mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
improve user migration experience
- No longer fail root directory probing if invokeai.yaml is missing (test is now whether a `models/core` directory exists). - Migrate script does not overwrite previously-installed models. - Can run migrate script on an existing 2.3 version directory with --from and --to pointing to same 2.3 root.
This commit is contained in:
parent
54f3686e3b
commit
9f58ed35cf
@ -171,6 +171,7 @@ from pydantic import BaseSettings, Field, parse_obj_as
|
|||||||
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
|
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
|
||||||
|
|
||||||
INIT_FILE = Path('invokeai.yaml')
|
INIT_FILE = Path('invokeai.yaml')
|
||||||
|
MODEL_CORE = Path('models/core')
|
||||||
DB_FILE = Path('invokeai.db')
|
DB_FILE = Path('invokeai.db')
|
||||||
LEGACY_INIT_FILE = Path('invokeai.init')
|
LEGACY_INIT_FILE = Path('invokeai.init')
|
||||||
|
|
||||||
@ -324,16 +325,11 @@ class InvokeAISettings(BaseSettings):
|
|||||||
help=field.field_info.description,
|
help=field.field_info.description,
|
||||||
)
|
)
|
||||||
def _find_root()->Path:
|
def _find_root()->Path:
|
||||||
|
venv = os.environ.get("VIRTUAL_ENV")
|
||||||
if os.environ.get("INVOKEAI_ROOT"):
|
if os.environ.get("INVOKEAI_ROOT"):
|
||||||
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
|
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
|
||||||
elif (
|
elif any([Path(venv, '..', x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
|
||||||
os.environ.get("VIRTUAL_ENV")
|
root = Path(venv, "..").resolve()
|
||||||
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
|
|
||||||
or
|
|
||||||
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
|
|
||||||
)
|
|
||||||
):
|
|
||||||
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
|
|
||||||
else:
|
else:
|
||||||
root = Path("~/invokeai").expanduser().resolve()
|
root = Path("~/invokeai").expanduser().resolve()
|
||||||
return root
|
return root
|
||||||
|
@ -3,7 +3,6 @@ Migrate the models directory and models.yaml file from an existing
|
|||||||
InvokeAI 2.3 installation to 3.0.0.
|
InvokeAI 2.3 installation to 3.0.0.
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import io
|
|
||||||
import os
|
import os
|
||||||
import argparse
|
import argparse
|
||||||
import shutil
|
import shutil
|
||||||
@ -28,9 +27,10 @@ from transformers import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
import invokeai.backend.util.logging as logger
|
||||||
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.backend.model_management import ModelManager
|
from invokeai.backend.model_management import ModelManager
|
||||||
from invokeai.backend.model_management.model_probe import (
|
from invokeai.backend.model_management.model_probe import (
|
||||||
ModelProbe, ModelType, BaseModelType, SchedulerPredictionType, ModelProbeInfo
|
ModelProbe, ModelType, BaseModelType, ModelProbeInfo
|
||||||
)
|
)
|
||||||
|
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
||||||
@ -47,52 +47,27 @@ class ModelPaths:
|
|||||||
|
|
||||||
class MigrateTo3(object):
|
class MigrateTo3(object):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
root_directory: Path,
|
from_root: Path,
|
||||||
dest_models: Path,
|
to_models: Path,
|
||||||
yaml_file: io.TextIOBase,
|
model_manager: ModelManager,
|
||||||
src_paths: ModelPaths,
|
src_paths: ModelPaths,
|
||||||
):
|
):
|
||||||
self.root_directory = root_directory
|
self.root_directory = from_root
|
||||||
self.dest_models = dest_models
|
self.dest_models = to_models
|
||||||
self.dest_yaml = yaml_file
|
self.mgr = model_manager
|
||||||
self.model_names = set()
|
|
||||||
self.src_paths = src_paths
|
self.src_paths = src_paths
|
||||||
|
|
||||||
self._initialize_yaml()
|
@classmethod
|
||||||
|
def initialize_yaml(cls, yaml_file: Path):
|
||||||
def _initialize_yaml(self):
|
with open(yaml_file, 'w') as file:
|
||||||
self.dest_yaml.write(
|
file.write(
|
||||||
yaml.dump(
|
yaml.dump(
|
||||||
{
|
{
|
||||||
'__metadata__':
|
'__metadata__': {'version':'3.0.0'}
|
||||||
{
|
|
||||||
'version':'3.0.0'}
|
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
def unique_name(self,name,info)->str:
|
|
||||||
'''
|
|
||||||
Create a unique name for a model for use within models.yaml.
|
|
||||||
'''
|
|
||||||
done = False
|
|
||||||
|
|
||||||
# some model names have slashes in them, which really screws things up
|
|
||||||
name = name.replace('/','_')
|
|
||||||
|
|
||||||
key = ModelManager.create_key(name,info.base_type,info.model_type)
|
|
||||||
unique_name = key
|
|
||||||
counter = 1
|
|
||||||
while not done:
|
|
||||||
if unique_name in self.model_names:
|
|
||||||
unique_name = f'{key}-{counter:0>2d}'
|
|
||||||
counter += 1
|
|
||||||
else:
|
|
||||||
done = True
|
|
||||||
self.model_names.add(unique_name)
|
|
||||||
name,_,_ = ModelManager.parse_key(unique_name)
|
|
||||||
return name
|
|
||||||
|
|
||||||
def create_directory_structure(self):
|
def create_directory_structure(self):
|
||||||
'''
|
'''
|
||||||
Create the basic directory structure for the models folder.
|
Create the basic directory structure for the models folder.
|
||||||
@ -140,23 +115,8 @@ class MigrateTo3(object):
|
|||||||
that looks like a model, and copy the model into the
|
that looks like a model, and copy the model into the
|
||||||
appropriate location within the destination models directory.
|
appropriate location within the destination models directory.
|
||||||
'''
|
'''
|
||||||
|
directories_scanned = set()
|
||||||
for root, dirs, files in os.walk(src_dir):
|
for root, dirs, files in os.walk(src_dir):
|
||||||
for f in files:
|
|
||||||
# hack - don't copy raw learned_embeds.bin, let them
|
|
||||||
# be copied as part of a tree copy operation
|
|
||||||
if f == 'learned_embeds.bin':
|
|
||||||
continue
|
|
||||||
try:
|
|
||||||
model = Path(root,f)
|
|
||||||
info = ModelProbe().heuristic_probe(model)
|
|
||||||
if not info:
|
|
||||||
continue
|
|
||||||
dest = self._model_probe_to_path(info) / f
|
|
||||||
self.copy_file(model, dest)
|
|
||||||
except KeyboardInterrupt:
|
|
||||||
raise
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
for d in dirs:
|
for d in dirs:
|
||||||
try:
|
try:
|
||||||
model = Path(root,d)
|
model = Path(root,d)
|
||||||
@ -165,6 +125,29 @@ class MigrateTo3(object):
|
|||||||
continue
|
continue
|
||||||
dest = self._model_probe_to_path(info) / model.name
|
dest = self._model_probe_to_path(info) / model.name
|
||||||
self.copy_dir(model, dest)
|
self.copy_dir(model, dest)
|
||||||
|
directories_scanned.add(model)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(str(e))
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(str(e))
|
||||||
|
for f in files:
|
||||||
|
# don't copy raw learned_embeds.bin or pytorch_lora_weights.bin
|
||||||
|
# let them be copied as part of a tree copy operation
|
||||||
|
try:
|
||||||
|
if f in {'learned_embeds.bin','pytorch_lora_weights.bin'}:
|
||||||
|
continue
|
||||||
|
model = Path(root,f)
|
||||||
|
if model.parent in directories_scanned:
|
||||||
|
continue
|
||||||
|
info = ModelProbe().heuristic_probe(model)
|
||||||
|
if not info:
|
||||||
|
continue
|
||||||
|
dest = self._model_probe_to_path(info) / f
|
||||||
|
self.copy_file(model, dest)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(str(e))
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
raise
|
raise
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@ -267,28 +250,6 @@ class MigrateTo3(object):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(str(e))
|
logger.error(str(e))
|
||||||
|
|
||||||
def write_yaml(self, model_name: str, path:Path, info:ModelProbeInfo, **kwargs):
|
|
||||||
'''
|
|
||||||
Write a stanza for a moved model into the new models.yaml file.
|
|
||||||
'''
|
|
||||||
name = self.unique_name(model_name, info)
|
|
||||||
stanza = {
|
|
||||||
f'{info.base_type.value}/{info.model_type.value}/{name}': {
|
|
||||||
'name': model_name,
|
|
||||||
'path': str(path),
|
|
||||||
'description': f'A {info.base_type.value} {info.model_type.value} model',
|
|
||||||
'format': info.format,
|
|
||||||
'image_size': info.image_size,
|
|
||||||
'base': info.base_type.value,
|
|
||||||
'variant': info.variant_type.value,
|
|
||||||
'prediction_type': info.prediction_type.value,
|
|
||||||
'upcast_attention': info.prediction_type == SchedulerPredictionType.VPrediction,
|
|
||||||
**kwargs,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
self.dest_yaml.write(yaml.dump(stanza))
|
|
||||||
self.dest_yaml.flush()
|
|
||||||
|
|
||||||
def _model_probe_to_path(self, info: ModelProbeInfo)->Path:
|
def _model_probe_to_path(self, info: ModelProbeInfo)->Path:
|
||||||
return Path(self.dest_models, info.base_type.value, info.model_type.value)
|
return Path(self.dest_models, info.base_type.value, info.model_type.value)
|
||||||
|
|
||||||
@ -385,11 +346,15 @@ class MigrateTo3(object):
|
|||||||
if not info:
|
if not info:
|
||||||
return
|
return
|
||||||
|
|
||||||
dest = self._model_probe_to_path(info) / repo_name
|
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
|
||||||
|
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.')
|
||||||
|
return
|
||||||
|
|
||||||
|
dest = self._model_probe_to_path(info) / model_name
|
||||||
self._save_pretrained(pipeline, dest)
|
self._save_pretrained(pipeline, dest)
|
||||||
|
|
||||||
rel_path = Path('models',dest.relative_to(dest_dir))
|
rel_path = Path('models',dest.relative_to(dest_dir))
|
||||||
self.write_yaml(model_name, path=rel_path, info=info, **extra_config)
|
self._add_model(model_name, info, rel_path, **extra_config)
|
||||||
|
|
||||||
def migrate_path(self, location: Path, model_name: str=None, **extra_config):
|
def migrate_path(self, location: Path, model_name: str=None, **extra_config):
|
||||||
'''
|
'''
|
||||||
@ -399,19 +364,48 @@ class MigrateTo3(object):
|
|||||||
# handle relative paths
|
# handle relative paths
|
||||||
dest_dir = self.dest_models
|
dest_dir = self.dest_models
|
||||||
location = self.root_directory / location
|
location = self.root_directory / location
|
||||||
|
model_name = model_name or location.stem
|
||||||
|
|
||||||
info = ModelProbe().heuristic_probe(location)
|
info = ModelProbe().heuristic_probe(location)
|
||||||
if not info:
|
if not info:
|
||||||
return
|
return
|
||||||
|
|
||||||
|
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
|
||||||
|
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.')
|
||||||
|
return
|
||||||
|
|
||||||
# uh oh, weights is in the old models directory - move it into the new one
|
# uh oh, weights is in the old models directory - move it into the new one
|
||||||
if Path(location).is_relative_to(self.src_paths.models):
|
if Path(location).is_relative_to(self.src_paths.models):
|
||||||
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
|
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
|
||||||
|
if location.is_dir():
|
||||||
self.copy_dir(location,dest)
|
self.copy_dir(location,dest)
|
||||||
|
else:
|
||||||
|
self.copy_file(location,dest)
|
||||||
location = Path('models', info.base_type.value, info.model_type.value, location.name)
|
location = Path('models', info.base_type.value, info.model_type.value, location.name)
|
||||||
model_name = model_name or location.stem
|
|
||||||
model_name = self.unique_name(model_name, info)
|
self._add_model(model_name, info, location, **extra_config)
|
||||||
self.write_yaml(model_name, path=location, info=info, **extra_config)
|
|
||||||
|
def _add_model(self,
|
||||||
|
model_name: str,
|
||||||
|
info: ModelProbeInfo,
|
||||||
|
location: Path,
|
||||||
|
**extra_config):
|
||||||
|
if info.model_type != ModelType.Main:
|
||||||
|
return
|
||||||
|
|
||||||
|
self.mgr.add_model(
|
||||||
|
model_name = model_name,
|
||||||
|
base_model = info.base_type,
|
||||||
|
model_type = info.model_type,
|
||||||
|
clobber = True,
|
||||||
|
model_attributes = {
|
||||||
|
'path': str(location),
|
||||||
|
'description': f'A {info.base_type.value} {info.model_type.value} model',
|
||||||
|
'model_format': info.format,
|
||||||
|
'variant': info.variant_type.value,
|
||||||
|
**extra_config,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
def migrate_defined_models(self):
|
def migrate_defined_models(self):
|
||||||
'''
|
'''
|
||||||
@ -435,6 +429,9 @@ class MigrateTo3(object):
|
|||||||
if config := stanza.get('config'):
|
if config := stanza.get('config'):
|
||||||
passthru_args['config'] = config
|
passthru_args['config'] = config
|
||||||
|
|
||||||
|
if description:= stanza.get('description'):
|
||||||
|
passthru_args['description'] = description
|
||||||
|
|
||||||
if repo_id := stanza.get('repo_id'):
|
if repo_id := stanza.get('repo_id'):
|
||||||
logger.info(f'Migrating diffusers model {model_name}')
|
logger.info(f'Migrating diffusers model {model_name}')
|
||||||
self.migrate_repo_id(repo_id, model_name, **passthru_args)
|
self.migrate_repo_id(repo_id, model_name, **passthru_args)
|
||||||
@ -514,30 +511,49 @@ def get_legacy_embeddings(root: Path) -> ModelPaths:
|
|||||||
return _parse_legacy_yamlfile(root, path)
|
return _parse_legacy_yamlfile(root, path)
|
||||||
|
|
||||||
def do_migrate(src_directory: Path, dest_directory: Path):
|
def do_migrate(src_directory: Path, dest_directory: Path):
|
||||||
|
"""
|
||||||
|
Migrate models from src to dest InvokeAI root directories
|
||||||
|
"""
|
||||||
|
config_file = dest_directory / 'configs' / 'models.yaml.3'
|
||||||
|
dest_models = dest_directory / 'models.3'
|
||||||
|
|
||||||
dest_models = dest_directory / 'models-3.0'
|
version_3 = (dest_directory / 'models' / 'core').exists()
|
||||||
dest_yaml = dest_directory / 'configs/models.yaml-3.0'
|
|
||||||
|
# Here we create the destination models.yaml file.
|
||||||
|
# If we are writing into a version 3 directory and the
|
||||||
|
# file already exists, then we write into a copy of it to
|
||||||
|
# avoid deleting its previous customizations. Otherwise we
|
||||||
|
# create a new empty one.
|
||||||
|
if version_3: # write into the dest directory
|
||||||
|
try:
|
||||||
|
shutil.copy(dest_directory / 'configs' / 'models.yaml', config_file)
|
||||||
|
except:
|
||||||
|
MigrateTo3.initialize_yaml(config_file)
|
||||||
|
mgr = ModelManager(config_file) # important to initialize BEFORE moving the models directory
|
||||||
|
(dest_directory / 'models').replace(dest_models)
|
||||||
|
else:
|
||||||
|
MigrateTo3.initialize_yaml(config_file)
|
||||||
|
mgr = ModelManager(config_file)
|
||||||
|
|
||||||
paths = get_legacy_embeddings(src_directory)
|
paths = get_legacy_embeddings(src_directory)
|
||||||
|
migrator = MigrateTo3(
|
||||||
with open(dest_yaml,'w') as yaml_file:
|
from_root = src_directory,
|
||||||
migrator = MigrateTo3(src_directory,
|
to_models = dest_models,
|
||||||
dest_models,
|
model_manager = mgr,
|
||||||
yaml_file,
|
src_paths = paths
|
||||||
src_paths = paths,
|
|
||||||
)
|
)
|
||||||
migrator.migrate()
|
migrator.migrate()
|
||||||
|
print("Migration successful.")
|
||||||
|
|
||||||
shutil.rmtree(dest_directory / 'models.orig', ignore_errors=True)
|
if not version_3:
|
||||||
(dest_directory / 'models').replace(dest_directory / 'models.orig')
|
(dest_directory / 'models').replace(src_directory / 'models.orig')
|
||||||
dest_models.replace(dest_directory / 'models')
|
print(f'Original models directory moved to {dest_directory}/models.orig')
|
||||||
|
|
||||||
(dest_directory /'configs/models.yaml').replace(dest_directory / 'configs/models.yaml.orig')
|
(dest_directory / 'configs' / 'models.yaml').replace(src_directory / 'configs' / 'models.yaml.orig')
|
||||||
dest_yaml.replace(dest_directory / 'configs/models.yaml')
|
print(f'Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig')
|
||||||
print(f"""Migration successful.
|
|
||||||
Original models directory moved to {dest_directory}/models.orig
|
config_file.replace(config_file.with_suffix(''))
|
||||||
Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig
|
dest_models.replace(dest_models.with_suffix(''))
|
||||||
""")
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
parser = argparse.ArgumentParser(prog="invokeai-migrate3",
|
parser = argparse.ArgumentParser(prog="invokeai-migrate3",
|
||||||
@ -550,36 +566,34 @@ It is safe to provide the same directory for both arguments, but it is better to
|
|||||||
script, which will perform a full upgrade in place."""
|
script, which will perform a full upgrade in place."""
|
||||||
)
|
)
|
||||||
parser.add_argument('--from-directory',
|
parser.add_argument('--from-directory',
|
||||||
dest='root_directory',
|
dest='src_root',
|
||||||
type=Path,
|
type=Path,
|
||||||
required=True,
|
required=True,
|
||||||
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")'
|
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")'
|
||||||
)
|
)
|
||||||
parser.add_argument('--to-directory',
|
parser.add_argument('--to-directory',
|
||||||
dest='dest_directory',
|
dest='dest_root',
|
||||||
type=Path,
|
type=Path,
|
||||||
required=True,
|
required=True,
|
||||||
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")'
|
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")'
|
||||||
)
|
)
|
||||||
# TO DO: Implement full directory scanning
|
|
||||||
# parser.add_argument('--all-models',
|
|
||||||
# action="store_true",
|
|
||||||
# help='Migrate all models found in `models` directory, not just those mentioned in models.yaml',
|
|
||||||
# )
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
root_directory = args.root_directory
|
src_root = args.src_root
|
||||||
assert root_directory.is_dir(), f"{root_directory} is not a valid directory"
|
assert src_root.is_dir(), f"{src_root} is not a valid directory"
|
||||||
assert (root_directory / 'models').is_dir(), f"{root_directory} does not contain a 'models' subdirectory"
|
assert (src_root / 'models').is_dir(), f"{src_root} does not contain a 'models' subdirectory"
|
||||||
assert (root_directory / 'invokeai.init').exists() or (root_directory / 'invokeai.yaml').exists(), f"{root_directory} does not contain an InvokeAI init file."
|
assert (src_root / 'models' / 'hub').exists(), f"{src_root} does not contain a version 2.3 models directory"
|
||||||
|
assert (src_root / 'invokeai.init').exists() or (src_root / 'invokeai.yaml').exists(), f"{src_root} does not contain an InvokeAI init file."
|
||||||
|
|
||||||
dest_directory = args.dest_directory
|
dest_root = args.dest_root
|
||||||
assert dest_directory.is_dir(), f"{dest_directory} is not a valid directory"
|
assert dest_root.is_dir(), f"{dest_root} is not a valid directory"
|
||||||
|
config = InvokeAIAppConfig.get_config()
|
||||||
|
config.parse_args(['--root',str(dest_root)])
|
||||||
|
|
||||||
# TODO: revisit
|
# TODO: revisit
|
||||||
# assert (dest_directory / 'models').is_dir(), f"{dest_directory} does not contain a 'models' subdirectory"
|
# assert (dest_root / 'models').is_dir(), f"{dest_root} does not contain a 'models' subdirectory"
|
||||||
# assert (dest_directory / 'invokeai.yaml').exists(), f"{dest_directory} does not contain an InvokeAI init file."
|
# assert (dest_root / 'invokeai.yaml').exists(), f"{dest_root} does not contain an InvokeAI init file."
|
||||||
|
|
||||||
do_migrate(root_directory,dest_directory)
|
do_migrate(src_root,dest_root)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
|
@ -168,7 +168,7 @@ class ModelProbe(object):
|
|||||||
return type
|
return type
|
||||||
|
|
||||||
# give up
|
# give up
|
||||||
raise ValueError("Unable to determine model type for {folder_path}")
|
raise ValueError(f"Unable to determine model type for {folder_path}")
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _scan_and_load_checkpoint(cls,model_path: Path)->dict:
|
def _scan_and_load_checkpoint(cls,model_path: Path)->dict:
|
||||||
|
Loading…
Reference in New Issue
Block a user