mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Remove core conversion models (#5981)
## What type of PR is this? (check all applicable) - [ ] Refactor - [ ] Feature - [ ] Bug Fix - [X] Optimization - [ ] Documentation Update - [ ] Community Node Submission ## Have you discussed this change with the InvokeAI team? - [X] Yes - [ ] No, because: ## Have you updated all relevant documentation? - [X] Yes - [ ] No ## Description We've been using a forked copy of the diffusers safetensors->diffusers model conversion code, which was hacked to read CLIP and the other models needed for conversion from the local invokeai root models directory. This was getting unsustainable as the code bases diverged, and also required the installation and maintenance of the "core/convert" directory. This PR gets rid of the hacked conversion code and reverts to using the native diffusers methods. Core convert models are no longer installed at root configure time. Instead we rely on the HuggingFace hub system to download the conversion models if and when they are needed. They are relatively small and the initial delay seems minor. Conversion of SD-1, SD-2 (both epsilon and v-prediction), SDXL, VAE and ControlNet SD-1/2 models has been tested. ControlNet SDXL models are still a WIP due to the need for some work on the prober. The main implication of this change is that InvokeAI is no longer internet-independent and will need an internet connection at least the first time a safetensors file needs to be converted. However, there are several other places where the "no internet" rule is already violated, and I suggest that we abandon this principle. ## Related Tickets & Documents <!-- For pull requests that relate or close an issue, please include them below. For example having the text: "closes #1234" would connect the current pull request to issue 1234. And when we merge the pull request, Github will automatically close the issue. --> - Related Issue # - Closes #5964 ## QA Instructions, Screenshots, Recordings 1. Remove or move `$INVOKEAI_ROOT/models/.cache` 2. Move `$INVOKEAI/models/core/convert` 3. Try generating with an unconverted .safetensors model. <!-- Please provide steps on how to test changes, any hardware or software specifications as well as any other pertinent information. --> ## Merge Plan Merge when approved. <!-- A merge plan describes how this PR should be handled after it is approved. Example merge plans: - "This PR can be merged when approved" - "This must be squash-merged when approved" - "DO NOT MERGE - I will rebase and tidy commits before merging" - "#dev-chat on discord needs to be advised of this change when it is merged" A merge plan is particularly important for large PRs or PRs that touch the database in any way. --> ## Added/updated tests? - [ ] Yes - [ ] No : _please replace this line with details on why tests have not been included_ ## [optional] Are there any post deployment tasks we need to perform?
This commit is contained in:
commit
a6d64f69e1
@ -492,6 +492,8 @@ class ModelInstallService(ModelInstallServiceBase):
|
|||||||
for cur_base_model in BaseModelType:
|
for cur_base_model in BaseModelType:
|
||||||
for cur_model_type in ModelType:
|
for cur_model_type in ModelType:
|
||||||
models_dir = self._app_config.models_path / Path(cur_base_model.value, cur_model_type.value)
|
models_dir = self._app_config.models_path / Path(cur_base_model.value, cur_model_type.value)
|
||||||
|
if not models_dir.exists():
|
||||||
|
continue
|
||||||
installed.update(self.scan_directory(models_dir))
|
installed.update(self.scan_directory(models_dir))
|
||||||
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
|
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
|
||||||
|
|
||||||
|
@ -11,17 +11,6 @@ def check_invokeai_root(config: InvokeAIAppConfig):
|
|||||||
try:
|
try:
|
||||||
assert config.db_path.parent.exists(), f"{config.db_path.parent} not found"
|
assert config.db_path.parent.exists(), f"{config.db_path.parent} not found"
|
||||||
assert config.models_path.exists(), f"{config.models_path} not found"
|
assert config.models_path.exists(), f"{config.models_path} not found"
|
||||||
if not config.ignore_missing_core_models:
|
|
||||||
for model in [
|
|
||||||
"CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
|
||||||
"bert-base-uncased",
|
|
||||||
"clip-vit-large-patch14",
|
|
||||||
"sd-vae-ft-mse",
|
|
||||||
"stable-diffusion-2-clip",
|
|
||||||
"stable-diffusion-safety-checker",
|
|
||||||
]:
|
|
||||||
path = config.models_path / f"core/convert/{model}"
|
|
||||||
assert path.exists(), f"{path} is missing"
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print()
|
print()
|
||||||
print(f"An exception has occurred: {str(e)}")
|
print(f"An exception has occurred: {str(e)}")
|
||||||
@ -32,10 +21,5 @@ def check_invokeai_root(config: InvokeAIAppConfig):
|
|||||||
print(
|
print(
|
||||||
'** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **'
|
'** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **'
|
||||||
)
|
)
|
||||||
print(
|
|
||||||
'** (To skip this check completely, add "--ignore_missing_core_models" to your CLI args. Not installing '
|
|
||||||
"these core models will prevent the loading of some or all .safetensors and .ckpt files. However, you can "
|
|
||||||
"always come back and install these core models in the future.)"
|
|
||||||
)
|
|
||||||
input("Press any key to continue...")
|
input("Press any key to continue...")
|
||||||
sys.exit(0)
|
sys.exit(0)
|
||||||
|
@ -25,20 +25,20 @@ import npyscreen
|
|||||||
import psutil
|
import psutil
|
||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
from diffusers import AutoencoderKL, ModelMixin
|
from diffusers import ModelMixin
|
||||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||||
from huggingface_hub import HfFolder
|
from huggingface_hub import HfFolder
|
||||||
from huggingface_hub import login as hf_hub_login
|
from huggingface_hub import login as hf_hub_login
|
||||||
from omegaconf import DictConfig, OmegaConf
|
from omegaconf import DictConfig, OmegaConf
|
||||||
from pydantic.error_wrappers import ValidationError
|
from pydantic.error_wrappers import ValidationError
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
from transformers import AutoFeatureExtractor
|
||||||
|
|
||||||
import invokeai.configs as configs
|
import invokeai.configs as configs
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.backend.install.install_helper import InstallHelper, InstallSelections
|
from invokeai.backend.install.install_helper import InstallHelper, InstallSelections
|
||||||
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
|
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
|
||||||
from invokeai.backend.model_manager import BaseModelType, ModelType
|
from invokeai.backend.model_manager import ModelType
|
||||||
from invokeai.backend.util import choose_precision, choose_torch_device
|
from invokeai.backend.util import choose_precision, choose_torch_device
|
||||||
from invokeai.backend.util.logging import InvokeAILogger
|
from invokeai.backend.util.logging import InvokeAILogger
|
||||||
from invokeai.frontend.install.model_install import addModelsForm
|
from invokeai.frontend.install.model_install import addModelsForm
|
||||||
@ -210,51 +210,15 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
|
|||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
def download_conversion_models():
|
def download_safety_checker():
|
||||||
target_dir = config.models_path / "core/convert"
|
target_dir = config.models_path / "core/convert"
|
||||||
kwargs = {} # for future use
|
kwargs = {} # for future use
|
||||||
try:
|
try:
|
||||||
logger.info("Downloading core tokenizers and text encoders")
|
|
||||||
|
|
||||||
# bert
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
||||||
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
|
|
||||||
bert.save_pretrained(target_dir / "bert-base-uncased", safe_serialization=True)
|
|
||||||
|
|
||||||
# sd-1
|
|
||||||
repo_id = "openai/clip-vit-large-patch14"
|
|
||||||
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / "clip-vit-large-patch14")
|
|
||||||
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / "clip-vit-large-patch14")
|
|
||||||
|
|
||||||
# sd-2
|
|
||||||
repo_id = "stabilityai/stable-diffusion-2"
|
|
||||||
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
|
|
||||||
pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "tokenizer", safe_serialization=True)
|
|
||||||
|
|
||||||
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
|
|
||||||
pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "text_encoder", safe_serialization=True)
|
|
||||||
|
|
||||||
# sd-xl - tokenizer_2
|
|
||||||
repo_id = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
|
|
||||||
_, model_name = repo_id.split("/")
|
|
||||||
pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs)
|
|
||||||
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
|
|
||||||
|
|
||||||
pipeline = CLIPTextConfig.from_pretrained(repo_id, **kwargs)
|
|
||||||
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
|
|
||||||
|
|
||||||
# VAE
|
|
||||||
logger.info("Downloading stable diffusion VAE")
|
|
||||||
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", **kwargs)
|
|
||||||
vae.save_pretrained(target_dir / "sd-vae-ft-mse", safe_serialization=True)
|
|
||||||
|
|
||||||
# safety checking
|
# safety checking
|
||||||
logger.info("Downloading safety checker")
|
logger.info("Downloading safety checker")
|
||||||
repo_id = "CompVis/stable-diffusion-safety-checker"
|
repo_id = "CompVis/stable-diffusion-safety-checker"
|
||||||
pipeline = AutoFeatureExtractor.from_pretrained(repo_id, **kwargs)
|
pipeline = AutoFeatureExtractor.from_pretrained(repo_id, **kwargs)
|
||||||
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
|
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
|
||||||
|
|
||||||
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id, **kwargs)
|
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id, **kwargs)
|
||||||
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
|
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
@ -307,7 +271,7 @@ def download_lama():
|
|||||||
def download_support_models() -> None:
|
def download_support_models() -> None:
|
||||||
download_realesrgan()
|
download_realesrgan()
|
||||||
download_lama()
|
download_lama()
|
||||||
download_conversion_models()
|
download_safety_checker()
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
@ -744,12 +708,7 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
|||||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||||
|
|
||||||
dest = root / "models"
|
dest = root / "models"
|
||||||
for model_base in BaseModelType:
|
dest.mkdir(parents=True, exist_ok=True)
|
||||||
for model_type in ModelType:
|
|
||||||
path = dest / model_base.value / model_type.value
|
|
||||||
path.mkdir(parents=True, exist_ok=True)
|
|
||||||
path = dest / "core"
|
|
||||||
path.mkdir(parents=True, exist_ok=True)
|
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -3,9 +3,6 @@
|
|||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
|
||||||
from safetensors.torch import load_file as safetensors_load_file
|
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
@ -37,27 +34,25 @@ class ControlNetLoader(GenericDiffusersLoader):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
|
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
|
||||||
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
|
assert isinstance(config, CheckpointConfigBase)
|
||||||
raise Exception(f"ControlNet conversion not supported for model type: {config.base}")
|
config_file = config.config_path
|
||||||
else:
|
|
||||||
assert isinstance(config, CheckpointConfigBase)
|
|
||||||
config_file = config.config_path
|
|
||||||
|
|
||||||
if model_path.suffix == ".safetensors":
|
image_size = (
|
||||||
checkpoint = safetensors_load_file(model_path, device="cpu")
|
512
|
||||||
else:
|
if config.base == BaseModelType.StableDiffusion1
|
||||||
checkpoint = torch.load(model_path, map_location="cpu")
|
else 768
|
||||||
|
if config.base == BaseModelType.StableDiffusion2
|
||||||
# sometimes weights are hidden under "state_dict", and sometimes not
|
else 1024
|
||||||
if "state_dict" in checkpoint:
|
|
||||||
checkpoint = checkpoint["state_dict"]
|
|
||||||
|
|
||||||
convert_controlnet_to_diffusers(
|
|
||||||
model_path,
|
|
||||||
output_path,
|
|
||||||
original_config_file=self._app_config.root_path / config_file,
|
|
||||||
image_size=512,
|
|
||||||
scan_needed=True,
|
|
||||||
from_safetensors=model_path.suffix == ".safetensors",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self._logger.info(f"Converting {model_path} to diffusers format")
|
||||||
|
with open(self._app_config.root_path / config_file, "r") as config_stream:
|
||||||
|
convert_controlnet_to_diffusers(
|
||||||
|
model_path,
|
||||||
|
output_path,
|
||||||
|
original_config_file=config_stream,
|
||||||
|
image_size=image_size,
|
||||||
|
precision=self._torch_dtype,
|
||||||
|
from_safetensors=model_path.suffix == ".safetensors",
|
||||||
|
)
|
||||||
return output_path
|
return output_path
|
||||||
|
@ -4,9 +4,6 @@
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
|
|
||||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
|
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
AnyModel,
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
@ -14,7 +11,7 @@ from invokeai.backend.model_manager import (
|
|||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelRepoVariant,
|
ModelRepoVariant,
|
||||||
ModelType,
|
ModelType,
|
||||||
ModelVariantType,
|
SchedulerPredictionType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
from invokeai.backend.model_manager.config import CheckpointConfigBase, MainCheckpointConfig
|
from invokeai.backend.model_manager.config import CheckpointConfigBase, MainCheckpointConfig
|
||||||
@ -68,27 +65,31 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
|
|||||||
|
|
||||||
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
|
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
|
||||||
assert isinstance(config, MainCheckpointConfig)
|
assert isinstance(config, MainCheckpointConfig)
|
||||||
variant = config.variant
|
|
||||||
base = config.base
|
base = config.base
|
||||||
pipeline_class = (
|
|
||||||
StableDiffusionInpaintPipeline if variant == ModelVariantType.Inpaint else StableDiffusionPipeline
|
|
||||||
)
|
|
||||||
|
|
||||||
config_file = config.config_path
|
config_file = config.config_path
|
||||||
|
prediction_type = config.prediction_type.value
|
||||||
|
upcast_attention = config.upcast_attention
|
||||||
|
image_size = (
|
||||||
|
1024
|
||||||
|
if base == BaseModelType.StableDiffusionXL
|
||||||
|
else 768
|
||||||
|
if config.prediction_type == SchedulerPredictionType.VPrediction and base == BaseModelType.StableDiffusion2
|
||||||
|
else 512
|
||||||
|
)
|
||||||
|
|
||||||
self._logger.info(f"Converting {model_path} to diffusers format")
|
self._logger.info(f"Converting {model_path} to diffusers format")
|
||||||
convert_ckpt_to_diffusers(
|
convert_ckpt_to_diffusers(
|
||||||
model_path,
|
model_path,
|
||||||
output_path,
|
output_path,
|
||||||
model_type=self.model_base_to_model_type[base],
|
model_type=self.model_base_to_model_type[base],
|
||||||
model_version=base,
|
|
||||||
model_variant=variant,
|
|
||||||
original_config_file=self._app_config.root_path / config_file,
|
original_config_file=self._app_config.root_path / config_file,
|
||||||
extract_ema=True,
|
extract_ema=True,
|
||||||
scan_needed=True,
|
|
||||||
pipeline_class=pipeline_class,
|
|
||||||
from_safetensors=model_path.suffix == ".safetensors",
|
from_safetensors=model_path.suffix == ".safetensors",
|
||||||
precision=self._torch_dtype,
|
precision=self._torch_dtype,
|
||||||
|
prediction_type=prediction_type,
|
||||||
|
image_size=image_size,
|
||||||
|
upcast_attention=upcast_attention,
|
||||||
load_safety_checker=False,
|
load_safety_checker=False,
|
||||||
)
|
)
|
||||||
return output_path
|
return output_path
|
||||||
|
@ -57,12 +57,12 @@ class VAELoader(GenericDiffusersLoader):
|
|||||||
|
|
||||||
ckpt_config = OmegaConf.load(self._app_config.root_path / config_file)
|
ckpt_config = OmegaConf.load(self._app_config.root_path / config_file)
|
||||||
assert isinstance(ckpt_config, DictConfig)
|
assert isinstance(ckpt_config, DictConfig)
|
||||||
|
self._logger.info(f"Converting {model_path} to diffusers format")
|
||||||
vae_model = convert_ldm_vae_to_diffusers(
|
vae_model = convert_ldm_vae_to_diffusers(
|
||||||
checkpoint=checkpoint,
|
checkpoint=checkpoint,
|
||||||
vae_config=ckpt_config,
|
vae_config=ckpt_config,
|
||||||
image_size=512,
|
image_size=512,
|
||||||
|
precision=self._torch_dtype,
|
||||||
)
|
)
|
||||||
vae_model.to(self._torch_dtype) # set precision appropriately
|
|
||||||
vae_model.save_pretrained(output_path, safe_serialization=True)
|
vae_model.save_pretrained(output_path, safe_serialization=True)
|
||||||
return output_path
|
return output_path
|
||||||
|
@ -319,7 +319,7 @@ class ModelProbe(object):
|
|||||||
@classmethod
|
@classmethod
|
||||||
def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType:
|
def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType:
|
||||||
with SilenceWarnings():
|
with SilenceWarnings():
|
||||||
if model_path.suffix.endswith((".ckpt", ".pt", ".bin")):
|
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")):
|
||||||
cls._scan_model(model_path.name, model_path)
|
cls._scan_model(model_path.name, model_path)
|
||||||
model = torch.load(model_path)
|
model = torch.load(model_path)
|
||||||
assert isinstance(model, dict)
|
assert isinstance(model, dict)
|
||||||
|
Loading…
Reference in New Issue
Block a user