improve user migration experience

- No longer fail root directory probing if invokeai.yaml is missing
  (test is now whether a `models/core` directory exists).
- Migrate script does not overwrite previously-installed models.
- Can run migrate script on an existing 2.3 version directory
  with --from and --to pointing to same 2.3 root.
This commit is contained in:
Lincoln Stein 2023-07-07 08:18:46 -04:00
parent 54f3686e3b
commit 9f58ed35cf
3 changed files with 142 additions and 132 deletions

View File

@ -171,6 +171,7 @@ from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml') INIT_FILE = Path('invokeai.yaml')
MODEL_CORE = Path('models/core')
DB_FILE = Path('invokeai.db') DB_FILE = Path('invokeai.db')
LEGACY_INIT_FILE = Path('invokeai.init') LEGACY_INIT_FILE = Path('invokeai.init')
@ -324,16 +325,11 @@ class InvokeAISettings(BaseSettings):
help=field.field_info.description, help=field.field_info.description,
) )
def _find_root()->Path: def _find_root()->Path:
venv = os.environ.get("VIRTUAL_ENV")
if os.environ.get("INVOKEAI_ROOT"): if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve() root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif ( elif any([Path(venv, '..', x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
os.environ.get("VIRTUAL_ENV") root = Path(venv, "..").resolve()
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
or
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
)
):
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
else: else:
root = Path("~/invokeai").expanduser().resolve() root = Path("~/invokeai").expanduser().resolve()
return root return root

View File

@ -3,7 +3,6 @@ Migrate the models directory and models.yaml file from an existing
InvokeAI 2.3 installation to 3.0.0. InvokeAI 2.3 installation to 3.0.0.
''' '''
import io
import os import os
import argparse import argparse
import shutil import shutil
@ -28,9 +27,10 @@ from transformers import (
) )
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management import ModelManager from invokeai.backend.model_management import ModelManager
from invokeai.backend.model_management.model_probe import ( from invokeai.backend.model_management.model_probe import (
ModelProbe, ModelType, BaseModelType, SchedulerPredictionType, ModelProbeInfo ModelProbe, ModelType, BaseModelType, ModelProbeInfo
) )
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
@ -47,52 +47,27 @@ class ModelPaths:
class MigrateTo3(object): class MigrateTo3(object):
def __init__(self, def __init__(self,
root_directory: Path, from_root: Path,
dest_models: Path, to_models: Path,
yaml_file: io.TextIOBase, model_manager: ModelManager,
src_paths: ModelPaths, src_paths: ModelPaths,
): ):
self.root_directory = root_directory self.root_directory = from_root
self.dest_models = dest_models self.dest_models = to_models
self.dest_yaml = yaml_file self.mgr = model_manager
self.model_names = set()
self.src_paths = src_paths self.src_paths = src_paths
self._initialize_yaml() @classmethod
def initialize_yaml(cls, yaml_file: Path):
def _initialize_yaml(self): with open(yaml_file, 'w') as file:
self.dest_yaml.write( file.write(
yaml.dump( yaml.dump(
{ {
'__metadata__': '__metadata__': {'version':'3.0.0'}
{
'version':'3.0.0'}
} }
) )
) )
def unique_name(self,name,info)->str:
'''
Create a unique name for a model for use within models.yaml.
'''
done = False
# some model names have slashes in them, which really screws things up
name = name.replace('/','_')
key = ModelManager.create_key(name,info.base_type,info.model_type)
unique_name = key
counter = 1
while not done:
if unique_name in self.model_names:
unique_name = f'{key}-{counter:0>2d}'
counter += 1
else:
done = True
self.model_names.add(unique_name)
name,_,_ = ModelManager.parse_key(unique_name)
return name
def create_directory_structure(self): def create_directory_structure(self):
''' '''
Create the basic directory structure for the models folder. Create the basic directory structure for the models folder.
@ -140,23 +115,8 @@ class MigrateTo3(object):
that looks like a model, and copy the model into the that looks like a model, and copy the model into the
appropriate location within the destination models directory. appropriate location within the destination models directory.
''' '''
directories_scanned = set()
for root, dirs, files in os.walk(src_dir): for root, dirs, files in os.walk(src_dir):
for f in files:
# hack - don't copy raw learned_embeds.bin, let them
# be copied as part of a tree copy operation
if f == 'learned_embeds.bin':
continue
try:
model = Path(root,f)
info = ModelProbe().heuristic_probe(model)
if not info:
continue
dest = self._model_probe_to_path(info) / f
self.copy_file(model, dest)
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
for d in dirs: for d in dirs:
try: try:
model = Path(root,d) model = Path(root,d)
@ -165,6 +125,29 @@ class MigrateTo3(object):
continue continue
dest = self._model_probe_to_path(info) / model.name dest = self._model_probe_to_path(info) / model.name
self.copy_dir(model, dest) self.copy_dir(model, dest)
directories_scanned.add(model)
except Exception as e:
logger.error(str(e))
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
for f in files:
# don't copy raw learned_embeds.bin or pytorch_lora_weights.bin
# let them be copied as part of a tree copy operation
try:
if f in {'learned_embeds.bin','pytorch_lora_weights.bin'}:
continue
model = Path(root,f)
if model.parent in directories_scanned:
continue
info = ModelProbe().heuristic_probe(model)
if not info:
continue
dest = self._model_probe_to_path(info) / f
self.copy_file(model, dest)
except Exception as e:
logger.error(str(e))
except KeyboardInterrupt: except KeyboardInterrupt:
raise raise
except Exception as e: except Exception as e:
@ -267,28 +250,6 @@ class MigrateTo3(object):
except Exception as e: except Exception as e:
logger.error(str(e)) logger.error(str(e))
def write_yaml(self, model_name: str, path:Path, info:ModelProbeInfo, **kwargs):
'''
Write a stanza for a moved model into the new models.yaml file.
'''
name = self.unique_name(model_name, info)
stanza = {
f'{info.base_type.value}/{info.model_type.value}/{name}': {
'name': model_name,
'path': str(path),
'description': f'A {info.base_type.value} {info.model_type.value} model',
'format': info.format,
'image_size': info.image_size,
'base': info.base_type.value,
'variant': info.variant_type.value,
'prediction_type': info.prediction_type.value,
'upcast_attention': info.prediction_type == SchedulerPredictionType.VPrediction,
**kwargs,
}
}
self.dest_yaml.write(yaml.dump(stanza))
self.dest_yaml.flush()
def _model_probe_to_path(self, info: ModelProbeInfo)->Path: def _model_probe_to_path(self, info: ModelProbeInfo)->Path:
return Path(self.dest_models, info.base_type.value, info.model_type.value) return Path(self.dest_models, info.base_type.value, info.model_type.value)
@ -385,11 +346,15 @@ class MigrateTo3(object):
if not info: if not info:
return return
dest = self._model_probe_to_path(info) / repo_name if self.mgr.model_exists(model_name, info.base_type, info.model_type):
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.')
return
dest = self._model_probe_to_path(info) / model_name
self._save_pretrained(pipeline, dest) self._save_pretrained(pipeline, dest)
rel_path = Path('models',dest.relative_to(dest_dir)) rel_path = Path('models',dest.relative_to(dest_dir))
self.write_yaml(model_name, path=rel_path, info=info, **extra_config) self._add_model(model_name, info, rel_path, **extra_config)
def migrate_path(self, location: Path, model_name: str=None, **extra_config): def migrate_path(self, location: Path, model_name: str=None, **extra_config):
''' '''
@ -399,19 +364,48 @@ class MigrateTo3(object):
# handle relative paths # handle relative paths
dest_dir = self.dest_models dest_dir = self.dest_models
location = self.root_directory / location location = self.root_directory / location
model_name = model_name or location.stem
info = ModelProbe().heuristic_probe(location) info = ModelProbe().heuristic_probe(location)
if not info: if not info:
return return
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.')
return
# uh oh, weights is in the old models directory - move it into the new one # uh oh, weights is in the old models directory - move it into the new one
if Path(location).is_relative_to(self.src_paths.models): if Path(location).is_relative_to(self.src_paths.models):
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name) dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
if location.is_dir():
self.copy_dir(location,dest) self.copy_dir(location,dest)
else:
self.copy_file(location,dest)
location = Path('models', info.base_type.value, info.model_type.value, location.name) location = Path('models', info.base_type.value, info.model_type.value, location.name)
model_name = model_name or location.stem
model_name = self.unique_name(model_name, info) self._add_model(model_name, info, location, **extra_config)
self.write_yaml(model_name, path=location, info=info, **extra_config)
def _add_model(self,
model_name: str,
info: ModelProbeInfo,
location: Path,
**extra_config):
if info.model_type != ModelType.Main:
return
self.mgr.add_model(
model_name = model_name,
base_model = info.base_type,
model_type = info.model_type,
clobber = True,
model_attributes = {
'path': str(location),
'description': f'A {info.base_type.value} {info.model_type.value} model',
'model_format': info.format,
'variant': info.variant_type.value,
**extra_config,
}
)
def migrate_defined_models(self): def migrate_defined_models(self):
''' '''
@ -435,6 +429,9 @@ class MigrateTo3(object):
if config := stanza.get('config'): if config := stanza.get('config'):
passthru_args['config'] = config passthru_args['config'] = config
if description:= stanza.get('description'):
passthru_args['description'] = description
if repo_id := stanza.get('repo_id'): if repo_id := stanza.get('repo_id'):
logger.info(f'Migrating diffusers model {model_name}') logger.info(f'Migrating diffusers model {model_name}')
self.migrate_repo_id(repo_id, model_name, **passthru_args) self.migrate_repo_id(repo_id, model_name, **passthru_args)
@ -514,30 +511,49 @@ def get_legacy_embeddings(root: Path) -> ModelPaths:
return _parse_legacy_yamlfile(root, path) return _parse_legacy_yamlfile(root, path)
def do_migrate(src_directory: Path, dest_directory: Path): def do_migrate(src_directory: Path, dest_directory: Path):
"""
Migrate models from src to dest InvokeAI root directories
"""
config_file = dest_directory / 'configs' / 'models.yaml.3'
dest_models = dest_directory / 'models.3'
dest_models = dest_directory / 'models-3.0' version_3 = (dest_directory / 'models' / 'core').exists()
dest_yaml = dest_directory / 'configs/models.yaml-3.0'
# Here we create the destination models.yaml file.
# If we are writing into a version 3 directory and the
# file already exists, then we write into a copy of it to
# avoid deleting its previous customizations. Otherwise we
# create a new empty one.
if version_3: # write into the dest directory
try:
shutil.copy(dest_directory / 'configs' / 'models.yaml', config_file)
except:
MigrateTo3.initialize_yaml(config_file)
mgr = ModelManager(config_file) # important to initialize BEFORE moving the models directory
(dest_directory / 'models').replace(dest_models)
else:
MigrateTo3.initialize_yaml(config_file)
mgr = ModelManager(config_file)
paths = get_legacy_embeddings(src_directory) paths = get_legacy_embeddings(src_directory)
migrator = MigrateTo3(
with open(dest_yaml,'w') as yaml_file: from_root = src_directory,
migrator = MigrateTo3(src_directory, to_models = dest_models,
dest_models, model_manager = mgr,
yaml_file, src_paths = paths
src_paths = paths,
) )
migrator.migrate() migrator.migrate()
print("Migration successful.")
shutil.rmtree(dest_directory / 'models.orig', ignore_errors=True) if not version_3:
(dest_directory / 'models').replace(dest_directory / 'models.orig') (dest_directory / 'models').replace(src_directory / 'models.orig')
dest_models.replace(dest_directory / 'models') print(f'Original models directory moved to {dest_directory}/models.orig')
(dest_directory /'configs/models.yaml').replace(dest_directory / 'configs/models.yaml.orig') (dest_directory / 'configs' / 'models.yaml').replace(src_directory / 'configs' / 'models.yaml.orig')
dest_yaml.replace(dest_directory / 'configs/models.yaml') print(f'Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig')
print(f"""Migration successful.
Original models directory moved to {dest_directory}/models.orig config_file.replace(config_file.with_suffix(''))
Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig dest_models.replace(dest_models.with_suffix(''))
""")
def main(): def main():
parser = argparse.ArgumentParser(prog="invokeai-migrate3", parser = argparse.ArgumentParser(prog="invokeai-migrate3",
@ -550,36 +566,34 @@ It is safe to provide the same directory for both arguments, but it is better to
script, which will perform a full upgrade in place.""" script, which will perform a full upgrade in place."""
) )
parser.add_argument('--from-directory', parser.add_argument('--from-directory',
dest='root_directory', dest='src_root',
type=Path, type=Path,
required=True, required=True,
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")' help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")'
) )
parser.add_argument('--to-directory', parser.add_argument('--to-directory',
dest='dest_directory', dest='dest_root',
type=Path, type=Path,
required=True, required=True,
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")' help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")'
) )
# TO DO: Implement full directory scanning
# parser.add_argument('--all-models',
# action="store_true",
# help='Migrate all models found in `models` directory, not just those mentioned in models.yaml',
# )
args = parser.parse_args() args = parser.parse_args()
root_directory = args.root_directory src_root = args.src_root
assert root_directory.is_dir(), f"{root_directory} is not a valid directory" assert src_root.is_dir(), f"{src_root} is not a valid directory"
assert (root_directory / 'models').is_dir(), f"{root_directory} does not contain a 'models' subdirectory" assert (src_root / 'models').is_dir(), f"{src_root} does not contain a 'models' subdirectory"
assert (root_directory / 'invokeai.init').exists() or (root_directory / 'invokeai.yaml').exists(), f"{root_directory} does not contain an InvokeAI init file." assert (src_root / 'models' / 'hub').exists(), f"{src_root} does not contain a version 2.3 models directory"
assert (src_root / 'invokeai.init').exists() or (src_root / 'invokeai.yaml').exists(), f"{src_root} does not contain an InvokeAI init file."
dest_directory = args.dest_directory dest_root = args.dest_root
assert dest_directory.is_dir(), f"{dest_directory} is not a valid directory" assert dest_root.is_dir(), f"{dest_root} is not a valid directory"
config = InvokeAIAppConfig.get_config()
config.parse_args(['--root',str(dest_root)])
# TODO: revisit # TODO: revisit
# assert (dest_directory / 'models').is_dir(), f"{dest_directory} does not contain a 'models' subdirectory" # assert (dest_root / 'models').is_dir(), f"{dest_root} does not contain a 'models' subdirectory"
# assert (dest_directory / 'invokeai.yaml').exists(), f"{dest_directory} does not contain an InvokeAI init file." # assert (dest_root / 'invokeai.yaml').exists(), f"{dest_root} does not contain an InvokeAI init file."
do_migrate(root_directory,dest_directory) do_migrate(src_root,dest_root)
if __name__ == '__main__': if __name__ == '__main__':
main() main()

View File

@ -168,7 +168,7 @@ class ModelProbe(object):
return type return type
# give up # give up
raise ValueError("Unable to determine model type for {folder_path}") raise ValueError(f"Unable to determine model type for {folder_path}")
@classmethod @classmethod
def _scan_and_load_checkpoint(cls,model_path: Path)->dict: def _scan_and_load_checkpoint(cls,model_path: Path)->dict: