use diffusers 0.14 cache layout, upgrade transformers, safetensors, accelerate (#2913)

This PR ports the `main` PR #2871 to the v2.3 branch. This adjusts the
global diffusers model cache to work with the 0.14 diffusers layout of
placing models in HF_HOME/hub rather than HF_HOME/diffusers. It also
implements the one-time migration action to the new layout.
This commit is contained in:
Lincoln Stein 2023-03-11 10:17:46 -05:00 committed by GitHub
commit 9c2f3259ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 44 additions and 50 deletions

View File

@ -960,7 +960,6 @@ def prepare_image_metadata(
wildcards["seed"] = seed wildcards["seed"] = seed
wildcards["model_id"] = model_id wildcards["model_id"] = model_id
try: try:
print(f'DEBUG: fnformat={opt.fnformat}')
filename = opt.fnformat.format(**wildcards) filename = opt.fnformat.format(**wildcards)
except KeyError as e: except KeyError as e:
print( print(

View File

@ -1 +1 @@
__version__='2.3.1.post2' __version__='2.3.2'

View File

@ -290,7 +290,7 @@ def download_vaes():
# first the diffusers version # first the diffusers version
repo_id = "stabilityai/sd-vae-ft-mse" repo_id = "stabilityai/sd-vae-ft-mse"
args = dict( args = dict(
cache_dir=global_cache_dir("diffusers"), cache_dir=global_cache_dir("hub"),
) )
if not AutoencoderKL.from_pretrained(repo_id, **args): if not AutoencoderKL.from_pretrained(repo_id, **args):
raise Exception(f"download of {repo_id} failed") raise Exception(f"download of {repo_id} failed")

View File

@ -262,7 +262,6 @@ def _download_diffusion_weights(
path = download_from_hf( path = download_from_hf(
model_class, model_class,
repo_id, repo_id,
cache_subdir="diffusers",
safety_checker=None, safety_checker=None,
**extra_args, **extra_args,
) )

View File

@ -88,16 +88,13 @@ def global_cache_dir(subdir:Union[str,Path]='')->Path:
''' '''
Returns Path to the model cache directory. If a subdirectory Returns Path to the model cache directory. If a subdirectory
is provided, it will be appended to the end of the path, allowing is provided, it will be appended to the end of the path, allowing
for huggingface-style conventions: for Hugging Face-style conventions. Currently, Hugging Face has
global_cache_dir('diffusers') moved all models into the "hub" subfolder, so for any pretrained
HF model, use:
global_cache_dir('hub') global_cache_dir('hub')
Current HuggingFace documentation (mid-Jan 2023) indicates that
transformers models will be cached into a "transformers" subdirectory, The legacy location for transformers used to be global_cache_dir('transformers')
but in practice they seem to go into "hub". But if needed: and global_cache_dir('diffusers') for diffusers.
global_cache_dir('transformers')
One other caveat is that HuggingFace is moving some diffusers models
into the "hub" subdirectory as well, so this will need to be revisited
from time to time.
''' '''
home: str = os.getenv('HF_HOME') home: str = os.getenv('HF_HOME')

View File

@ -437,10 +437,10 @@ def main():
args = _parse_args() args = _parse_args()
global_set_root(args.root_dir) global_set_root(args.root_dir)
cache_dir = str(global_cache_dir("diffusers")) cache_dir = str(global_cache_dir("hub"))
os.environ[ os.environ[
"HF_HOME" "HF_HOME"
] = cache_dir # because not clear the merge pipeline is honoring cache_dir ] = str(global_cache_dir()) # because not clear the merge pipeline is honoring cache_dir
args.cache_dir = cache_dir args.cache_dir = cache_dir
try: try:

View File

@ -507,7 +507,7 @@ class ModelManager(object):
if vae := self._load_vae(mconfig["vae"]): if vae := self._load_vae(mconfig["vae"]):
pipeline_args.update(vae=vae) pipeline_args.update(vae=vae)
if not isinstance(name_or_path, Path): if not isinstance(name_or_path, Path):
pipeline_args.update(cache_dir=global_cache_dir("diffusers")) pipeline_args.update(cache_dir=global_cache_dir("hub"))
if using_fp16: if using_fp16:
pipeline_args.update(torch_dtype=torch.float16) pipeline_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}] fp_args_list = [{"revision": "fp16"}, {}]
@ -1093,9 +1093,12 @@ class ModelManager(object):
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
script startup time. script startup time.
""" """
# Three transformer models to check: bert, clip and safety checker # Three transformer models to check: bert, clip and safety checker, and
# the diffusers as well
models_dir = Path(Globals.root, "models")
legacy_locations = [ legacy_locations = [
Path( Path(
models_dir,
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker" "CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
), ),
Path("bert-base-uncased/models--bert-base-uncased"), Path("bert-base-uncased/models--bert-base-uncased"),
@ -1103,17 +1106,26 @@ class ModelManager(object):
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14" "openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
), ),
] ]
models_dir = Path(Globals.root, "models") legacy_locations.extend(list(global_cache_dir("diffusers").glob('*')))
legacy_layout = False legacy_layout = False
for model in legacy_locations: for model in legacy_locations:
legacy_layout = legacy_layout or Path(models_dir, model).exists() legacy_layout = legacy_layout or model.exists()
if not legacy_layout: if not legacy_layout:
return return
print( print(
"** Legacy version <= 2.2.5 model directory layout detected. Reorganizing." """
>> ALERT:
>> The location of your previously-installed diffusers models needs to move from
>> invokeai/models/diffusers to invokeai/models/hub due to a change introduced by
>> diffusers version 0.14. InvokeAI will now move all models from the "diffusers" directory
>> into "hub" and then remove the diffusers directory. This is a quick, safe, one-time
>> operation. However if you have customized either of these directories and need to
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
>> Otherwise press <enter> to continue."""
) )
print("** This is a quick one-time operation.") print("** This is a quick one-time operation.")
input("continue> ")
# transformer files get moved into the hub directory # transformer files get moved into the hub directory
if cls._is_huggingface_hub_directory_present(): if cls._is_huggingface_hub_directory_present():
@ -1125,33 +1137,20 @@ class ModelManager(object):
for model in legacy_locations: for model in legacy_locations:
source = models_dir / model source = models_dir / model
dest = hub / model.stem dest = hub / model.stem
if dest.exists() and not source.exists():
continue
print(f"** {source} => {dest}") print(f"** {source} => {dest}")
if source.exists(): if source.exists():
if dest.exists(): if dest.is_symlink():
print(f"** Found symlink at {dest.name}. Not migrating.")
elif dest.exists():
if source.is_dir():
rmtree(source) rmtree(source)
else:
source.unlink()
else: else:
move(source, dest) move(source, dest)
# anything else gets moved into the diffusers directory
if cls._is_huggingface_hub_directory_present():
diffusers = global_cache_dir("diffusers")
else:
diffusers = models_dir / "diffusers"
os.makedirs(diffusers, exist_ok=True)
for root, dirs, _ in os.walk(models_dir, topdown=False):
for dir in dirs:
full_path = Path(root, dir)
if full_path.is_relative_to(hub) or full_path.is_relative_to(diffusers):
continue
if Path(dir).match("models--*--*"):
dest = diffusers / dir
print(f"** {full_path} => {dest}")
if dest.exists():
rmtree(full_path)
else:
move(full_path, dest)
# now clean up by removing any empty directories # now clean up by removing any empty directories
empty = [ empty = [
root root
@ -1249,7 +1248,7 @@ class ModelManager(object):
path = name_or_path path = name_or_path
else: else:
owner, repo = name_or_path.split("/") owner, repo = name_or_path.split("/")
path = Path(global_cache_dir("diffusers") / f"models--{owner}--{repo}") path = Path(global_cache_dir("hub") / f"models--{owner}--{repo}")
if not path.exists(): if not path.exists():
return None return None
hashpath = path / "checksum.sha256" hashpath = path / "checksum.sha256"
@ -1310,7 +1309,7 @@ class ModelManager(object):
using_fp16 = self.precision == "float16" using_fp16 = self.precision == "float16"
vae_args.update( vae_args.update(
cache_dir=global_cache_dir("diffusers"), cache_dir=global_cache_dir("hug"),
local_files_only=not Globals.internet_available, local_files_only=not Globals.internet_available,
) )

View File

@ -634,7 +634,7 @@ def do_textual_inversion_training(
assert ( assert (
pretrained_model_name_or_path pretrained_model_name_or_path
), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}" ), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
pipeline_args = dict(cache_dir=global_cache_dir("diffusers")) pipeline_args = dict(cache_dir=global_cache_dir("hub"))
# Load tokenizer # Load tokenizer
if tokenizer_name: if tokenizer_name:

View File

@ -28,13 +28,13 @@ classifiers = [
"Topic :: Scientific/Engineering :: Image Processing", "Topic :: Scientific/Engineering :: Image Processing",
] ]
dependencies = [ dependencies = [
"accelerate", "accelerate~=0.16",
"albumentations", "albumentations",
"click", "click",
"clip_anytorch", "clip_anytorch",
"compel==0.1.7", "compel==0.1.7",
"datasets", "datasets",
"diffusers[torch]~=0.13", "diffusers[torch]~=0.14",
"dnspython==2.2.1", "dnspython==2.2.1",
"einops", "einops",
"eventlet", "eventlet",
@ -63,7 +63,7 @@ dependencies = [
"pytorch-lightning==1.7.7", "pytorch-lightning==1.7.7",
"realesrgan", "realesrgan",
"requests==2.28.2", "requests==2.28.2",
"safetensors", "safetensors~=0.3.0",
"scikit-image>=0.19", "scikit-image>=0.19",
"send2trash", "send2trash",
"streamlit", "streamlit",
@ -73,7 +73,7 @@ dependencies = [
"torch>=1.13.1", "torch>=1.13.1",
"torchmetrics", "torchmetrics",
"torchvision>=0.14.1", "torchvision>=0.14.1",
"transformers~=4.25", "transformers~=4.26",
"windows-curses; sys_platform=='win32'", "windows-curses; sys_platform=='win32'",
] ]
description = "An implementation of Stable Diffusion which provides various new features and options to aid the image generation process" description = "An implementation of Stable Diffusion which provides various new features and options to aid the image generation process"