mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
factor out exception handler
This commit is contained in:
parent
0eba55ddbc
commit
a10baf5808
226
ldm/simplet2i.py
226
ldm/simplet2i.py
@ -252,24 +252,37 @@ The vast majority of these arguments default to reasonable values.
|
||||
data = [batch_size * [prompt]]
|
||||
scope = autocast if self.precision=="autocast" else nullcontext
|
||||
|
||||
tic = time.time()
|
||||
if init_img:
|
||||
assert os.path.exists(init_img),f'{init_img}: File not found'
|
||||
results = self._img2img(prompt,
|
||||
data=data,precision_scope=scope,
|
||||
batch_size=batch_size,iterations=iterations,
|
||||
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
init_img=init_img,strength=strength,variants=variants,
|
||||
callback=image_callback)
|
||||
else:
|
||||
results = self._txt2img(prompt,
|
||||
data=data,precision_scope=scope,
|
||||
batch_size=batch_size,iterations=iterations,
|
||||
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
width=width,height=height,
|
||||
callback=image_callback)
|
||||
tic = time.time()
|
||||
results = list()
|
||||
def prompt_callback(image, seed):
|
||||
results.append([image, seed])
|
||||
if image_callback is not None:
|
||||
image_callback(image, seed)
|
||||
|
||||
try:
|
||||
if init_img:
|
||||
assert os.path.exists(init_img),f'{init_img}: File not found'
|
||||
self._img2img(prompt,
|
||||
data=data,precision_scope=scope,
|
||||
batch_size=batch_size,iterations=iterations,
|
||||
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
init_img=init_img,strength=strength,variants=variants,
|
||||
callback=prompt_callback)
|
||||
else:
|
||||
self._txt2img(prompt,
|
||||
data=data,precision_scope=scope,
|
||||
batch_size=batch_size,iterations=iterations,
|
||||
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
width=width,height=height,
|
||||
callback=prompt_callback)
|
||||
except KeyboardInterrupt:
|
||||
print('*interrupted*')
|
||||
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
|
||||
except RuntimeError as e:
|
||||
print(str(e))
|
||||
|
||||
toc = time.time()
|
||||
print(f'{len(results)} images generated in',"%4.2fs"% (toc-tic))
|
||||
return results
|
||||
@ -292,59 +305,53 @@ The vast majority of these arguments default to reasonable values.
|
||||
image_count = 0
|
||||
|
||||
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
|
||||
try:
|
||||
with precision_scope(self.device.type), self.model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
seed_everything(seed)
|
||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = self.model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
with precision_scope(self.device.type), self.model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
seed_everything(seed)
|
||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = self.model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
|
||||
# weighted sub-prompts
|
||||
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
||||
if len(subprompts) > 1:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# get total weight for normalizing
|
||||
totalWeight = sum(weights)
|
||||
# normalize each "sub prompt" and add it
|
||||
for i in range(0,len(subprompts)):
|
||||
weight = weights[i]
|
||||
if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
else: # just standard 1 prompt
|
||||
c = self.model.get_learned_conditioning(prompts)
|
||||
# weighted sub-prompts
|
||||
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
||||
if len(subprompts) > 1:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# get total weight for normalizing
|
||||
totalWeight = sum(weights)
|
||||
# normalize each "sub prompt" and add it
|
||||
for i in range(0,len(subprompts)):
|
||||
weight = weights[i]
|
||||
if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
else: # just standard 1 prompt
|
||||
c = self.model.get_learned_conditioning(prompts)
|
||||
|
||||
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
|
||||
samples_ddim, _ = sampler.sample(S=steps,
|
||||
conditioning=c,
|
||||
batch_size=batch_size,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=ddim_eta)
|
||||
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
|
||||
samples_ddim, _ = sampler.sample(S=steps,
|
||||
conditioning=c,
|
||||
batch_size=batch_size,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=ddim_eta)
|
||||
|
||||
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
images.append([image,seed])
|
||||
if callback is not None:
|
||||
callback(image,seed)
|
||||
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
images.append([image,seed])
|
||||
if callback is not None:
|
||||
callback(image,seed)
|
||||
|
||||
seed = self._new_seed()
|
||||
except KeyboardInterrupt:
|
||||
print('*interrupted*')
|
||||
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
|
||||
except RuntimeError as e:
|
||||
print(str(e))
|
||||
seed = self._new_seed()
|
||||
|
||||
return images
|
||||
|
||||
@ -379,57 +386,50 @@ The vast majority of these arguments default to reasonable values.
|
||||
# print(f"target t_enc is {t_enc} steps")
|
||||
images = list()
|
||||
|
||||
try:
|
||||
with precision_scope(self.device.type), self.model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
seed_everything(seed)
|
||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = self.model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
with precision_scope(self.device.type), self.model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
seed_everything(seed)
|
||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = self.model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
|
||||
# weighted sub-prompts
|
||||
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
||||
if len(subprompts) > 1:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# get total weight for normalizing
|
||||
totalWeight = sum(weights)
|
||||
# normalize each "sub prompt" and add it
|
||||
for i in range(0,len(subprompts)):
|
||||
weight = weights[i]
|
||||
if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
else: # just standard 1 prompt
|
||||
c = self.model.get_learned_conditioning(prompts)
|
||||
# weighted sub-prompts
|
||||
subprompts,weights = T2I._split_weighted_subprompts(prompts[0])
|
||||
if len(subprompts) > 1:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# get total weight for normalizing
|
||||
totalWeight = sum(weights)
|
||||
# normalize each "sub prompt" and add it
|
||||
for i in range(0,len(subprompts)):
|
||||
weight = weights[i]
|
||||
if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
else: # just standard 1 prompt
|
||||
c = self.model.get_learned_conditioning(prompts)
|
||||
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
|
||||
# decode it
|
||||
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,)
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
|
||||
# decode it
|
||||
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,)
|
||||
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
for x_sample in x_samples:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
images.append([image,seed])
|
||||
if callback is not None:
|
||||
callback(image,seed)
|
||||
seed = self._new_seed()
|
||||
for x_sample in x_samples:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
images.append([image,seed])
|
||||
if callback is not None:
|
||||
callback(image,seed)
|
||||
seed = self._new_seed()
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print('*interrupted*')
|
||||
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
|
||||
except RuntimeError as e:
|
||||
print("Oops! A runtime error has occurred. If this is unexpected, please copy-and-paste this stack trace and post it as an Issue to http://github.com/lstein/stable-diffusion")
|
||||
traceback.print_exc()
|
||||
return images
|
||||
|
||||
def _new_seed(self):
|
||||
|
Loading…
Reference in New Issue
Block a user