fix: IP Adapter weights being incorrectly applied

They were being overwritten rather than being appended
This commit is contained in:
blessedcoolant 2024-04-16 04:10:41 +05:30
parent f6b7bc5d98
commit a148c4322c
2 changed files with 27 additions and 31 deletions

View File

@ -1,5 +1,4 @@
from dataclasses import dataclass from dataclasses import dataclass
from itertools import cycle, islice
from typing import List, Optional, cast from typing import List, Optional, cast
import torch import torch
@ -13,7 +12,7 @@ from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import Reg
@dataclass @dataclass
class IPAdapterAttentionWeights: class IPAdapterAttentionWeights:
ip_adapter_weights: List[IPAttentionProcessorWeights] ip_adapter_weights: Optional[IPAttentionProcessorWeights]
skip: bool skip: bool
@ -28,7 +27,7 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
def __init__( def __init__(
self, self,
ip_adapter_attention_weights: Optional[IPAdapterAttentionWeights] = None, ip_adapter_attention_weights: Optional[List[IPAdapterAttentionWeights]] = None,
): ):
"""Initialize a CustomAttnProcessor2_0. """Initialize a CustomAttnProcessor2_0.
Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are
@ -139,23 +138,15 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
assert regional_ip_data is not None assert regional_ip_data is not None
ip_masks = regional_ip_data.get_masks(query_seq_len=query_seq_len) ip_masks = regional_ip_data.get_masks(query_seq_len=query_seq_len)
# Pad weight tensor list to match size of regional embeds
self._ip_adapter_attention_weights.ip_adapter_weights = list(
islice(
cycle(self._ip_adapter_attention_weights.ip_adapter_weights),
len(regional_ip_data.image_prompt_embeds),
)
)
assert ( assert (
len(regional_ip_data.image_prompt_embeds) len(regional_ip_data.image_prompt_embeds)
== len(self._ip_adapter_attention_weights.ip_adapter_weights) == len(self._ip_adapter_attention_weights)
== len(regional_ip_data.scales) == len(regional_ip_data.scales)
== ip_masks.shape[1] == ip_masks.shape[1]
) )
for ipa_index, ipa_embed in enumerate(regional_ip_data.image_prompt_embeds): for ipa_index, ipa_embed in enumerate(regional_ip_data.image_prompt_embeds):
ipa_weights = self._ip_adapter_attention_weights.ip_adapter_weights[ipa_index] ipa_weights = self._ip_adapter_attention_weights[ipa_index].ip_adapter_weights
ipa_scale = regional_ip_data.scales[ipa_index] ipa_scale = regional_ip_data.scales[ipa_index]
ip_mask = ip_masks[0, ipa_index, ...] ip_mask = ip_masks[0, ipa_index, ...]
@ -168,33 +159,33 @@ class CustomAttnProcessor2_0(AttnProcessor2_0):
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding) # Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
if not self._ip_adapter_attention_weights.skip: if not self._ip_adapter_attention_weights[ipa_index].skip:
ip_key = ipa_weights.to_k_ip(ip_hidden_states) if ipa_weights:
ip_value = ipa_weights.to_v_ip(ip_hidden_states) ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: # Expected ip_key and ip_value shape:
# (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads) # (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: # Expected ip_key and ip_value shape:
# (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim) # (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1 # TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention( ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
) )
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim) # Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape( ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim batch_size, -1, attn.heads * head_dim
) )
ip_hidden_states = ip_hidden_states.to(query.dtype) ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim) # Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + ipa_scale * ip_hidden_states * ip_mask hidden_states = hidden_states + ipa_scale * ip_hidden_states * ip_mask
else: else:
# If IP-Adapter is not enabled, then regional_ip_data should not be passed in. # If IP-Adapter is not enabled, then regional_ip_data should not be passed in.

View File

@ -33,20 +33,25 @@ class UNetAttentionPatcher:
# "attn1" processors do not use IP-Adapters. # "attn1" processors do not use IP-Adapters.
attn_procs[name] = CustomAttnProcessor2_0() attn_procs[name] = CustomAttnProcessor2_0()
else: else:
ip_adapter_attention_weights = IPAdapterAttentionWeights(ip_adapter_weights=[], skip=False) total_ip_adapter_attention_weights: list[IPAdapterAttentionWeights] = []
for ip_adapter in self._ip_adapters: for ip_adapter in self._ip_adapters:
ip_adapter_attention_weights: IPAdapterAttentionWeights = IPAdapterAttentionWeights(
ip_adapter_weights=None, skip=False
)
ip_adapter_weight = ip_adapter["ip_adapter"].attn_weights.get_attention_processor_weights(idx) ip_adapter_weight = ip_adapter["ip_adapter"].attn_weights.get_attention_processor_weights(idx)
skip = True skip = True
for block in ip_adapter["target_blocks"]: for block in ip_adapter["target_blocks"]:
if block in name: if block in name:
skip = False skip = False
break break
ip_adapter_attention_weights.ip_adapter_weights = [ip_adapter_weight] ip_adapter_attention_weights.ip_adapter_weights = ip_adapter_weight
ip_adapter_attention_weights.skip = skip ip_adapter_attention_weights.skip = skip
total_ip_adapter_attention_weights.append(ip_adapter_attention_weights)
# Collect the weights from each IP Adapter for the idx'th attention processor. # Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = CustomAttnProcessor2_0(ip_adapter_attention_weights) attn_procs[name] = CustomAttnProcessor2_0(total_ip_adapter_attention_weights)
return attn_procs return attn_procs