Merge branch 'main' into fix/transformers_4_31_0

This commit is contained in:
Lincoln Stein 2023-07-19 09:35:52 -04:00 committed by GitHub
commit 9c3a556813
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
68 changed files with 7988 additions and 2428 deletions

View File

@ -43,7 +43,7 @@ jobs:
--verbose
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/v2.3' }}
if: ${{ github.ref == 'refs/heads/main' }}
run: |
python -m \
mkdocs gh-deploy \

View File

@ -617,8 +617,6 @@ sections describe what's new for InvokeAI.
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains for
backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for [inpainting](deprecated/INPAINTING.md) and
[outpainting](features/OUTPAINTING.md)
- img2img runs on all k\* samplers
- Support for
[negative prompts](features/PROMPTS.md#negative-and-unconditioned-prompts)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 983 KiB

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@ -76,10 +76,10 @@ From top to bottom, these are:
with outpainting,and modify interior portions of the image with
inpainting, erase portions of a starting image and have the AI fill in
the erased region from a text prompt.
4. Workflow Management (not yet implemented) - this panel will allow you to create
4. Node Editor - this panel allows you to create
pipelines of common operations and combine them into workflows.
5. Training (not yet implemented) - this panel will provide an interface to [textual
inversion training](TEXTUAL_INVERSION.md) and fine tuning.
5. Model Manager - this panel allows you to import and configure new
models using URLs, local paths, or HuggingFace diffusers repo_ids.
The inpainting, outpainting and postprocessing tabs are currently in
development. However, limited versions of their features can already be accessed

View File

@ -37,7 +37,7 @@ guide also covers optimizing models to load quickly.
Teach an old model new tricks. Merge 2-3 models together to create a
new model that combines characteristics of the originals.
## * [Textual Inversion](TEXTUAL_INVERSION.md)
## * [Textual Inversion](TRAINING.md)
Personalize models by adding your own style or subjects.
# Other Features

View File

@ -146,7 +146,6 @@ This method is recommended for those familiar with running Docker containers
- [Installing](installation/050_INSTALLING_MODELS.md)
- [Model Merging](features/MODEL_MERGING.md)
- [Style/Subject Concepts and Embeddings](features/CONCEPTS.md)
- [Textual Inversion](features/TEXTUAL_INVERSION.md)
- [Not Safe for Work (NSFW) Checker](features/NSFW.md)
<!-- seperator -->
### Prompt Engineering

View File

@ -354,8 +354,8 @@ experimental versions later.
12. **InvokeAI Options**: You can launch InvokeAI with several different command-line arguments that
customize its behavior. For example, you can change the location of the
image output directory, or select your favorite sampler. See the
[Command-Line Interface](../features/CLI.md) for a full list of the options.
image output directory or balance memory usage vs performance. See
[Configuration](../features/CONFIGURATION.md) for a full list of the options.
- To set defaults that will take effect every time you launch InvokeAI,
use a text editor (e.g. Notepad) to exit the file

View File

@ -256,7 +256,7 @@ manager, please follow these steps:
10. Render away!
Browse the [features](../features/CLI.md) section to learn about all the
Browse the [features](../features/index.md) section to learn about all the
things you can do with InvokeAI.
@ -270,7 +270,7 @@ manager, please follow these steps:
12. Other scripts
The [Textual Inversion](../features/TEXTUAL_INVERSION.md) script can be launched with the command:
The [Textual Inversion](../features/TRAINING.md) script can be launched with the command:
```bash
invokeai-ti --gui

View File

@ -43,24 +43,7 @@ InvokeAI comes with support for a good set of starter models. You'll
find them listed in the master models file
`configs/INITIAL_MODELS.yaml` in the InvokeAI root directory. The
subset that are currently installed are found in
`configs/models.yaml`. As of v2.3.1, the list of starter models is:
|Model Name | HuggingFace Repo ID | Description | URL |
|---------- | ---------- | ----------- | --- |
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-inpainting|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-inpainting |
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |
|dreamlike-photoreal-2.0|dreamlike-art/dreamlike-photoreal-2.0|A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)|https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0 |
|inkpunk-1.0|Envvi/Inkpunk-Diffusion|Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)|https://huggingface.co/Envvi/Inkpunk-Diffusion |
|openjourney-4.0|prompthero/openjourney|An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)|https://huggingface.co/prompthero/openjourney |
|portrait-plus-1.0|wavymulder/portraitplus|An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)|https://huggingface.co/wavymulder/portraitplus |
|seek-art-mega-1.0|coreco/seek.art_MEGA|A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)|https://huggingface.co/coreco/seek.art_MEGA |
|trinart-2.0|naclbit/trinart_stable_diffusion_v2|An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)|https://huggingface.co/naclbit/trinart_stable_diffusion_v2 |
|waifu-diffusion-1.4|hakurei/waifu-diffusion|An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)|https://huggingface.co/hakurei/waifu-diffusion |
`configs/models.yaml`.
Note that these files are covered by an "Ethical AI" license which
forbids certain uses. When you initially download them, you are asked
@ -71,8 +54,7 @@ with the model terms by visiting the URLs in the table above.
## Community-Contributed Models
There are too many to list here and more are being contributed every
day. [HuggingFace](https://huggingface.co/models?library=diffusers)
[HuggingFace](https://huggingface.co/models?library=diffusers)
is a great resource for diffusers models, and is also the home of a
[fast-growing repository](https://huggingface.co/sd-concepts-library)
of embedding (".bin") models that add subjects and/or styles to your
@ -86,310 +68,106 @@ only `.safetensors` and `.ckpt` models, but they can be easily loaded
into InvokeAI and/or converted into optimized `diffusers` models. Be
aware that CIVITAI hosts many models that generate NSFW content.
!!! note
InvokeAI 2.3.x does not support directly importing and
running Stable Diffusion version 2 checkpoint models. You may instead
convert them into `diffusers` models using the conversion methods
described below.
## Installation
There are multiple ways to install and manage models:
There are two ways to install and manage models:
1. The `invokeai-configure` script which will download and install them for you.
1. The `invokeai-model-install` script which will download and install
them for you. In addition to supporting main models, you can install
ControlNet, LoRA and Textual Inversion models.
2. The command-line tool (CLI) has commands that allows you to import, configure and modify
models files.
3. The web interface (WebUI) has a GUI for importing and managing
2. The web interface (WebUI) has a GUI for importing and managing
models.
### Installation via `invokeai-configure`
3. By placing models (or symbolic links to models) inside one of the
InvokeAI root directory's `autoimport` folder.
From the `invoke` launcher, choose option (6) "re-run the configure
script to download new models." This will launch the same script that
prompted you to select models at install time. You can use this to add
models that you skipped the first time around. It is all right to
specify a model that was previously downloaded; the script will just
confirm that the files are complete.
### Installation via `invokeai-model-install`
### Installation via the CLI
From the `invoke` launcher, choose option [5] "Download and install
models." This will launch the same script that prompted you to select
models at install time. You can use this to add models that you
skipped the first time around. It is all right to specify a model that
was previously downloaded; the script will just confirm that the files
are complete.
You can install a new model, including any of the community-supported ones, via
the command-line client's `!import_model` command.
The installer has different panels for installing main models from
HuggingFace, models from Civitai and other arbitrary web sites,
ControlNet models, LoRA/LyCORIS models, and Textual Inversion
embeddings. Each section has a text box in which you can enter a new
model to install. You can refer to a model using its:
#### Installing individual `.ckpt` and `.safetensors` models
1. Local path to the .ckpt, .safetensors or diffusers folder on your local machine
2. A directory on your machine that contains multiple models
3. A URL that points to a downloadable model
4. A HuggingFace repo id
If the model is already downloaded to your local disk, use
`!import_model /path/to/file.ckpt` to load it. For example:
Previously-installed models are shown with checkboxes. Uncheck a box
to unregister the model from InvokeAI. Models that are physically
installed inside the InvokeAI root directory will be deleted and
purged (after a confirmation warning). Models that are located outside
the InvokeAI root directory will be unregistered but not deleted.
```bash
invoke> !import_model C:/Users/fred/Downloads/martians.safetensors
Note: The installer script uses a console-based text interface that requires
significant amounts of horizontal and vertical space. If the display
looks messed up, just enlarge the terminal window and/or relaunch the
script.
If you wish you can script model addition and deletion, as well as
listing installed models. Start the "developer's console" and give the
command `invokeai-model-install --help`. This will give you a series
of command-line parameters that will let you control model
installation. Examples:
```
# (list all controlnet models)
invokeai-model-install --list controlnet
# (install the model at the indicated URL)
invokeai-model-install --add http://civitai.com/2860
# (delete the named model)
invokeai-model-install --delete sd-1/main/analog-diffusion
```
!!! tip "Forward Slashes"
On Windows systems, use forward slashes rather than backslashes
in your file paths.
If you do use backslashes,
you must double them like this:
`C:\\Users\\fred\\Downloads\\martians.safetensors`
### Installation via the Web GUI
Alternatively you can directly import the file using its URL:
To install a new model using the Web GUI, do the following:
```bash
invoke> !import_model https://example.org/sd_models/martians.safetensors
```
1. Open the InvokeAI Model Manager (cube at the bottom of the
left-hand panel) and navigate to *Import Models*
For this to work, the URL must not be password-protected. Otherwise
you will receive a 404 error.
2. In the field labeled *Location* type in the path to the model you
wish to install. You may use a URL, HuggingFace repo id, or a path on
your local disk.
When you import a legacy model, the CLI will first ask you what type
of model this is. You can indicate whether it is a model based on
Stable Diffusion 1.x (1.4 or 1.5), one based on Stable Diffusion 2.x,
or a 1.x inpainting model. Be careful to indicate the correct model
type, or it will not load correctly. You can correct the model type
after the fact using the `!edit_model` command.
3. Alternatively, the *Scan for Models* button allows you to paste in
the path to a folder somewhere on your machine. It will be scanned for
importable models and prompt you to add the ones of your choice.
The system will then ask you a few other questions about the model,
including what size image it was trained on (usually 512x512), what
name and description you wish to use for it, and whether you would
like to install a custom VAE (variable autoencoder) file for the
model. For recent models, the answer to the VAE question is usually
"no," but it won't hurt to answer "yes".
4. Press *Add Model* and wait for confirmation that the model
was added.
After importing, the model will load. If this is successful, you will
be asked if you want to keep the model loaded in memory to start
generating immediately. You'll also be asked if you wish to make this
the default model on startup. You can change this later using
`!edit_model`.
To delete a model, Select *Model Manager* to list all the currently
installed models. Press the trash can icons to delete any models you
wish to get rid of. Models whose weights are located inside the
InvokeAI `models` directory will be purged from disk, while those
located outside will be unregistered from InvokeAI, but not deleted.
#### Importing a batch of `.ckpt` and `.safetensors` models from a directory
You can see where model weights are located by clicking on the model name.
This will bring up an editable info panel showing the model's characteristics,
including the `Model Location` of its files.
You may also point `!import_model` to a directory containing a set of
`.ckpt` or `.safetensors` files. They will be imported _en masse_.
### Installation via the `autoimport` function
!!! example
In the InvokeAI root directory you will find a series of folders under
`autoimport`, one each for main models, controlnets, embeddings and
Loras. Any models that you add to these directories will be scanned
at startup time and registered automatically.
```console
invoke> !import_model C:/Users/fred/Downloads/civitai_models/
```
You may create symbolic links from these folders to models located
elsewhere on disk and they will be autoimported. You can also create
subfolders and organize them as you wish.
You will be given the option to import all models found in the
directory, or select which ones to import. If there are subfolders
within the directory, they will be searched for models to import.
#### Installing `diffusers` models
You can install a `diffusers` model from the HuggingFace site using
`!import_model` and the HuggingFace repo_id for the model:
```bash
invoke> !import_model andite/anything-v4.0
```
Alternatively, you can download the model to disk and import it from
there. The model may be distributed as a ZIP file, or as a Git
repository:
```bash
invoke> !import_model C:/Users/fred/Downloads/andite--anything-v4.0
```
!!! tip "The CLI supports file path autocompletion"
Type a bit of the path name and hit ++tab++ in order to get a choice of
possible completions.
!!! tip "On Windows, you can drag model files onto the command-line"
Once you have typed in `!import_model `, you can drag the
model file or directory onto the command-line to insert the model path. This way, you don't need to
type it or copy/paste. However, you will need to reverse or
double backslashes as noted above.
Before installing, the CLI will ask you for a short name and
description for the model, whether to make this the default model that
is loaded at InvokeAI startup time, and whether to replace its
VAE. Generally the answer to the latter question is "no".
### Converting legacy models into `diffusers`
The CLI `!convert_model` will convert a `.safetensors` or `.ckpt`
models file into `diffusers` and install it.This will enable the model
to load and run faster without loss of image quality.
The usage is identical to `!import_model`. You may point the command
to either a downloaded model file on disk, or to a (non-password
protected) URL:
```bash
invoke> !convert_model C:/Users/fred/Downloads/martians.safetensors
```
After a successful conversion, the CLI will offer you the option of
deleting the original `.ckpt` or `.safetensors` file.
### Optimizing a previously-installed model
Lastly, if you have previously installed a `.ckpt` or `.safetensors`
file and wish to convert it into a `diffusers` model, you can do this
without re-downloading and converting the original file using the
`!optimize_model` command. Simply pass the short name of an existing
installed model:
```bash
invoke> !optimize_model martians-v1.0
```
The model will be converted into `diffusers` format and replace the
previously installed version. You will again be offered the
opportunity to delete the original `.ckpt` or `.safetensors` file.
### Related CLI Commands
There are a whole series of additional model management commands in
the CLI that you can read about in [Command-Line
Interface](../features/CLI.md). These include:
* `!models` - List all installed models
* `!switch <model name>` - Switch to the indicated model
* `!edit_model <model name>` - Edit the indicated model to change its name, description or other properties
* `!del_model <model name>` - Delete the indicated model
### Manually editing `configs/models.yaml`
If you are comfortable with a text editor then you may simply edit `models.yaml`
directly.
You will need to download the desired `.ckpt/.safetensors` file and
place it somewhere on your machine's filesystem. Alternatively, for a
`diffusers` model, record the repo_id or download the whole model
directory. Then using a **text** editor (e.g. the Windows Notepad
application), open the file `configs/models.yaml`, and add a new
stanza that follows this model:
#### A legacy model
A legacy `.ckpt` or `.safetensors` entry will look like this:
```yaml
arabian-nights-1.0:
description: A great fine-tune in Arabian Nights style
weights: ./path/to/arabian-nights-1.0.ckpt
config: ./configs/stable-diffusion/v1-inference.yaml
format: ckpt
width: 512
height: 512
default: false
```
Note that `format` is `ckpt` for both `.ckpt` and `.safetensors` files.
#### A diffusers model
A stanza for a `diffusers` model will look like this for a HuggingFace
model with a repository ID:
```yaml
arabian-nights-1.1:
description: An even better fine-tune of the Arabian Nights
repo_id: captahab/arabian-nights-1.1
format: diffusers
default: true
```
And for a downloaded directory:
```yaml
arabian-nights-1.1:
description: An even better fine-tune of the Arabian Nights
path: /path/to/captahab-arabian-nights-1.1
format: diffusers
default: true
```
There is additional syntax for indicating an external VAE to use with
this model. See `INITIAL_MODELS.yaml` and `models.yaml` for examples.
After you save the modified `models.yaml` file relaunch
`invokeai`. The new model will now be available for your use.
### Installation via the WebUI
To access the WebUI Model Manager, click on the button that looks like
a cube in the upper right side of the browser screen. This will bring
up a dialogue that lists the models you have already installed, and
allows you to load, delete or edit them:
<figure markdown>
![model-manager](../assets/installing-models/webui-models-1.png)
</figure>
To add a new model, click on **+ Add New** and select to either a
checkpoint/safetensors model, or a diffusers model:
<figure markdown>
![model-manager-add-new](../assets/installing-models/webui-models-2.png)
</figure>
In this example, we chose **Add Diffusers**. As shown in the figure
below, a new dialogue prompts you to enter the name to use for the
model, its description, and either the location of the `diffusers`
model on disk, or its Repo ID on the HuggingFace web site. If you
choose to enter a path to disk, the system will autocomplete for you
as you type:
<figure markdown>
![model-manager-add-diffusers](../assets/installing-models/webui-models-3.png)
</figure>
Press **Add Model** at the bottom of the dialogue (scrolled out of
site in the figure), and the model will be downloaded, imported, and
registered in `models.yaml`.
The **Add Checkpoint/Safetensor Model** option is similar, except that
in this case you can choose to scan an entire folder for
checkpoint/safetensors files to import. Simply type in the path of the
directory and press the "Search" icon. This will display the
`.ckpt` and `.safetensors` found inside the directory and its
subfolders, and allow you to choose which ones to import:
<figure markdown>
![model-manager-add-checkpoint](../assets/installing-models/webui-models-4.png)
</figure>
## Model Management Startup Options
The `invoke` launcher and the `invokeai` script accept a series of
command-line arguments that modify InvokeAI's behavior when loading
models. These can be provided on the command line, or added to the
InvokeAI root directory's `invokeai.init` initialization file.
The arguments are:
* `--model <model name>` -- Start up with the indicated model loaded
* `--ckpt_convert` -- When a checkpoint/safetensors model is loaded, convert it into a `diffusers` model in memory. This does not permanently save the converted model to disk.
* `--autoconvert <path/to/directory>` -- Scan the indicated directory path for new checkpoint/safetensors files, convert them into `diffusers` models, and import them into InvokeAI.
Here is an example of providing an argument on the command line using
the `invoke.sh` launch script:
```bash
invoke.sh --autoconvert /home/fred/stable-diffusion-checkpoints
```
And here is what the same argument looks like in `invokeai.init`:
```bash
--outdir="/home/fred/invokeai/outputs
--no-nsfw_checker
--autoconvert /home/fred/stable-diffusion-checkpoints
```
The location of the autoimport directories are controlled by settings
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).

View File

@ -518,8 +518,8 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_scale"] = "img_scale"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the image")
image: Optional[ImageField] = Field(default=None, description="The image to scale")
scale_factor: Optional[float] = Field(default=2.0, gt=0, description="The factor by which to scale the image")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on

View File

@ -22,7 +22,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import torch_dtype
from ...backend.util.devices import choose_torch_device, torch_dtype
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
@ -38,7 +38,6 @@ from diffusers.models.attention_processor import (
XFormersAttnProcessor,
)
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""

View File

@ -1,6 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
from pathlib import Path, PosixPath
from typing import Literal, Union, cast
from pathlib import Path
from typing import Literal, Union
import cv2 as cv
import numpy as np
@ -16,19 +16,20 @@ from .image import ImageOutput
# TODO: Populate this from disk?
# TODO: Use model manager to load?
REALESRGAN_MODELS = Literal[
ESRGAN_MODELS = Literal[
"RealESRGAN_x4plus.pth",
"RealESRGAN_x4plus_anime_6B.pth",
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"RealESRGAN_x2plus.pth",
]
class RealESRGANInvocation(BaseInvocation):
class ESRGANInvocation(BaseInvocation):
"""Upscales an image using RealESRGAN."""
type: Literal["realesrgan"] = "realesrgan"
type: Literal["esrgan"] = "esrgan"
image: Union[ImageField, None] = Field(default=None, description="The input image")
model_name: REALESRGAN_MODELS = Field(
model_name: ESRGAN_MODELS = Field(
default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use"
)
@ -73,19 +74,17 @@ class RealESRGANInvocation(BaseInvocation):
scale=4,
)
netscale = 4
# TODO: add x2 models handling?
# elif self.model_name in ["RealESRGAN_x2plus"]:
# # x2 RRDBNet model
# model = RRDBNet(
# num_in_ch=3,
# num_out_ch=3,
# num_feat=64,
# num_block=23,
# num_grow_ch=32,
# scale=2,
# )
# model_path = Path()
# netscale = 2
elif self.model_name in ["RealESRGAN_x2plus.pth"]:
# x2 RRDBNet model
rrdbnet_model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
netscale = 2
else:
msg = f"Invalid RealESRGAN model: {self.model_name}"
context.services.logger.error(msg)

View File

@ -222,7 +222,7 @@ def download_conversion_models():
# ---------------------------------------------
def download_realesrgan():
logger.info("Installing RealESRGAN models...")
logger.info("Installing ESRGAN Upscaling models...")
URLs = [
dict(
url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
@ -239,6 +239,11 @@ def download_realesrgan():
dest= "core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
description = "ESRGAN_SRx4_DF2KOST_official.pth",
),
dict(
url= "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
dest= "core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
description = "RealESRGAN_x2plus.pth",
),
]
for model in URLs:
download_with_progress_bar(model['url'], config.models_path / model['dest'], model['description'])

View File

@ -10,7 +10,7 @@ from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set
import requests
from diffusers import StableDiffusionPipeline
from diffusers import DiffusionPipeline
from diffusers import logging as dlogging
from huggingface_hub import hf_hub_url, HfFolder, HfApi
from omegaconf import OmegaConf
@ -310,6 +310,8 @@ class ModelInstall(object):
if key := self.reverse_paths.get(path_name):
(name, base, mtype) = ModelManager.parse_key(key)
return name
elif location.is_dir():
return location.name
else:
return location.stem
@ -365,7 +367,7 @@ class ModelInstall(object):
model = None
for revision in revisions:
try:
model = StableDiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None)
model = DiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None)
except: # most errors are due to fp16 not being present. Fix this to catch other errors
pass
if model:

View File

@ -1,10 +1,4 @@
# This file predefines a few models that the user may want to install.
sd-1/main/stable-diffusion-xdl-base:
description: Stable Diffusion XL base model - NOT YET RELEASED!! (70 GB)
repo_id: stabilityai/stable-diffusion-xl-base
sd-1/main/stable-diffusion-xdl-refiner:
description: Stable Diffusion XL refiner model - NOT YET RELEASED!! (60 GB)
repo_id: stabilityai/stable-diffusion-xl-refiner
sd-1/main/stable-diffusion-v1-5:
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
repo_id: runwayml/stable-diffusion-v1-5
@ -22,6 +16,14 @@ sd-2/main/stable-diffusion-2-inpainting:
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-inpainting
recommended: False
sdxl/main/stable-diffusion-xl-base-0-9:
description: Stable Diffusion XL base model (12 GB; access token required)
repo_id: stabilityai/stable-diffusion-xl-base-0.9
recommended: False
sdxl-refiner/main/stable-diffusion-xl-refiner-0-9:
description: Stable Diffusion XL refiner model (12 GB; access token required)
repo_id: stabilityai/stable-diffusion-xl-refiner-0.9
recommended: False
sd-1/main/Analog-Diffusion:
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
repo_id: wavymulder/Analog-Diffusion

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-f1a5f9cf.js"></script>
<script type="module" crossorigin src="./assets/index-adc79457.js"></script>
</head>
<body dir="ltr">

View File

@ -399,6 +399,8 @@
"deleteModel": "Delete Model",
"deleteConfig": "Delete Config",
"deleteMsg1": "Are you sure you want to delete this model from InvokeAI?",
"modelDeleted": "Model Deleted",
"modelDeleteFailed": "Failed to delete model",
"deleteMsg2": "This WILL delete the model from disk if it is in the InvokeAI root folder. If you are using a custom location, then the model WILL NOT be deleted from disk.",
"formMessageDiffusersModelLocation": "Diffusers Model Location",
"formMessageDiffusersModelLocationDesc": "Please enter at least one.",
@ -408,11 +410,13 @@
"convertToDiffusers": "Convert To Diffusers",
"convertToDiffusersHelpText1": "This model will be converted to the 🧨 Diffusers format.",
"convertToDiffusersHelpText2": "This process will replace your Model Manager entry with the Diffusers version of the same model.",
"convertToDiffusersHelpText3": "Your checkpoint file on the disk will NOT be deleted or modified in anyway. You can add your checkpoint to the Model Manager again if you want to.",
"convertToDiffusersHelpText3": "Your checkpoint file on disk WILL be deleted if it is in InvokeAI root folder. If it is in a custom location, then it WILL NOT be deleted.",
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 2GB-7GB in size.",
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
"convertToDiffusersSaveLocation": "Save Location",
"noCustomLocationProvided": "No Custom Location Provided",
"convertingModelBegin": "Converting Model. Please wait.",
"v1": "v1",
"v2_base": "v2 (512px)",
"v2_768": "v2 (768px)",
@ -450,7 +454,8 @@
"none": "none",
"addDifference": "Add Difference",
"pickModelType": "Pick Model Type",
"selectModel": "Select Model"
"selectModel": "Select Model",
"importModels": "Import Models"
},
"parameters": {
"general": "General",
@ -572,6 +577,7 @@
"uploadFailedInvalidUploadDesc": "Must be single PNG or JPEG image",
"downloadImageStarted": "Image Download Started",
"imageCopied": "Image Copied",
"problemCopyingImage": "Unable to Copy Image",
"imageLinkCopied": "Image Link Copied",
"problemCopyingImageLink": "Unable to Copy Image Link",
"imageNotLoaded": "No Image Loaded",
@ -688,6 +694,15 @@
"reloadSchema": "Reload Schema",
"saveNodes": "Save Nodes",
"loadNodes": "Load Nodes",
"clearNodes": "Clear Nodes"
"clearNodes": "Clear Nodes",
"zoomInNodes": "Zoom In",
"zoomOutNodes": "Zoom Out",
"fitViewportNodes": "Fit View",
"hideGraphNodes": "Hide Graph Overlay",
"showGraphNodes": "Show Graph Overlay",
"hideLegendNodes": "Hide Field Type Legend",
"showLegendNodes": "Show Field Type Legend",
"hideMinimapnodes": "Hide MiniMap",
"showMinimapnodes": "Show MiniMap"
}
}

View File

@ -59,15 +59,8 @@ export const SCHEDULER_LABEL_MAP: Record<SchedulerParam, string> = {
export type Scheduler = (typeof SCHEDULER_NAMES)[number];
// Valid upscaling levels
export const UPSCALING_LEVELS: Array<{ label: string; value: string }> = [
{ label: '2x', value: '2' },
{ label: '4x', value: '4' },
];
export const NUMPY_RAND_MIN = 0;
export const NUMPY_RAND_MAX = 2147483647;
export const FACETOOL_TYPES = ['gfpgan', 'codeformer'] as const;
export const NODE_MIN_WIDTH = 250;

View File

@ -90,6 +90,7 @@ import { addUserInvokedNodesListener } from './listeners/userInvokedNodes';
import { addUserInvokedTextToImageListener } from './listeners/userInvokedTextToImage';
import { addModelLoadStartedEventListener } from './listeners/socketio/socketModelLoadStarted';
import { addModelLoadCompletedEventListener } from './listeners/socketio/socketModelLoadCompleted';
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
export const listenerMiddleware = createListenerMiddleware();
@ -228,3 +229,5 @@ addModelSelectedListener();
addAppStartedListener();
addModelsLoadedListener();
addAppConfigReceivedListener();
addUpscaleRequestedListener();

View File

@ -1,7 +1,7 @@
import { log } from 'app/logging/useLogger';
import { startAppListening } from '..';
import { sessionCreated } from 'services/api/thunks/session';
import { serializeError } from 'serialize-error';
import { sessionCreated } from 'services/api/thunks/session';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'session' });

View File

@ -0,0 +1,37 @@
import { createAction } from '@reduxjs/toolkit';
import { log } from 'app/logging/useLogger';
import { buildAdHocUpscaleGraph } from 'features/nodes/util/graphBuilders/buildAdHocUpscaleGraph';
import { sessionReadyToInvoke } from 'features/system/store/actions';
import { sessionCreated } from 'services/api/thunks/session';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'upscale' });
export const upscaleRequested = createAction<{ image_name: string }>(
`upscale/upscaleRequested`
);
export const addUpscaleRequestedListener = () => {
startAppListening({
actionCreator: upscaleRequested,
effect: async (
action,
{ dispatch, getState, take, unsubscribe, subscribe }
) => {
const { image_name } = action.payload;
const { esrganModelName } = getState().postprocessing;
const graph = buildAdHocUpscaleGraph({
image_name,
esrganModelName,
});
// Create a session to run the graph & wait til it's ready to invoke
dispatch(sessionCreated({ graph }));
await take(sessionCreated.fulfilled.match);
dispatch(sessionReadyToInvoke());
},
});
};

View File

@ -11,7 +11,7 @@ interface ItemProps extends React.ComponentPropsWithoutRef<'div'> {
const IAIMantineSelectItemWithTooltip = forwardRef<HTMLDivElement, ItemProps>(
({ label, tooltip, description, disabled, ...others }: ItemProps, ref) => (
<Tooltip label={tooltip} placement="top" hasArrow>
<Tooltip label={tooltip} placement="top" hasArrow openDelay={500}>
<Box ref={ref} {...others}>
<Box>
<Text>{label}</Text>

View File

@ -5,34 +5,26 @@ import {
ButtonGroup,
Flex,
FlexProps,
Link,
Menu,
MenuButton,
MenuItem,
MenuList,
} from '@chakra-ui/react';
// import { runESRGAN, runFacetool } from 'app/socketio/actions';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIButton from 'common/components/IAIButton';
import IAIIconButton from 'common/components/IAIIconButton';
import IAIPopover from 'common/components/IAIPopover';
import { skipToken } from '@reduxjs/toolkit/dist/query';
import { useAppToaster } from 'app/components/Toaster';
import { upscaleRequested } from 'app/store/middleware/listenerMiddleware/listeners/upscaleRequested';
import { stateSelector } from 'app/store/store';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
import { requestCanvasRescale } from 'features/canvas/store/thunks/requestCanvasScale';
import { DeleteImageButton } from 'features/imageDeletion/components/DeleteImageButton';
import { imageToDeleteSelected } from 'features/imageDeletion/store/imageDeletionSlice';
import FaceRestoreSettings from 'features/parameters/components/Parameters/FaceRestore/FaceRestoreSettings';
import UpscaleSettings from 'features/parameters/components/Parameters/Upscale/UpscaleSettings';
import ParamUpscalePopover from 'features/parameters/components/Parameters/Upscale/ParamUpscaleSettings';
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
import { initialImageSelected } from 'features/parameters/store/actions';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { useCopyImageToClipboard } from 'features/ui/hooks/useCopyImageToClipboard';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import {
setActiveTab,
setShouldShowImageDetails,
setShouldShowProgressInViewer,
} from 'features/ui/store/uiSlice';
@ -42,38 +34,25 @@ import { useTranslation } from 'react-i18next';
import {
FaAsterisk,
FaCode,
FaCopy,
FaDownload,
FaExpandArrowsAlt,
FaGrinStars,
FaHourglassHalf,
FaQuoteRight,
FaSeedling,
FaShare,
FaShareAlt,
} from 'react-icons/fa';
import {
useGetImageDTOQuery,
useGetImageMetadataQuery,
} from 'services/api/endpoints/images';
import { useDebounce } from 'use-debounce';
import { sentImageToCanvas, sentImageToImg2Img } from '../../store/actions';
import { menuListMotionProps } from 'theme/components/menu';
import { useDebounce } from 'use-debounce';
import { sentImageToImg2Img } from '../../store/actions';
import SingleSelectionMenuItems from '../ImageContextMenu/SingleSelectionMenuItems';
const currentImageButtonsSelector = createSelector(
[stateSelector, activeTabNameSelector],
({ gallery, system, postprocessing, ui }, activeTabName) => {
const {
isProcessing,
isConnected,
isGFPGANAvailable,
isESRGANAvailable,
shouldConfirmOnDelete,
progressImage,
} = system;
const { upscalingLevel, facetoolStrength } = postprocessing;
({ gallery, system, ui }, activeTabName) => {
const { isProcessing, isConnected, shouldConfirmOnDelete, progressImage } =
system;
const {
shouldShowImageDetails,
@ -88,10 +67,6 @@ const currentImageButtonsSelector = createSelector(
shouldConfirmOnDelete,
isProcessing,
isConnected,
isGFPGANAvailable,
isESRGANAvailable,
upscalingLevel,
facetoolStrength,
shouldDisableToolbarButtons: Boolean(progressImage) || !lastSelectedImage,
shouldShowImageDetails,
activeTabName,
@ -114,27 +89,17 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
const {
isProcessing,
isConnected,
isGFPGANAvailable,
isESRGANAvailable,
upscalingLevel,
facetoolStrength,
shouldDisableToolbarButtons,
shouldShowImageDetails,
activeTabName,
lastSelectedImage,
shouldShowProgressInViewer,
} = useAppSelector(currentImageButtonsSelector);
const isCanvasEnabled = useFeatureStatus('unifiedCanvas').isFeatureEnabled;
const isUpscalingEnabled = useFeatureStatus('upscaling').isFeatureEnabled;
const isFaceRestoreEnabled = useFeatureStatus('faceRestore').isFeatureEnabled;
const toaster = useAppToaster();
const { t } = useTranslation();
const { isClipboardAPIAvailable, copyImageToClipboard } =
useCopyImageToClipboard();
const { recallBothPrompts, recallSeed, recallAllParameters } =
useRecallParameters();
@ -155,42 +120,6 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
const metadata = metadataData?.metadata;
const handleCopyImageLink = useCallback(() => {
const getImageUrl = () => {
if (!imageDTO) {
return;
}
if (imageDTO.image_url.startsWith('http')) {
return imageDTO.image_url;
}
return window.location.toString() + imageDTO.image_url;
};
const url = getImageUrl();
if (!url) {
toaster({
title: t('toast.problemCopyingImageLink'),
status: 'error',
duration: 2500,
isClosable: true,
});
return;
}
navigator.clipboard.writeText(url).then(() => {
toaster({
title: t('toast.imageLinkCopied'),
status: 'success',
duration: 2500,
isClosable: true,
});
});
}, [toaster, t, imageDTO]);
const handleClickUseAllParameters = useCallback(() => {
recallAllParameters(metadata);
}, [metadata, recallAllParameters]);
@ -223,8 +152,11 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
useHotkeys('shift+i', handleSendToImageToImage, [imageDTO]);
const handleClickUpscale = useCallback(() => {
// selectedImage && dispatch(runESRGAN(selectedImage));
}, []);
if (!imageDTO) {
return;
}
dispatch(upscaleRequested({ image_name: imageDTO.image_name }));
}, [dispatch, imageDTO]);
const handleDelete = useCallback(() => {
if (!imageDTO) {
@ -242,53 +174,17 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
enabled: () =>
Boolean(
isUpscalingEnabled &&
isESRGANAvailable &&
!shouldDisableToolbarButtons &&
isConnected &&
!isProcessing &&
upscalingLevel
!isProcessing
),
},
[
isUpscalingEnabled,
imageDTO,
isESRGANAvailable,
shouldDisableToolbarButtons,
isConnected,
isProcessing,
upscalingLevel,
]
);
const handleClickFixFaces = useCallback(() => {
// selectedImage && dispatch(runFacetool(selectedImage));
}, []);
useHotkeys(
'Shift+R',
() => {
handleClickFixFaces();
},
{
enabled: () =>
Boolean(
isFaceRestoreEnabled &&
isGFPGANAvailable &&
!shouldDisableToolbarButtons &&
isConnected &&
!isProcessing &&
facetoolStrength
),
},
[
isFaceRestoreEnabled,
imageDTO,
isGFPGANAvailable,
shouldDisableToolbarButtons,
isConnected,
isProcessing,
facetoolStrength,
]
);
@ -297,25 +193,6 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
[dispatch, shouldShowImageDetails]
);
const handleSendToCanvas = useCallback(() => {
if (!imageDTO) return;
dispatch(sentImageToCanvas());
dispatch(setInitialCanvasImage(imageDTO));
dispatch(requestCanvasRescale());
if (activeTabName !== 'unifiedCanvas') {
dispatch(setActiveTab('unifiedCanvas'));
}
toaster({
title: t('toast.sentToUnifiedCanvas'),
status: 'success',
duration: 2500,
isClosable: true,
});
}, [imageDTO, dispatch, activeTabName, toaster, t]);
useHotkeys(
'i',
() => {
@ -337,13 +214,6 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
dispatch(setShouldShowProgressInViewer(!shouldShowProgressInViewer));
}, [dispatch, shouldShowProgressInViewer]);
const handleCopyImage = useCallback(() => {
if (!imageDTO) {
return;
}
copyImageToClipboard(imageDTO.image_url);
}, [copyImageToClipboard, imageDTO]);
return (
<>
<Flex
@ -396,72 +266,12 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
/>
</ButtonGroup>
{(isUpscalingEnabled || isFaceRestoreEnabled) && (
{isUpscalingEnabled && (
<ButtonGroup
isAttached={true}
isDisabled={shouldDisableToolbarButtons}
>
{isFaceRestoreEnabled && (
<IAIPopover
triggerComponent={
<IAIIconButton
icon={<FaGrinStars />}
aria-label={t('parameters.restoreFaces')}
/>
}
>
<Flex
sx={{
flexDirection: 'column',
rowGap: 4,
}}
>
<FaceRestoreSettings />
<IAIButton
isDisabled={
!isGFPGANAvailable ||
!imageDTO ||
!(isConnected && !isProcessing) ||
!facetoolStrength
}
onClick={handleClickFixFaces}
>
{t('parameters.restoreFaces')}
</IAIButton>
</Flex>
</IAIPopover>
)}
{isUpscalingEnabled && (
<IAIPopover
triggerComponent={
<IAIIconButton
icon={<FaExpandArrowsAlt />}
aria-label={t('parameters.upscale')}
/>
}
>
<Flex
sx={{
flexDirection: 'column',
gap: 4,
}}
>
<UpscaleSettings />
<IAIButton
isDisabled={
!isESRGANAvailable ||
!imageDTO ||
!(isConnected && !isProcessing) ||
!upscalingLevel
}
onClick={handleClickUpscale}
>
{t('parameters.upscaleImage')}
</IAIButton>
</Flex>
</IAIPopover>
)}
{isUpscalingEnabled && <ParamUpscalePopover imageDTO={imageDTO} />}
</ButtonGroup>
)}

View File

@ -1,33 +1,46 @@
import { Flex, Image } from '@chakra-ui/react';
import { NodeProps } from 'reactflow';
import { InvocationValue } from '../types/types';
import { useAppSelector } from 'app/store/storeHooks';
import { RootState } from 'app/store/store';
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
import { memo } from 'react';
import { useDispatch, useSelector } from 'react-redux';
import { NodeProps, OnResize } from 'reactflow';
import { setProgressNodeSize } from '../store/nodesSlice';
import IAINodeHeader from './IAINode/IAINodeHeader';
import IAINodeResizer from './IAINode/IAINodeResizer';
import NodeWrapper from './NodeWrapper';
const ProgressImageNode = (props: NodeProps<InvocationValue>) => {
const progressImage = useAppSelector((state) => state.system.progressImage);
const ProgressImageNode = (props: NodeProps) => {
const progressImage = useSelector(
(state: RootState) => state.system.progressImage
);
const progressNodeSize = useSelector(
(state: RootState) => state.nodes.progressNodeSize
);
const dispatch = useDispatch();
const { selected } = props;
const handleResize: OnResize = (_, newSize) => {
dispatch(setProgressNodeSize(newSize));
};
return (
<NodeWrapper selected={selected}>
<IAINodeHeader
title="Progress Image"
description="Displays the progress image in the Node Editor"
/>
<Flex
className="nopan"
sx={{
flexDirection: 'column',
flexShrink: 0,
borderBottomRadius: 'md',
p: 2,
bg: 'base.200',
_dark: { bg: 'base.800' },
width: progressNodeSize.width - 2,
height: progressNodeSize.height - 2,
minW: 250,
minH: 250,
overflow: 'hidden',
}}
>
{progressImage ? (
@ -42,22 +55,17 @@ const ProgressImageNode = (props: NodeProps<InvocationValue>) => {
) : (
<Flex
sx={{
w: 'full',
h: 'full',
minW: 32,
minH: 32,
alignItems: 'center',
justifyContent: 'center',
minW: 250,
minH: 250,
width: progressNodeSize.width - 2,
height: progressNodeSize.height - 2,
}}
>
<IAINoContentFallback />
</Flex>
)}
</Flex>
<IAINodeResizer
maxHeight={progressImage?.height ?? 512}
maxWidth={progressImage?.width ?? 512}
/>
<IAINodeResizer onResize={handleResize} />
</NodeWrapper>
);
};

View File

@ -35,6 +35,7 @@ export type NodesState = {
shouldShowFieldTypeLegend: boolean;
shouldShowMinimapPanel: boolean;
editorInstance: ReactFlowInstance | undefined;
progressNodeSize: { width: number; height: number };
};
export const initialNodesState: NodesState = {
@ -47,6 +48,7 @@ export const initialNodesState: NodesState = {
shouldShowFieldTypeLegend: false,
shouldShowMinimapPanel: true,
editorInstance: undefined,
progressNodeSize: { width: 512, height: 512 },
};
const nodesSlice = createSlice({
@ -157,6 +159,12 @@ const nodesSlice = createSlice({
loadFileEdges: (state, action: PayloadAction<Edge[]>) => {
state.edges = action.payload;
},
setProgressNodeSize: (
state,
action: PayloadAction<{ width: number; height: number }>
) => {
state.progressNodeSize = action.payload;
},
},
extraReducers: (builder) => {
builder.addCase(receivedOpenAPISchema.fulfilled, (state, action) => {
@ -182,6 +190,7 @@ export const {
setEditorInstance,
loadFileNodes,
loadFileEdges,
setProgressNodeSize,
} = nodesSlice.actions;
export default nodesSlice.reducer;

View File

@ -0,0 +1,32 @@
import { NonNullableGraph } from 'features/nodes/types/types';
import { ESRGANModelName } from 'features/parameters/store/postprocessingSlice';
import { Graph, ESRGANInvocation } from 'services/api/types';
import { REALESRGAN as ESRGAN } from './constants';
type Arg = {
image_name: string;
esrganModelName: ESRGANModelName;
};
export const buildAdHocUpscaleGraph = ({
image_name,
esrganModelName,
}: Arg): Graph => {
const realesrganNode: ESRGANInvocation = {
id: ESRGAN,
type: 'esrgan',
image: { image_name },
model_name: esrganModelName,
is_intermediate: false,
};
const graph: NonNullableGraph = {
id: `adhoc-esrgan-graph`,
nodes: {
[ESRGAN]: realesrganNode,
},
edges: [],
};
return graph;
};

View File

@ -20,6 +20,9 @@ export const DYNAMIC_PROMPT = 'dynamic_prompt';
export const IMAGE_COLLECTION = 'image_collection';
export const IMAGE_COLLECTION_ITERATE = 'image_collection_iterate';
export const METADATA_ACCUMULATOR = 'metadata_accumulator';
export const REALESRGAN = 'esrgan';
export const DIVIDE = 'divide';
export const SCALE = 'scale_image';
// friendly graph ids
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';

View File

@ -1,34 +0,0 @@
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISlider from 'common/components/IAISlider';
import { setCodeformerFidelity } from 'features/parameters/store/postprocessingSlice';
import { useTranslation } from 'react-i18next';
export default function CodeformerFidelity() {
const isGFPGANAvailable = useAppSelector(
(state: RootState) => state.system.isGFPGANAvailable
);
const codeformerFidelity = useAppSelector(
(state: RootState) => state.postprocessing.codeformerFidelity
);
const { t } = useTranslation();
const dispatch = useAppDispatch();
return (
<IAISlider
isDisabled={!isGFPGANAvailable}
label={t('parameters.codeformerFidelity')}
step={0.05}
min={0}
max={1}
onChange={(v) => dispatch(setCodeformerFidelity(v))}
handleReset={() => dispatch(setCodeformerFidelity(1))}
value={codeformerFidelity}
withReset
withSliderMarks
withInput
/>
);
}

View File

@ -1,25 +0,0 @@
import { VStack } from '@chakra-ui/react';
import { useAppSelector } from 'app/store/storeHooks';
import type { RootState } from 'app/store/store';
import FaceRestoreType from './FaceRestoreType';
import FaceRestoreStrength from './FaceRestoreStrength';
import CodeformerFidelity from './CodeformerFidelity';
/**
* Displays face-fixing/GFPGAN options (strength).
*/
const FaceRestoreSettings = () => {
const facetoolType = useAppSelector(
(state: RootState) => state.postprocessing.facetoolType
);
return (
<VStack gap={2} alignItems="stretch">
<FaceRestoreType />
<FaceRestoreStrength />
{facetoolType === 'codeformer' && <CodeformerFidelity />}
</VStack>
);
};
export default FaceRestoreSettings;

View File

@ -1,34 +0,0 @@
import { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISlider from 'common/components/IAISlider';
import { setFacetoolStrength } from 'features/parameters/store/postprocessingSlice';
import { useTranslation } from 'react-i18next';
export default function FaceRestoreStrength() {
const isGFPGANAvailable = useAppSelector(
(state: RootState) => state.system.isGFPGANAvailable
);
const facetoolStrength = useAppSelector(
(state: RootState) => state.postprocessing.facetoolStrength
);
const { t } = useTranslation();
const dispatch = useAppDispatch();
return (
<IAISlider
isDisabled={!isGFPGANAvailable}
label={t('parameters.strength')}
step={0.05}
min={0}
max={1}
onChange={(v) => dispatch(setFacetoolStrength(v))}
handleReset={() => dispatch(setFacetoolStrength(0.75))}
value={facetoolStrength}
withReset
withSliderMarks
withInput
/>
);
}

View File

@ -1,28 +0,0 @@
import { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISwitch from 'common/components/IAISwitch';
import { setShouldRunFacetool } from 'features/parameters/store/postprocessingSlice';
import { ChangeEvent } from 'react';
export default function FaceRestoreToggle() {
const isGFPGANAvailable = useAppSelector(
(state: RootState) => state.system.isGFPGANAvailable
);
const shouldRunFacetool = useAppSelector(
(state: RootState) => state.postprocessing.shouldRunFacetool
);
const dispatch = useAppDispatch();
const handleChangeShouldRunFacetool = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setShouldRunFacetool(e.target.checked));
return (
<IAISwitch
isDisabled={!isGFPGANAvailable}
isChecked={shouldRunFacetool}
onChange={handleChangeShouldRunFacetool}
/>
);
}

View File

@ -1,30 +0,0 @@
import { FACETOOL_TYPES } from 'app/constants';
import { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
import {
FacetoolType,
setFacetoolType,
} from 'features/parameters/store/postprocessingSlice';
import { useTranslation } from 'react-i18next';
export default function FaceRestoreType() {
const facetoolType = useAppSelector(
(state: RootState) => state.postprocessing.facetoolType
);
const dispatch = useAppDispatch();
const { t } = useTranslation();
const handleChangeFacetoolType = (v: string) =>
dispatch(setFacetoolType(v as FacetoolType));
return (
<IAIMantineSearchableSelect
label={t('parameters.type')}
data={FACETOOL_TYPES.concat()}
value={facetoolType}
onChange={handleChangeFacetoolType}
/>
);
}

View File

@ -1,43 +0,0 @@
import { Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { ParamHiresStrength } from './ParamHiresStrength';
import { ParamHiresToggle } from './ParamHiresToggle';
const selector = createSelector(
stateSelector,
(state) => {
const activeLabel = state.postprocessing.hiresFix ? 'Enabled' : undefined;
return { activeLabel };
},
defaultSelectorOptions
);
const ParamHiresCollapse = () => {
const { t } = useTranslation();
const { activeLabel } = useAppSelector(selector);
const isHiresEnabled = useFeatureStatus('hires').isFeatureEnabled;
if (!isHiresEnabled) {
return null;
}
return (
<IAICollapse label={t('parameters.hiresOptim')} activeLabel={activeLabel}>
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamHiresToggle />
<ParamHiresStrength />
</Flex>
</IAICollapse>
);
};
export default memo(ParamHiresCollapse);

View File

@ -1,51 +0,0 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISlider from 'common/components/IAISlider';
import { postprocessingSelector } from 'features/parameters/store/postprocessingSelectors';
import { setHiresStrength } from 'features/parameters/store/postprocessingSlice';
import { isEqual } from 'lodash-es';
import { useTranslation } from 'react-i18next';
const hiresStrengthSelector = createSelector(
[postprocessingSelector],
({ hiresFix, hiresStrength }) => ({ hiresFix, hiresStrength }),
{
memoizeOptions: {
resultEqualityCheck: isEqual,
},
}
);
export const ParamHiresStrength = () => {
const { hiresFix, hiresStrength } = useAppSelector(hiresStrengthSelector);
const dispatch = useAppDispatch();
const { t } = useTranslation();
const handleHiresStrength = (v: number) => {
dispatch(setHiresStrength(v));
};
const handleHiResStrengthReset = () => {
dispatch(setHiresStrength(0.75));
};
return (
<IAISlider
label={t('parameters.hiresStrength')}
step={0.01}
min={0.01}
max={0.99}
onChange={handleHiresStrength}
value={hiresStrength}
isInteger={false}
withInput
withSliderMarks
// inputWidth={22}
withReset
handleReset={handleHiResStrengthReset}
isDisabled={!hiresFix}
/>
);
};

View File

@ -1,30 +0,0 @@
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISwitch from 'common/components/IAISwitch';
import { setHiresFix } from 'features/parameters/store/postprocessingSlice';
import { ChangeEvent } from 'react';
import { useTranslation } from 'react-i18next';
/**
* Hires Fix Toggle
*/
export const ParamHiresToggle = () => {
const dispatch = useAppDispatch();
const hiresFix = useAppSelector(
(state: RootState) => state.postprocessing.hiresFix
);
const { t } = useTranslation();
const handleChangeHiresFix = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setHiresFix(e.target.checked));
return (
<IAISwitch
label={t('parameters.hiresOptim')}
isChecked={hiresFix}
onChange={handleChangeHiresFix}
/>
);
};

View File

@ -0,0 +1,58 @@
import { SelectItem } from '@mantine/core';
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIMantineSelect from 'common/components/IAIMantineSelect';
import IAIMantineSelectItemWithTooltip from 'common/components/IAIMantineSelectItemWithTooltip';
import {
ESRGANModelName,
esrganModelNameChanged,
} from 'features/parameters/store/postprocessingSlice';
import { useTranslation } from 'react-i18next';
export const ESRGAN_MODEL_NAMES: SelectItem[] = [
{
label: 'RealESRGAN x2 Plus',
value: 'RealESRGAN_x2plus.pth',
tooltip: 'Attempts to retain sharpness, low smoothing',
group: 'x2 Upscalers',
},
{
label: 'RealESRGAN x4 Plus',
value: 'RealESRGAN_x4plus.pth',
tooltip: 'Best for photos and highly detailed images, medium smoothing',
group: 'x4 Upscalers',
},
{
label: 'RealESRGAN x4 Plus (anime 6B)',
value: 'RealESRGAN_x4plus_anime_6B.pth',
tooltip: 'Best for anime/manga, high smoothing',
group: 'x4 Upscalers',
},
{
label: 'ESRGAN SRx4',
value: 'ESRGAN_SRx4_DF2KOST_official-ff704c30.pth',
tooltip: 'Retains sharpness, low smoothing',
group: 'x4 Upscalers',
},
];
export default function ParamESRGANModel() {
const esrganModelName = useAppSelector(
(state: RootState) => state.postprocessing.esrganModelName
);
const dispatch = useAppDispatch();
const handleChange = (v: string) =>
dispatch(esrganModelNameChanged(v as ESRGANModelName));
return (
<IAIMantineSelect
label="ESRGAN Model"
value={esrganModelName}
itemComponent={IAIMantineSelectItemWithTooltip}
onChange={handleChange}
data={ESRGAN_MODEL_NAMES}
/>
);
}

View File

@ -0,0 +1,62 @@
import { Flex, useDisclosure } from '@chakra-ui/react';
import { upscaleRequested } from 'app/store/middleware/listenerMiddleware/listeners/upscaleRequested';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIButton from 'common/components/IAIButton';
import IAIIconButton from 'common/components/IAIIconButton';
import IAIPopover from 'common/components/IAIPopover';
import { selectIsBusy } from 'features/system/store/systemSelectors';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { FaExpandArrowsAlt } from 'react-icons/fa';
import { ImageDTO } from 'services/api/types';
import ParamESRGANModel from './ParamRealESRGANModel';
type Props = { imageDTO?: ImageDTO };
const ParamUpscalePopover = (props: Props) => {
const { imageDTO } = props;
const dispatch = useAppDispatch();
const isBusy = useAppSelector(selectIsBusy);
const { t } = useTranslation();
const { isOpen, onOpen, onClose } = useDisclosure();
const handleClickUpscale = useCallback(() => {
onClose();
if (!imageDTO) {
return;
}
dispatch(upscaleRequested({ image_name: imageDTO.image_name }));
}, [dispatch, imageDTO, onClose]);
return (
<IAIPopover
isOpen={isOpen}
onClose={onClose}
triggerComponent={
<IAIIconButton
onClick={onOpen}
icon={<FaExpandArrowsAlt />}
aria-label={t('parameters.upscale')}
/>
}
>
<Flex
sx={{
flexDirection: 'column',
gap: 4,
}}
>
<ParamESRGANModel />
<IAIButton
size="sm"
isDisabled={!imageDTO || isBusy}
onClick={handleClickUpscale}
>
{t('parameters.upscaleImage')}
</IAIButton>
</Flex>
</IAIPopover>
);
};
export default ParamUpscalePopover;

View File

@ -1,36 +0,0 @@
import { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISlider from 'common/components/IAISlider';
import { setUpscalingDenoising } from 'features/parameters/store/postprocessingSlice';
import { useTranslation } from 'react-i18next';
export default function UpscaleDenoisingStrength() {
const isESRGANAvailable = useAppSelector(
(state: RootState) => state.system.isESRGANAvailable
);
const upscalingDenoising = useAppSelector(
(state: RootState) => state.postprocessing.upscalingDenoising
);
const { t } = useTranslation();
const dispatch = useAppDispatch();
return (
<IAISlider
label={t('parameters.denoisingStrength')}
value={upscalingDenoising}
min={0}
max={1}
step={0.01}
onChange={(v) => {
dispatch(setUpscalingDenoising(v));
}}
handleReset={() => dispatch(setUpscalingDenoising(0.75))}
withSliderMarks
withInput
withReset
isDisabled={!isESRGANAvailable}
/>
);
}

View File

@ -1,35 +0,0 @@
import { UPSCALING_LEVELS } from 'app/constants';
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
import {
UpscalingLevel,
setUpscalingLevel,
} from 'features/parameters/store/postprocessingSlice';
import { useTranslation } from 'react-i18next';
export default function UpscaleScale() {
const isESRGANAvailable = useAppSelector(
(state: RootState) => state.system.isESRGANAvailable
);
const upscalingLevel = useAppSelector(
(state: RootState) => state.postprocessing.upscalingLevel
);
const { t } = useTranslation();
const dispatch = useAppDispatch();
const handleChangeLevel = (v: string) =>
dispatch(setUpscalingLevel(Number(v) as UpscalingLevel));
return (
<IAIMantineSearchableSelect
disabled={!isESRGANAvailable}
label={t('parameters.scale')}
value={String(upscalingLevel)}
onChange={handleChangeLevel}
data={UPSCALING_LEVELS}
/>
);
}

View File

@ -1,19 +0,0 @@
import { VStack } from '@chakra-ui/react';
import UpscaleDenoisingStrength from './UpscaleDenoisingStrength';
import UpscaleStrength from './UpscaleStrength';
import UpscaleScale from './UpscaleScale';
/**
* Displays upscaling/ESRGAN options (level and strength).
*/
const UpscaleSettings = () => {
return (
<VStack gap={2} alignItems="stretch">
<UpscaleScale />
<UpscaleDenoisingStrength />
<UpscaleStrength />
</VStack>
);
};
export default UpscaleSettings;

View File

@ -1,33 +0,0 @@
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISlider from 'common/components/IAISlider';
import { setUpscalingStrength } from 'features/parameters/store/postprocessingSlice';
import { useTranslation } from 'react-i18next';
export default function UpscaleStrength() {
const isESRGANAvailable = useAppSelector(
(state: RootState) => state.system.isESRGANAvailable
);
const upscalingStrength = useAppSelector(
(state: RootState) => state.postprocessing.upscalingStrength
);
const { t } = useTranslation();
const dispatch = useAppDispatch();
return (
<IAISlider
label={`${t('parameters.upscale')} ${t('parameters.strength')}`}
value={upscalingStrength}
min={0}
max={1}
step={0.05}
onChange={(v) => dispatch(setUpscalingStrength(v))}
handleReset={() => dispatch(setUpscalingStrength(0.75))}
withSliderMarks
withInput
withReset
isDisabled={!isESRGANAvailable}
/>
);
}

View File

@ -1,26 +0,0 @@
import { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISwitch from 'common/components/IAISwitch';
import { setShouldRunESRGAN } from 'features/parameters/store/postprocessingSlice';
import { ChangeEvent } from 'react';
export default function UpscaleToggle() {
const isESRGANAvailable = useAppSelector(
(state: RootState) => state.system.isESRGANAvailable
);
const shouldRunESRGAN = useAppSelector(
(state: RootState) => state.postprocessing.shouldRunESRGAN
);
const dispatch = useAppDispatch();
const handleChangeShouldRunESRGAN = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setShouldRunESRGAN(e.target.checked));
return (
<IAISwitch
isDisabled={!isESRGANAvailable}
isChecked={shouldRunESRGAN}
onChange={handleChangeShouldRunESRGAN}
/>
);
}

View File

@ -1,98 +1,27 @@
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import { FACETOOL_TYPES } from 'app/constants';
import { ESRGANInvocation } from 'services/api/types';
export type UpscalingLevel = 2 | 4;
export type FacetoolType = (typeof FACETOOL_TYPES)[number];
export type ESRGANModelName = NonNullable<ESRGANInvocation['model_name']>;
export interface PostprocessingState {
codeformerFidelity: number;
facetoolStrength: number;
facetoolType: FacetoolType;
hiresFix: boolean;
hiresStrength: number;
shouldLoopback: boolean;
shouldRunESRGAN: boolean;
shouldRunFacetool: boolean;
upscalingLevel: UpscalingLevel;
upscalingDenoising: number;
upscalingStrength: number;
esrganModelName: ESRGANModelName;
}
export const initialPostprocessingState: PostprocessingState = {
codeformerFidelity: 0.75,
facetoolStrength: 0.75,
facetoolType: 'gfpgan',
hiresFix: false,
hiresStrength: 0.75,
shouldLoopback: false,
shouldRunESRGAN: false,
shouldRunFacetool: false,
upscalingLevel: 4,
upscalingDenoising: 0.75,
upscalingStrength: 0.75,
esrganModelName: 'RealESRGAN_x4plus.pth',
};
export const postprocessingSlice = createSlice({
name: 'postprocessing',
initialState: initialPostprocessingState,
reducers: {
setFacetoolStrength: (state, action: PayloadAction<number>) => {
state.facetoolStrength = action.payload;
},
setCodeformerFidelity: (state, action: PayloadAction<number>) => {
state.codeformerFidelity = action.payload;
},
setUpscalingLevel: (state, action: PayloadAction<UpscalingLevel>) => {
state.upscalingLevel = action.payload;
},
setUpscalingDenoising: (state, action: PayloadAction<number>) => {
state.upscalingDenoising = action.payload;
},
setUpscalingStrength: (state, action: PayloadAction<number>) => {
state.upscalingStrength = action.payload;
},
setHiresFix: (state, action: PayloadAction<boolean>) => {
state.hiresFix = action.payload;
},
setHiresStrength: (state, action: PayloadAction<number>) => {
state.hiresStrength = action.payload;
},
resetPostprocessingState: (state) => {
return {
...state,
...initialPostprocessingState,
};
},
setShouldRunFacetool: (state, action: PayloadAction<boolean>) => {
state.shouldRunFacetool = action.payload;
},
setFacetoolType: (state, action: PayloadAction<FacetoolType>) => {
state.facetoolType = action.payload;
},
setShouldRunESRGAN: (state, action: PayloadAction<boolean>) => {
state.shouldRunESRGAN = action.payload;
},
setShouldLoopback: (state, action: PayloadAction<boolean>) => {
state.shouldLoopback = action.payload;
esrganModelNameChanged: (state, action: PayloadAction<ESRGANModelName>) => {
state.esrganModelName = action.payload;
},
},
});
export const {
resetPostprocessingState,
setCodeformerFidelity,
setFacetoolStrength,
setFacetoolType,
setHiresFix,
setHiresStrength,
setShouldLoopback,
setShouldRunESRGAN,
setShouldRunFacetool,
setUpscalingLevel,
setUpscalingDenoising,
setUpscalingStrength,
} = postprocessingSlice.actions;
export const { esrganModelNameChanged } = postprocessingSlice.actions;
export default postprocessingSlice.reducer;

View File

@ -85,7 +85,7 @@ export default function SimpleAddModels() {
<Flex flexDirection="column" width="100%" gap={4}>
<IAIMantineTextInput
label="Model Location"
placeholder="Provide a path to a local Diffusers model, local checkpoint / safetensors model or a HuggingFace Repo ID"
placeholder="Provide a path to a local Diffusers model, local checkpoint / safetensors model a HuggingFace Repo ID, or a checkpoint/diffusers model URL."
w="100%"
{...addModelForm.getInputProps('location')}
/>

View File

@ -4,7 +4,6 @@ import ParamAdvancedCollapse from 'features/parameters/components/Parameters/Adv
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
import ParamHiresCollapse from 'features/parameters/components/Parameters/Hires/ParamHiresCollapse';
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
@ -26,7 +25,6 @@ const TextToImageTabParameters = () => {
<ParamVariationCollapse />
<ParamNoiseCollapse />
<ParamSymmetryCollapse />
<ParamHiresCollapse />
<ParamSeamlessCollapse />
<ParamAdvancedCollapse />
</>

View File

@ -1105,6 +1105,41 @@ export type components = {
*/
combinatorial?: boolean;
};
/**
* ESRGANInvocation
* @description Upscales an image using RealESRGAN.
*/
ESRGANInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default esrgan
* @enum {string}
*/
type?: "esrgan";
/**
* Image
* @description The input image
*/
image?: components["schemas"]["ImageField"];
/**
* Model Name
* @description The Real-ESRGAN model to use
* @default RealESRGAN_x4plus.pth
* @enum {string}
*/
model_name?: "RealESRGAN_x4plus.pth" | "RealESRGAN_x4plus_anime_6B.pth" | "ESRGAN_SRx4_DF2KOST_official-ff704c30.pth" | "RealESRGAN_x2plus.pth";
};
/** Edge */
Edge: {
/**
@ -1219,7 +1254,7 @@ export type components = {
* @description The nodes in this graph
*/
nodes?: {
[key: string]: (components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
[key: string]: (components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
};
/**
* Edges
@ -1262,7 +1297,7 @@ export type components = {
* @description The results of node executions
*/
results: {
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["StringOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
};
/**
* Errors
@ -2011,9 +2046,10 @@ export type components = {
image?: components["schemas"]["ImageField"];
/**
* Scale Factor
* @description The factor by which to scale the image
* @description The factor by which to scale the image
* @default 2
*/
scale_factor: number;
scale_factor?: number;
/**
* Resample Mode
* @description The resampling mode
@ -3684,6 +3720,35 @@ export type components = {
*/
a?: number;
};
/**
* ParamStringInvocation
* @description A string parameter
*/
ParamStringInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default param_string
* @enum {string}
*/
type?: "param_string";
/**
* Text
* @description The string value
* @default
*/
text?: string;
};
/**
* PidiImageProcessorInvocation
* @description Applies PIDI processing to image
@ -3988,41 +4053,6 @@ export type components = {
*/
step?: number;
};
/**
* RealESRGANInvocation
* @description Upscales an image using RealESRGAN.
*/
RealESRGANInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default realesrgan
* @enum {string}
*/
type?: "realesrgan";
/**
* Image
* @description The input image
*/
image?: components["schemas"]["ImageField"];
/**
* Model Name
* @description The Real-ESRGAN model to use
* @default RealESRGAN_x4plus.pth
* @enum {string}
*/
model_name?: "RealESRGAN_x4plus.pth" | "RealESRGAN_x4plus_anime_6B.pth" | "ESRGAN_SRx4_DF2KOST_official-ff704c30.pth";
};
/**
* ResizeLatentsInvocation
* @description Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.
@ -4151,13 +4181,13 @@ export type components = {
*/
target_height?: number;
/**
* Clip1
* Clip
* @description Clip to use
*/
clip1?: components["schemas"]["ClipField"];
clip?: components["schemas"]["ClipField"];
/**
* Clip2
* @description Clip to use
* @description Clip2 to use
*/
clip2?: components["schemas"]["ClipField"];
};
@ -4300,7 +4330,7 @@ export type components = {
};
/**
* SDXLRawPromptInvocation
* @description Parse prompt using compel package to conditioning.
* @description Pass unmodified prompt to conditioning without compel processing.
*/
SDXLRawPromptInvocation: {
/**
@ -4363,13 +4393,13 @@ export type components = {
*/
target_height?: number;
/**
* Clip1
* Clip
* @description Clip to use
*/
clip1?: components["schemas"]["ClipField"];
clip?: components["schemas"]["ClipField"];
/**
* Clip2
* @description Clip to use
* @description Clip2 to use
*/
clip2?: components["schemas"]["ClipField"];
};
@ -4947,6 +4977,23 @@ export type components = {
*/
show_easing_plot?: boolean;
};
/**
* StringOutput
* @description A string output
*/
StringOutput: {
/**
* Type
* @default string_output
* @enum {string}
*/
type?: "string_output";
/**
* Text
* @description The output string
*/
text?: string;
};
/**
* SubModelType
* @description An enumeration.
@ -5379,7 +5426,7 @@ export type operations = {
};
requestBody: {
content: {
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
};
};
responses: {
@ -5416,7 +5463,7 @@ export type operations = {
};
requestBody: {
content: {
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
};
};
responses: {

View File

@ -90,6 +90,9 @@ export type InpaintInvocation = TypeReq<
export type ImageResizeInvocation = TypeReq<
components['schemas']['ImageResizeInvocation']
>;
export type ImageScaleInvocation = TypeReq<
components['schemas']['ImageScaleInvocation']
>;
export type RandomIntInvocation = TypeReq<
components['schemas']['RandomIntInvocation']
>;
@ -124,6 +127,12 @@ export type LoraLoaderInvocation = TypeReq<
export type MetadataAccumulatorInvocation = TypeReq<
components['schemas']['MetadataAccumulatorInvocation']
>;
export type ESRGANInvocation = TypeReq<
components['schemas']['ESRGANInvocation']
>;
export type DivideInvocation = TypeReq<
components['schemas']['DivideInvocation']
>;
// ControlNet Nodes
export type ControlNetInvocation = TypeReq<

File diff suppressed because it is too large Load Diff

View File

@ -1 +1 @@
__version__ = "3.0.0+b7"
__version__ = "3.0.0+b10"

View File

@ -23,8 +23,6 @@ classifiers = [
'Operating System :: MacOS',
'Operating System :: Microsoft :: Windows',
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Topic :: Artistic Software',
'Topic :: Internet :: WWW/HTTP :: WSGI :: Application',
@ -58,8 +56,9 @@ dependencies = [
"flaskwebgui==1.0.3",
"gfpgan==1.3.8",
"huggingface-hub>=0.11.1",
"matplotlib", # needed for plotting of Penner easing functions
"mediapipe", # needed for "mediapipeface" controlnet model
"invisible-watermark>=0.2.0", # needed to install SDXL base and refiner using their repo_ids
"matplotlib", # needed for plotting of Penner easing functions
"mediapipe", # needed for "mediapipeface" controlnet model
"npyscreen",
"numpy<1.24",
"omegaconf",
@ -84,7 +83,7 @@ dependencies = [
"torchvision>=0.14.1",
"torchmetrics==0.11.4",
"torchsde==0.2.5",
"transformers~=4.30",
"transformers==4.30.2",
"uvicorn[standard]==0.21.1",
"windows-curses; sys_platform=='win32'",
]

View File

@ -1,6 +1,6 @@
from .test_nodes import ImageToImageTestInvocation, TextToImageTestInvocation, ListPassThroughInvocation, PromptTestInvocation
from invokeai.app.services.graph import Edge, Graph, GraphInvocation, InvalidEdgeError, NodeAlreadyInGraphError, NodeNotFoundError, are_connections_compatible, EdgeConnection, CollectInvocation, IterateInvocation
from invokeai.app.invocations.upscale import RealESRGANInvocation
from invokeai.app.invocations.upscale import ESRGANInvocation
from invokeai.app.invocations.image import *
from invokeai.app.invocations.math import AddInvocation, SubtractInvocation
from invokeai.app.invocations.params import ParamIntInvocation
@ -19,7 +19,7 @@ def create_edge(from_id: str, from_field: str, to_id: str, to_field: str) -> Edg
def test_connections_are_compatible():
from_node = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
from_field = "image"
to_node = RealESRGANInvocation(id = "2")
to_node = ESRGANInvocation(id = "2")
to_field = "image"
result = are_connections_compatible(from_node, from_field, to_node, to_field)
@ -29,7 +29,7 @@ def test_connections_are_compatible():
def test_connections_are_incompatible():
from_node = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
from_field = "image"
to_node = RealESRGANInvocation(id = "2")
to_node = ESRGANInvocation(id = "2")
to_field = "strength"
result = are_connections_compatible(from_node, from_field, to_node, to_field)
@ -39,7 +39,7 @@ def test_connections_are_incompatible():
def test_connections_incompatible_with_invalid_fields():
from_node = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
from_field = "invalid_field"
to_node = RealESRGANInvocation(id = "2")
to_node = ESRGANInvocation(id = "2")
to_field = "image"
# From field is invalid
@ -86,10 +86,10 @@ def test_graph_fails_to_update_node_if_type_changes():
g = Graph()
n = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
g.add_node(n)
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n2)
nu = RealESRGANInvocation(id = "1")
nu = ESRGANInvocation(id = "1")
with pytest.raises(TypeError):
g.update_node("1", nu)
@ -98,7 +98,7 @@ def test_graph_allows_non_conflicting_id_change():
g = Graph()
n = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
g.add_node(n)
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n2)
e1 = create_edge(n.id,"image",n2.id,"image")
g.add_edge(e1)
@ -128,7 +128,7 @@ def test_graph_fails_to_update_node_id_if_conflict():
def test_graph_adds_edge():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id,"image",n2.id,"image")
@ -139,7 +139,7 @@ def test_graph_adds_edge():
def test_graph_fails_to_add_edge_with_cycle():
g = Graph()
n1 = RealESRGANInvocation(id = "1")
n1 = ESRGANInvocation(id = "1")
g.add_node(n1)
e = create_edge(n1.id,"image",n1.id,"image")
with pytest.raises(InvalidEdgeError):
@ -148,8 +148,8 @@ def test_graph_fails_to_add_edge_with_cycle():
def test_graph_fails_to_add_edge_with_long_cycle():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n3 = RealESRGANInvocation(id = "3")
n2 = ESRGANInvocation(id = "2")
n3 = ESRGANInvocation(id = "3")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
@ -164,7 +164,7 @@ def test_graph_fails_to_add_edge_with_long_cycle():
def test_graph_fails_to_add_edge_with_missing_node_id():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge("1","image","3","image")
@ -177,8 +177,8 @@ def test_graph_fails_to_add_edge_with_missing_node_id():
def test_graph_fails_to_add_edge_when_destination_exists():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n3 = RealESRGANInvocation(id = "3")
n2 = ESRGANInvocation(id = "2")
n3 = ESRGANInvocation(id = "3")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
@ -194,7 +194,7 @@ def test_graph_fails_to_add_edge_when_destination_exists():
def test_graph_fails_to_add_edge_with_mismatched_types():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge("1","image","2","strength")
@ -344,7 +344,7 @@ def test_graph_iterator_invalid_if_output_and_input_types_different():
def test_graph_validates():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge("1","image","2","image")
@ -377,8 +377,8 @@ def test_graph_invalid_if_subgraph_invalid():
def test_graph_invalid_if_has_cycle():
g = Graph()
n1 = RealESRGANInvocation(id = "1")
n2 = RealESRGANInvocation(id = "2")
n1 = ESRGANInvocation(id = "1")
n2 = ESRGANInvocation(id = "2")
g.nodes[n1.id] = n1
g.nodes[n2.id] = n2
e1 = create_edge("1","image","2","image")
@ -391,7 +391,7 @@ def test_graph_invalid_if_has_cycle():
def test_graph_invalid_with_invalid_connection():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.nodes[n1.id] = n1
g.nodes[n2.id] = n2
e1 = create_edge("1","image","2","strength")
@ -503,7 +503,7 @@ def test_graph_fails_to_enumerate_non_subgraph_node():
g.add_node(n1)
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n2)
with pytest.raises(NodeNotFoundError):
@ -512,7 +512,7 @@ def test_graph_fails_to_enumerate_non_subgraph_node():
def test_graph_gets_networkx_graph():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id,"image",n2.id,"image")
@ -529,7 +529,7 @@ def test_graph_gets_networkx_graph():
def test_graph_can_serialize():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id,"image",n2.id,"image")
@ -541,7 +541,7 @@ def test_graph_can_serialize():
def test_graph_can_deserialize():
g = Graph()
n1 = TextToImageTestInvocation(id = "1", prompt = "Banana sushi")
n2 = RealESRGANInvocation(id = "2")
n2 = ESRGANInvocation(id = "2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id,"image",n2.id,"image")