mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(ui): txt2img & img2img graphs
This commit is contained in:
parent
6a4a5ece74
commit
a6ca17b19d
@ -3,9 +3,10 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
|
||||
import { getNodeManager } from 'features/controlLayers/konva/nodeManager';
|
||||
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
|
||||
import { buildGenerationTabGraph } from 'features/nodes/util/graph/generation/buildGenerationTabGraph';
|
||||
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/generation/buildGenerationTabSDXLGraph';
|
||||
import { buildSD1Graph } from 'features/nodes/util/graph/generation/buildSD1Graph';
|
||||
import { buildSDXLGraph } from 'features/nodes/util/graph/generation/buildSDXLGraph';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
export const addEnqueueRequestedLinear = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
@ -20,13 +21,15 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
|
||||
let graph;
|
||||
|
||||
const manager = getNodeManager();
|
||||
assert(model, 'No model found in state');
|
||||
const base = model.base;
|
||||
|
||||
console.log('generation mode', manager.util.getGenerationMode());
|
||||
|
||||
if (model?.base === 'sdxl') {
|
||||
graph = await buildGenerationTabSDXLGraph(state, manager);
|
||||
if (base === 'sdxl') {
|
||||
graph = await buildSDXLGraph(state, manager);
|
||||
} else if (base === 'sd-1' || base === 'sd-2') {
|
||||
graph = await buildSD1Graph(state, manager);
|
||||
} else {
|
||||
graph = await buildGenerationTabGraph(state, manager);
|
||||
assert(false, `No graph builders for base ${base}`);
|
||||
}
|
||||
|
||||
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
|
||||
|
@ -10,7 +10,7 @@ import type { Invocation } from 'services/api/types';
|
||||
*/
|
||||
export const addNSFWChecker = (
|
||||
g: Graph,
|
||||
imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'>
|
||||
imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'>
|
||||
): Invocation<'img_nsfw'> => {
|
||||
const nsfw = g.addNode({
|
||||
id: NSFW_CHECKER,
|
||||
|
@ -4,7 +4,7 @@ import { LORA_LOADER } from 'features/nodes/util/graph/constants';
|
||||
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import type { Invocation, S } from 'services/api/types';
|
||||
|
||||
export const addSDXLLoRas = (
|
||||
export const addSDXLLoRAs = (
|
||||
state: RootState,
|
||||
g: Graph,
|
||||
denoise: Invocation<'denoise_latents'> | Invocation<'tiled_multi_diffusion_denoise_latents'>,
|
||||
|
@ -10,7 +10,7 @@ import type { Invocation } from 'services/api/types';
|
||||
*/
|
||||
export const addWatermarker = (
|
||||
g: Graph,
|
||||
imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'>
|
||||
imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'>
|
||||
): Invocation<'img_watermark'> => {
|
||||
const watermark = g.addNode({
|
||||
id: WATERMARKER,
|
||||
|
@ -16,22 +16,23 @@ import {
|
||||
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
|
||||
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
|
||||
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
|
||||
import { addSDXLLoRas } from 'features/nodes/util/graph/generation/addSDXLLoRAs';
|
||||
import { addSDXLLoRAs } from 'features/nodes/util/graph/generation/addSDXLLoRAs';
|
||||
import { addSDXLRefiner } from 'features/nodes/util/graph/generation/addSDXLRefiner';
|
||||
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getPresetModifiedPrompts , getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addRegions } from './addRegions';
|
||||
|
||||
export const buildGenerationTabSDXLGraph = async (
|
||||
export const buildImageToImageSDXLGraph = async (
|
||||
state: RootState,
|
||||
manager: KonvaNodeManager
|
||||
): Promise<NonNullableGraph> => {
|
||||
const { bbox, params } = state.canvasV2;
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
@ -42,17 +43,17 @@ export const buildGenerationTabSDXLGraph = async (
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
vae,
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
refinerModel,
|
||||
refinerStart,
|
||||
img2imgStrength,
|
||||
} = state.canvasV2.params;
|
||||
const { width, height } = state.canvasV2.bbox;
|
||||
} = params;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { originalSize, scaledSize } = getSizes(bbox);
|
||||
|
||||
|
||||
|
||||
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
@ -80,8 +81,14 @@ export const buildGenerationTabSDXLGraph = async (
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({ type: 'noise', id: NOISE, seed, width, height, use_cpu: shouldUseCpuNoise });
|
||||
const i2l = g.addNode({ type: 'i2l', id: 'i2l' });
|
||||
const noise = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: SDXL_DENOISE_LATENTS,
|
||||
@ -110,7 +117,8 @@ export const buildGenerationTabSDXLGraph = async (
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> = l2i;
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
|
||||
l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', posCond, 'clip');
|
||||
@ -122,7 +130,6 @@ export const buildGenerationTabSDXLGraph = async (
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(i2l, 'latents', denoise, 'latents');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
@ -132,8 +139,8 @@ export const buildGenerationTabSDXLGraph = async (
|
||||
generation_mode: 'sdxl_txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: Graph.getModelMetadataField(modelConfig),
|
||||
@ -148,18 +155,19 @@ export const buildGenerationTabSDXLGraph = async (
|
||||
|
||||
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
|
||||
addSDXLLoRas(state, g, denoise, modelLoader, seamless, posCond, negCond);
|
||||
addSDXLLoRAs(state, g, denoise, modelLoader, seamless, posCond, negCond);
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
g.addEdge(vaeSource, 'vae', i2l, 'vae');
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (refinerModel) {
|
||||
await addSDXLRefiner(state, g, denoise, seamless, posCond, negCond, l2i);
|
||||
}
|
||||
|
||||
|
||||
|
||||
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedRegions = await addRegions(
|
||||
@ -175,9 +183,6 @@ export const buildGenerationTabSDXLGraph = async (
|
||||
posCondCollect,
|
||||
negCondCollect
|
||||
);
|
||||
const { image_name } = await manager.util.getImageSourceImage({ bbox: state.canvasV2.bbox, preview: true });
|
||||
await manager.util.getInpaintMaskImage({ bbox: state.canvasV2.bbox, preview: true });
|
||||
i2l.image = { image_name };
|
||||
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
imageOutput = addNSFWChecker(g, imageOutput);
|
@ -0,0 +1,246 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import type { KonvaNodeManager } from 'features/controlLayers/konva/nodeManager';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
CONTROL_LAYERS_GRAPH,
|
||||
DENOISE_LATENTS,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
VAE_LOADER,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
|
||||
// import { addHRF } from 'features/nodes/util/graph/generation/addHRF';
|
||||
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
|
||||
import { addLoRAs } from 'features/nodes/util/graph/generation/addLoRAs';
|
||||
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
|
||||
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import type { GraphType } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { isEqual, pick } from 'lodash-es';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addRegions } from './addRegions';
|
||||
|
||||
export const buildSD1Graph = async (state: RootState, manager: KonvaNodeManager): Promise<GraphType> => {
|
||||
const generationMode = manager.util.getGenerationMode();
|
||||
|
||||
const { bbox, params } = state.canvasV2;
|
||||
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
clipSkip: skipped_layers,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
seed,
|
||||
vae,
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
img2imgStrength,
|
||||
} = params;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { originalSize, scaledSize } = getSizes(bbox);
|
||||
|
||||
const g = new Graph(CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const clipSkip = g.addNode({
|
||||
type: 'clip_skip',
|
||||
id: CLIP_SKIP,
|
||||
skipped_layers,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
|
||||
l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', clipSkip, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', posCond, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', negCond, 'clip');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
assert(modelConfig.base === 'sd-1' || modelConfig.base === 'sd-2');
|
||||
|
||||
g.upsertMetadata({
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: Graph.getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
clip_skip: skipped_layers,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
|
||||
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
|
||||
addLoRAs(state, g, denoise, modelLoader, seamless, clipSkip, posCond, negCond);
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
if (generationMode === 'txt2img') {
|
||||
if (!isEqual(scaledSize, originalSize)) {
|
||||
// We are using scaled bbox and need to resize the output image back to the original size.
|
||||
imageOutput = g.addNode({
|
||||
id: 'img_resize',
|
||||
type: 'img_resize',
|
||||
...originalSize,
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
g.addEdge(l2i, 'image', imageOutput, 'image');
|
||||
}
|
||||
} else if (generationMode === 'img2img') {
|
||||
const { image_name } = await manager.util.getImageSourceImage({
|
||||
bbox: pick(bbox, ['x', 'y', 'width', 'height']),
|
||||
preview: true,
|
||||
});
|
||||
|
||||
denoise.denoising_start = 1 - img2imgStrength;
|
||||
|
||||
if (!isEqual(scaledSize, originalSize)) {
|
||||
// We are using scaled bbox and need to resize the output image back to the original size.
|
||||
const initialImageResize = g.addNode({
|
||||
id: 'initial_image_resize',
|
||||
type: 'img_resize',
|
||||
...scaledSize,
|
||||
image: { image_name },
|
||||
});
|
||||
const i2l = g.addNode({ id: 'i2l', type: 'i2l' });
|
||||
|
||||
g.addEdge(vaeSource, 'vae', i2l, 'vae');
|
||||
g.addEdge(initialImageResize, 'image', i2l, 'image');
|
||||
g.addEdge(i2l, 'latents', denoise, 'latents');
|
||||
|
||||
imageOutput = g.addNode({
|
||||
id: 'img_resize',
|
||||
type: 'img_resize',
|
||||
...originalSize,
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
g.addEdge(l2i, 'image', imageOutput, 'image');
|
||||
} else {
|
||||
const i2l = g.addNode({ id: 'i2l', type: 'i2l', image: { image_name } });
|
||||
g.addEdge(vaeSource, 'vae', i2l, 'vae');
|
||||
g.addEdge(i2l, 'latents', denoise, 'latents');
|
||||
}
|
||||
}
|
||||
|
||||
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedRegions = await addRegions(
|
||||
manager,
|
||||
state.canvasV2.regions.entities,
|
||||
g,
|
||||
state.canvasV2.document,
|
||||
state.canvasV2.bbox,
|
||||
modelConfig.base,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect
|
||||
);
|
||||
|
||||
// const isHRFAllowed = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
|
||||
// if (isHRFAllowed && state.hrf.hrfEnabled) {
|
||||
// imageOutput = addHRF(state, g, denoise, noise, l2i, vaeSource);
|
||||
// }
|
||||
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
imageOutput = addNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
imageOutput = addWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
g.setMetadataReceivingNode(imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
@ -0,0 +1,246 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import type { KonvaNodeManager } from 'features/controlLayers/konva/nodeManager';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import {
|
||||
LATENTS_TO_IMAGE,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
SDXL_CONTROL_LAYERS_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
VAE_LOADER,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
|
||||
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
|
||||
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
|
||||
import { addSDXLLoRAs } from 'features/nodes/util/graph/generation/addSDXLLoRAs';
|
||||
import { addSDXLRefiner } from 'features/nodes/util/graph/generation/addSDXLRefiner';
|
||||
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getSDXLStylePrompts, getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { isEqual, pick } from 'lodash-es';
|
||||
import type { Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addRegions } from './addRegions';
|
||||
|
||||
export const buildSDXLGraph = async (state: RootState, manager: KonvaNodeManager): Promise<NonNullableGraph> => {
|
||||
const generationMode = manager.util.getGenerationMode();
|
||||
|
||||
const { bbox, params } = state.canvasV2;
|
||||
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
seed,
|
||||
steps,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
vae,
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
refinerModel,
|
||||
refinerStart,
|
||||
img2imgStrength,
|
||||
} = params;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { originalSize, scaledSize } = getSizes(bbox);
|
||||
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
style: positiveStylePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
style: negativeStylePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: SDXL_DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: refinerModel ? refinerStart : 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
|
||||
l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', posCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip', negCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip2', posCond, 'clip2');
|
||||
g.addEdge(modelLoader, 'clip2', negCond, 'clip2');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
assert(modelConfig.base === 'sdxl');
|
||||
|
||||
g.upsertMetadata({
|
||||
generation_mode: 'sdxl_txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: Graph.getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
positive_style_prompt: positiveStylePrompt,
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
|
||||
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
|
||||
addSDXLLoRAs(state, g, denoise, modelLoader, seamless, posCond, negCond);
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (refinerModel) {
|
||||
await addSDXLRefiner(state, g, denoise, seamless, posCond, negCond, l2i);
|
||||
}
|
||||
|
||||
if (generationMode === 'txt2img') {
|
||||
if (!isEqual(scaledSize, originalSize)) {
|
||||
// We are using scaled bbox and need to resize the output image back to the original size.
|
||||
imageOutput = g.addNode({
|
||||
id: 'img_resize',
|
||||
type: 'img_resize',
|
||||
...originalSize,
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
g.addEdge(l2i, 'image', imageOutput, 'image');
|
||||
}
|
||||
} else if (generationMode === 'img2img') {
|
||||
denoise.denoising_start = refinerModel ? Math.min(refinerStart, 1 - img2imgStrength) : 1 - img2imgStrength;
|
||||
|
||||
const { image_name } = await manager.util.getImageSourceImage({
|
||||
bbox: pick(bbox, ['x', 'y', 'width', 'height']),
|
||||
preview: true,
|
||||
});
|
||||
|
||||
if (!isEqual(scaledSize, originalSize)) {
|
||||
// We are using scaled bbox and need to resize the output image back to the original size.
|
||||
const initialImageResize = g.addNode({
|
||||
id: 'initial_image_resize',
|
||||
type: 'img_resize',
|
||||
...scaledSize,
|
||||
image: { image_name },
|
||||
});
|
||||
const i2l = g.addNode({ id: 'i2l', type: 'i2l' });
|
||||
|
||||
g.addEdge(vaeSource, 'vae', i2l, 'vae');
|
||||
g.addEdge(initialImageResize, 'image', i2l, 'image');
|
||||
g.addEdge(i2l, 'latents', denoise, 'latents');
|
||||
|
||||
imageOutput = g.addNode({
|
||||
id: 'img_resize',
|
||||
type: 'img_resize',
|
||||
...originalSize,
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
g.addEdge(l2i, 'image', imageOutput, 'image');
|
||||
} else {
|
||||
const i2l = g.addNode({ id: 'i2l', type: 'i2l', image: { image_name } });
|
||||
g.addEdge(vaeSource, 'vae', i2l, 'vae');
|
||||
g.addEdge(i2l, 'latents', denoise, 'latents');
|
||||
}
|
||||
}
|
||||
|
||||
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedRegions = await addRegions(
|
||||
manager,
|
||||
state.canvasV2.regions.entities,
|
||||
g,
|
||||
state.canvasV2.document,
|
||||
state.canvasV2.bbox,
|
||||
modelConfig.base,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect
|
||||
);
|
||||
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
imageOutput = addNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
imageOutput = addWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
g.setMetadataReceivingNode(imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
@ -23,14 +23,17 @@ import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import type { GraphType } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { getBoardField, getPresetModifiedPrompts , getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addRegions } from './addRegions';
|
||||
|
||||
export const buildGenerationTabGraph = async (state: RootState, manager: KonvaNodeManager): Promise<GraphType> => {
|
||||
export const buildTextToImageSD1SD2Graph = async (state: RootState, manager: KonvaNodeManager): Promise<GraphType> => {
|
||||
const { bbox, params } = state.canvasV2;
|
||||
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
@ -42,14 +45,12 @@ export const buildGenerationTabGraph = async (state: RootState, manager: KonvaNo
|
||||
vaePrecision,
|
||||
seed,
|
||||
vae,
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
} = state.canvasV2.params;
|
||||
const { width, height } = state.canvasV2.document;
|
||||
} = params;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
const { originalSize, scaledSize } = getSizes(bbox);
|
||||
|
||||
const g = new Graph(CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
@ -84,8 +85,8 @@ export const buildGenerationTabGraph = async (state: RootState, manager: KonvaNo
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width,
|
||||
height,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
@ -116,7 +117,8 @@ export const buildGenerationTabGraph = async (state: RootState, manager: KonvaNo
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> = l2i;
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
|
||||
l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', clipSkip, 'clip');
|
||||
@ -136,8 +138,8 @@ export const buildGenerationTabGraph = async (state: RootState, manager: KonvaNo
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: Graph.getModelMetadataField(modelConfig),
|
||||
@ -157,6 +159,18 @@ export const buildGenerationTabGraph = async (state: RootState, manager: KonvaNo
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
if (!isEqual(scaledSize, originalSize)) {
|
||||
// We are using scaled bbox and need to resize the output image back to the original size.
|
||||
imageOutput = g.addNode({
|
||||
id: 'img_resize',
|
||||
type: 'img_resize',
|
||||
...originalSize,
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
g.addEdge(l2i, 'image', imageOutput, 'image');
|
||||
}
|
||||
|
||||
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedRegions = await addRegions(
|
@ -1,7 +1,9 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import type { CanvasV2State } from 'features/controlLayers/store/types';
|
||||
import type { BoardField } from 'features/nodes/types/common';
|
||||
import { buildPresetModifiedPrompt } from 'features/stylePresets/hooks/usePresetModifiedPrompts';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { pick } from 'lodash-es';
|
||||
import { stylePresetsApi } from 'services/api/endpoints/stylePresets';
|
||||
|
||||
/**
|
||||
@ -22,7 +24,7 @@ export const getPresetModifiedPrompts = (
|
||||
state: RootState
|
||||
): { positivePrompt: string; negativePrompt: string; positiveStylePrompt?: string; negativeStylePrompt?: string } => {
|
||||
const { positivePrompt, negativePrompt, positivePrompt2, negativePrompt2, shouldConcatPrompts } =
|
||||
state.generation;
|
||||
state.canvasV2.params;
|
||||
const { activeStylePresetId } = state.stylePreset;
|
||||
|
||||
if (activeStylePresetId) {
|
||||
@ -68,3 +70,9 @@ export const getIsIntermediate = (state: RootState) => {
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
export const getSizes = (bboxState: CanvasV2State['bbox']) => {
|
||||
const originalSize = pick(bboxState, 'width', 'height');
|
||||
const scaledSize = ['auto', 'manual'].includes(bboxState.scaleMethod) ? bboxState.scaledSize : originalSize;
|
||||
return { originalSize, scaledSize };
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user