Loading…
Reference in New Issue
Block a user