diff --git a/ldm/invoke/_version.py b/ldm/invoke/_version.py index 2d03f9cec4..1034a9dde2 100644 --- a/ldm/invoke/_version.py +++ b/ldm/invoke/_version.py @@ -1 +1 @@ -__version__='2.3.0-rc5' +__version__='2.3.0-rc6' diff --git a/ldm/invoke/config/invokeai_configure.py b/ldm/invoke/config/invokeai_configure.py index e04f457a62..3a53799a13 100755 --- a/ldm/invoke/config/invokeai_configure.py +++ b/ldm/invoke/config/invokeai_configure.py @@ -10,6 +10,7 @@ print("Loading Python libraries...\n") import argparse import io import os +import re import shutil import sys import traceback @@ -320,7 +321,7 @@ You may re-run the configuration script again in the future if you do not wish t while again: try: access_token = getpass_asterisk.getpass_asterisk(prompt="HF Token ❯ ") - if access_token is None or len(access_token)==0: + if access_token is None or len(access_token) == 0: raise EOFError HfLogin(access_token) access_token = HfFolder.get_token() @@ -379,7 +380,7 @@ def download_weight_datasets( migrate_models_ckpt() successful = dict() for mod in models.keys(): - print(f"{mod}...", file=sys.stderr, end="") + print(f"Downloading {mod}:") successful[mod] = _download_repo_or_file( Datasets[mod], access_token, precision=precision ) @@ -532,7 +533,7 @@ def update_config_file(successfully_downloaded: dict, opt: dict): configs_dest = Default_config_file.parent shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) - yaml = new_config_file_contents(successfully_downloaded, config_file) + yaml = new_config_file_contents(successfully_downloaded, config_file, opt) try: backup = None @@ -568,7 +569,7 @@ def update_config_file(successfully_downloaded: dict, opt: dict): # --------------------------------------------- -def new_config_file_contents(successfully_downloaded: dict, config_file: Path) -> str: +def new_config_file_contents(successfully_downloaded: dict, config_file: Path, opt: dict) -> str: if config_file.exists(): conf = OmegaConf.load(str(config_file.expanduser().resolve())) else: @@ -576,7 +577,14 @@ def new_config_file_contents(successfully_downloaded: dict, config_file: Path) - default_selected = None for model in successfully_downloaded: - stanza = conf[model] if model in conf else {} + + # a bit hacky - what we are doing here is seeing whether a checkpoint + # version of the model was previously defined, and whether the current + # model is a diffusers (indicated with a path) + if conf.get(model) and Path(successfully_downloaded[model]).is_dir(): + offer_to_delete_weights(model, conf[model], opt.yes_to_all) + + stanza = {} mod = Datasets[model] stanza["description"] = mod["description"] stanza["repo_id"] = mod["repo_id"] @@ -599,8 +607,8 @@ def new_config_file_contents(successfully_downloaded: dict, config_file: Path) - ) else: stanza["vae"] = mod["vae"] - if mod.get('default',False): - stanza['default'] = True + if mod.get("default", False): + stanza["default"] = True default_selected = True conf[model] = stanza @@ -612,7 +620,22 @@ def new_config_file_contents(successfully_downloaded: dict, config_file: Path) - return OmegaConf.to_yaml(conf) - +# --------------------------------------------- +def offer_to_delete_weights(model_name: str, conf_stanza: dict, yes_to_all: bool): + if not (weights := conf_stanza.get('weights')): + return + if re.match('/VAE/',conf_stanza.get('config')): + return + if yes_to_all or \ + yes_or_no(f'\n** The checkpoint version of {model_name} is superseded by the diffusers version. Delete the original file {weights}?', default_yes=False): + weights = Path(weights) + if not weights.is_absolute(): + weights = Path(Globals.root) / weights + try: + weights.unlink() + except OSError as e: + print(str(e)) + # --------------------------------------------- # this will preload the Bert tokenizer fles def download_bert(): @@ -641,7 +664,8 @@ def download_from_hf( resume_download=True, **kwargs, ) - return path if model else None + model_name = '--'.join(('models',*model_name.split('/'))) + return path / model_name if model else None # ---------------------------------------------