Merge branch 'main' into feat/refactor_generation_backend

This commit is contained in:
blessedcoolant 2023-08-12 18:37:47 +12:00
commit 9f6221fe8c
3 changed files with 66 additions and 35 deletions

View File

@ -8,16 +8,13 @@ Preparations:
to work. Instructions are given here:
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
NOTE: At this time we do not recommend Python 3.11. We recommend
Version 3.10.9, which has been extensively tested with InvokeAI.
Before you start the installer, please open up your system's command
line window (Terminal or Command) and type the commands:
python --version
If all is well, it will print "Python 3.X.X", where the version number
is at least 3.9.1, and less than 3.11.
is at least 3.9.*, and not higher than 3.11.*.
If this works, check the version of the Python package manager, pip:

View File

@ -1,18 +1,21 @@
import bisect
import os
import torch
from enum import Enum
from typing import Optional, Dict, Union, Literal, Any
from pathlib import Path
from typing import Dict, Optional, Union
import torch
from safetensors.torch import load_file
from .base import (
BaseModelType,
InvalidModelException,
ModelBase,
ModelConfigBase,
BaseModelType,
ModelNotFoundException,
ModelType,
SubModelType,
classproperty,
InvalidModelException,
ModelNotFoundException,
)
@ -482,30 +485,61 @@ class LoRAModelRaw: # (torch.nn.Module):
return model_size
@classmethod
def _convert_sdxl_compvis_keys(cls, state_dict):
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict):
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
Dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict = dict()
for full_key, value in state_dict.items():
if full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
continue # clip same
if not full_key.startswith("lora_unet_"):
raise NotImplementedError(f"Unknown prefix for sdxl lora key - {full_key}")
src_key = full_key.replace("lora_unet_", "")
try:
dst_key = None
while "_" in src_key:
if src_key in SDXL_UNET_COMPVIS_MAP:
dst_key = SDXL_UNET_COMPVIS_MAP[src_key]
break
src_key = "_".join(src_key.split("_")[:-1])
if dst_key is None:
raise Exception(f"Unknown sdxl lora key - {full_key}")
new_key = full_key.replace(src_key, dst_key)
except:
print(SDXL_UNET_COMPVIS_MAP)
raise
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict
@classmethod
@ -537,7 +571,7 @@ class LoRAModelRaw: # (torch.nn.Module):
state_dict = cls._group_state(state_dict)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_compvis_keys(state_dict)
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
@ -588,6 +622,7 @@ class LoRAModelRaw: # (torch.nn.Module):
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map():
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
@ -671,7 +706,6 @@ def make_sdxl_unet_conversion_map():
return unet_conversion_map
SDXL_UNET_COMPVIS_MAP = {
f"{sd}".rstrip(".").replace(".", "_"): f"{hf}".rstrip(".").replace(".", "_")
for sd, hf in make_sdxl_unet_conversion_map()
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
}

View File

@ -1,6 +1,5 @@
import os
import json
import invokeai.backend.util.logging as logger
from enum import Enum
from pydantic import Field
from typing import Literal, Optional
@ -12,6 +11,7 @@ from .base import (
DiffusersModel,
read_checkpoint_meta,
classproperty,
InvalidModelException,
)
from omegaconf import OmegaConf
@ -65,7 +65,7 @@ class StableDiffusionXLModel(DiffusersModel):
in_channels = unet_config["in_channels"]
else:
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
raise InvalidModelException(f"{path} is not a recognized Stable Diffusion diffusers model")
else:
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")