mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning. Refined the class a bit too.
This commit is contained in:
@ -344,7 +344,7 @@ class LatentsInvocation(BaseInvocation):
|
||||
latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.get(self.latents.latents_name)
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
return LatentsOutput.build(self.latents.latents_name, latents)
|
||||
|
||||
|
Reference in New Issue
Block a user