mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Base code from draft PR
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
import inspect
|
||||
import os
|
||||
from contextlib import ExitStack
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
@ -39,6 +40,7 @@ from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
||||
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
||||
ControlNetData,
|
||||
StableDiffusionGeneratorPipeline,
|
||||
@ -53,6 +55,9 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
TextConditioningData,
|
||||
TextConditioningRegions,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
|
||||
from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend
|
||||
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
@ -314,9 +319,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
context: InvocationContext,
|
||||
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
|
||||
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
|
||||
unet: UNet2DConditionModel,
|
||||
latent_height: int,
|
||||
latent_width: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
cfg_scale: float | list[float],
|
||||
steps: int,
|
||||
cfg_rescale_multiplier: float,
|
||||
@ -330,10 +336,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
uncond_list = [uncond_list]
|
||||
|
||||
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
|
||||
cond_list, context, unet.device, unet.dtype
|
||||
cond_list, context, device, dtype
|
||||
)
|
||||
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
|
||||
uncond_list, context, unet.device, unet.dtype
|
||||
uncond_list, context, device, dtype
|
||||
)
|
||||
|
||||
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
|
||||
@ -341,14 +347,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
masks=cond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
dtype=unet.dtype,
|
||||
dtype=dtype,
|
||||
)
|
||||
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
|
||||
text_conditionings=uncond_text_embeddings,
|
||||
masks=uncond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
dtype=unet.dtype,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
if isinstance(cfg_scale, list):
|
||||
@ -707,9 +713,99 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
return seed, noise, latents
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
if os.environ.get("USE_MODULAR_DENOISE", False):
|
||||
return self._new_invoke(context)
|
||||
else:
|
||||
return self._old_invoke(context)
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
def _new_invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
with ExitStack() as exit_stack:
|
||||
ext_manager = ExtensionsManager()
|
||||
|
||||
device = TorchDevice.choose_torch_device()
|
||||
dtype = TorchDevice.choose_torch_dtype()
|
||||
|
||||
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
latents = latents.to(device=device, dtype=dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=device, dtype=dtype)
|
||||
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
|
||||
conditioning_data = self.get_conditioning_data(
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
# TODO: old backend, remove
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
scheduler,
|
||||
seed=seed,
|
||||
device=device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
)
|
||||
|
||||
denoise_ctx = DenoiseContext(
|
||||
latents=latents,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
noise=noise,
|
||||
seed=seed,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
conditioning_data=conditioning_data,
|
||||
unet=None,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
# get the unet's config so that we can pass the base to sd_step_callback()
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
# ext: t2i/ip adapter
|
||||
ext_manager.modifiers.pre_unet_load(denoise_ctx, ext_manager)
|
||||
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
assert isinstance(unet_info.model, UNet2DConditionModel)
|
||||
with (
|
||||
unet_info.model_on_device() as (model_state_dict, unet),
|
||||
# ext: controlnet
|
||||
ext_manager.patch_attention_processor(unet, CustomAttnProcessor2_0),
|
||||
# ext: freeu, seamless, ip adapter, lora
|
||||
ext_manager.patch_unet(model_state_dict, unet),
|
||||
):
|
||||
sd_backend = StableDiffusionBackend(unet, scheduler)
|
||||
denoise_ctx.unet = unet
|
||||
result_latents = sd_backend.latents_from_embeddings(denoise_ctx, ext_manager)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
result_latents = result_latents.to("cpu") # TODO: detach?
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=result_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def _old_invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
|
||||
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
|
||||
@ -788,7 +884,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
unet=unet,
|
||||
device=unet.device,
|
||||
dtype=unet.dtype,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
|
Reference in New Issue
Block a user