Remove core conversion models (#5981)

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

We've been using a forked copy of the diffusers safetensors->diffusers
model conversion code, which was hacked to read CLIP and the other
models needed for conversion from the local invokeai root models
directory. This was getting unsustainable as the code bases diverged,
and also required the installation and maintenance of the "core/convert"
directory.

This PR gets rid of the hacked conversion code and reverts to using the
native diffusers methods. Core convert models are no longer installed at
root configure time. Instead we rely on the HuggingFace hub system to
download the conversion models if and when they are needed. They are
relatively small and the initial delay seems minor.

Conversion of SD-1, SD-2 (both epsilon and v-prediction), SDXL, VAE and
ControlNet SD-1/2 models has been tested. ControlNet SDXL models are
still a WIP due to the need for some work on the prober.

The main implication of this change is that InvokeAI is no longer
internet-independent and will need an internet connection at least the
first time a safetensors file needs to be converted. However, there are
several other places where the "no internet" rule is already violated,
and I suggest that we abandon this principle.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #5964 

## QA Instructions, Screenshots, Recordings

1. Remove or move `$INVOKEAI_ROOT/models/.cache`
2. Move `$INVOKEAI/models/core/convert`
3. Try generating with an unconverted .safetensors model.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

Merge when approved.

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
This commit is contained in:
psychedelicious 2024-03-18 11:11:15 +11:00 committed by GitHub
commit a6d64f69e1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 69 additions and 1822 deletions

View File

@ -492,6 +492,8 @@ class ModelInstallService(ModelInstallServiceBase):
for cur_base_model in BaseModelType: for cur_base_model in BaseModelType:
for cur_model_type in ModelType: for cur_model_type in ModelType:
models_dir = self._app_config.models_path / Path(cur_base_model.value, cur_model_type.value) models_dir = self._app_config.models_path / Path(cur_base_model.value, cur_model_type.value)
if not models_dir.exists():
continue
installed.update(self.scan_directory(models_dir)) installed.update(self.scan_directory(models_dir))
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered") self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")

View File

@ -11,17 +11,6 @@ def check_invokeai_root(config: InvokeAIAppConfig):
try: try:
assert config.db_path.parent.exists(), f"{config.db_path.parent} not found" assert config.db_path.parent.exists(), f"{config.db_path.parent} not found"
assert config.models_path.exists(), f"{config.models_path} not found" assert config.models_path.exists(), f"{config.models_path} not found"
if not config.ignore_missing_core_models:
for model in [
"CLIP-ViT-bigG-14-laion2B-39B-b160k",
"bert-base-uncased",
"clip-vit-large-patch14",
"sd-vae-ft-mse",
"stable-diffusion-2-clip",
"stable-diffusion-safety-checker",
]:
path = config.models_path / f"core/convert/{model}"
assert path.exists(), f"{path} is missing"
except Exception as e: except Exception as e:
print() print()
print(f"An exception has occurred: {str(e)}") print(f"An exception has occurred: {str(e)}")
@ -32,10 +21,5 @@ def check_invokeai_root(config: InvokeAIAppConfig):
print( print(
'** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **' '** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **'
) )
print(
'** (To skip this check completely, add "--ignore_missing_core_models" to your CLI args. Not installing '
"these core models will prevent the loading of some or all .safetensors and .ckpt files. However, you can "
"always come back and install these core models in the future.)"
)
input("Press any key to continue...") input("Press any key to continue...")
sys.exit(0) sys.exit(0)

View File

@ -25,20 +25,20 @@ import npyscreen
import psutil import psutil
import torch import torch
import transformers import transformers
from diffusers import AutoencoderKL, ModelMixin from diffusers import ModelMixin
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from huggingface_hub import HfFolder from huggingface_hub import HfFolder
from huggingface_hub import login as hf_hub_login from huggingface_hub import login as hf_hub_login
from omegaconf import DictConfig, OmegaConf from omegaconf import DictConfig, OmegaConf
from pydantic.error_wrappers import ValidationError from pydantic.error_wrappers import ValidationError
from tqdm import tqdm from tqdm import tqdm
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextConfig, CLIPTextModel, CLIPTokenizer from transformers import AutoFeatureExtractor
import invokeai.configs as configs import invokeai.configs as configs
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.install.install_helper import InstallHelper, InstallSelections from invokeai.backend.install.install_helper import InstallHelper, InstallSelections
from invokeai.backend.install.legacy_arg_parsing import legacy_parser from invokeai.backend.install.legacy_arg_parsing import legacy_parser
from invokeai.backend.model_manager import BaseModelType, ModelType from invokeai.backend.model_manager import ModelType
from invokeai.backend.util import choose_precision, choose_torch_device from invokeai.backend.util import choose_precision, choose_torch_device
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm from invokeai.frontend.install.model_install import addModelsForm
@ -210,51 +210,15 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
def download_conversion_models(): def download_safety_checker():
target_dir = config.models_path / "core/convert" target_dir = config.models_path / "core/convert"
kwargs = {} # for future use kwargs = {} # for future use
try: try:
logger.info("Downloading core tokenizers and text encoders")
# bert
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
bert.save_pretrained(target_dir / "bert-base-uncased", safe_serialization=True)
# sd-1
repo_id = "openai/clip-vit-large-patch14"
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / "clip-vit-large-patch14")
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / "clip-vit-large-patch14")
# sd-2
repo_id = "stabilityai/stable-diffusion-2"
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "tokenizer", safe_serialization=True)
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "text_encoder", safe_serialization=True)
# sd-xl - tokenizer_2
repo_id = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
_, model_name = repo_id.split("/")
pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
pipeline = CLIPTextConfig.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
# VAE
logger.info("Downloading stable diffusion VAE")
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", **kwargs)
vae.save_pretrained(target_dir / "sd-vae-ft-mse", safe_serialization=True)
# safety checking # safety checking
logger.info("Downloading safety checker") logger.info("Downloading safety checker")
repo_id = "CompVis/stable-diffusion-safety-checker" repo_id = "CompVis/stable-diffusion-safety-checker"
pipeline = AutoFeatureExtractor.from_pretrained(repo_id, **kwargs) pipeline = AutoFeatureExtractor.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True) pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id, **kwargs) pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True) pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
except KeyboardInterrupt: except KeyboardInterrupt:
@ -307,7 +271,7 @@ def download_lama():
def download_support_models() -> None: def download_support_models() -> None:
download_realesrgan() download_realesrgan()
download_lama() download_lama()
download_conversion_models() download_safety_checker()
# ------------------------------------- # -------------------------------------
@ -744,12 +708,7 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
dest = root / "models" dest = root / "models"
for model_base in BaseModelType: dest.mkdir(parents=True, exist_ok=True)
for model_type in ModelType:
path = dest / model_base.value / model_type.value
path.mkdir(parents=True, exist_ok=True)
path = dest / "core"
path.mkdir(parents=True, exist_ok=True)
# ------------------------------------- # -------------------------------------

File diff suppressed because it is too large Load Diff

View File

@ -3,9 +3,6 @@
from pathlib import Path from pathlib import Path
import torch
from safetensors.torch import load_file as safetensors_load_file
from invokeai.backend.model_manager import ( from invokeai.backend.model_manager import (
AnyModelConfig, AnyModelConfig,
BaseModelType, BaseModelType,
@ -37,27 +34,25 @@ class ControlNetLoader(GenericDiffusersLoader):
return True return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path: def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}: assert isinstance(config, CheckpointConfigBase)
raise Exception(f"ControlNet conversion not supported for model type: {config.base}") config_file = config.config_path
else:
assert isinstance(config, CheckpointConfigBase)
config_file = config.config_path
if model_path.suffix == ".safetensors": image_size = (
checkpoint = safetensors_load_file(model_path, device="cpu") 512
else: if config.base == BaseModelType.StableDiffusion1
checkpoint = torch.load(model_path, map_location="cpu") else 768
if config.base == BaseModelType.StableDiffusion2
# sometimes weights are hidden under "state_dict", and sometimes not else 1024
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
convert_controlnet_to_diffusers(
model_path,
output_path,
original_config_file=self._app_config.root_path / config_file,
image_size=512,
scan_needed=True,
from_safetensors=model_path.suffix == ".safetensors",
) )
self._logger.info(f"Converting {model_path} to diffusers format")
with open(self._app_config.root_path / config_file, "r") as config_stream:
convert_controlnet_to_diffusers(
model_path,
output_path,
original_config_file=config_stream,
image_size=image_size,
precision=self._torch_dtype,
from_safetensors=model_path.suffix == ".safetensors",
)
return output_path return output_path

View File

@ -4,9 +4,6 @@
from pathlib import Path from pathlib import Path
from typing import Optional from typing import Optional
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from invokeai.backend.model_manager import ( from invokeai.backend.model_manager import (
AnyModel, AnyModel,
AnyModelConfig, AnyModelConfig,
@ -14,7 +11,7 @@ from invokeai.backend.model_manager import (
ModelFormat, ModelFormat,
ModelRepoVariant, ModelRepoVariant,
ModelType, ModelType,
ModelVariantType, SchedulerPredictionType,
SubModelType, SubModelType,
) )
from invokeai.backend.model_manager.config import CheckpointConfigBase, MainCheckpointConfig from invokeai.backend.model_manager.config import CheckpointConfigBase, MainCheckpointConfig
@ -68,27 +65,31 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path: def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
assert isinstance(config, MainCheckpointConfig) assert isinstance(config, MainCheckpointConfig)
variant = config.variant
base = config.base base = config.base
pipeline_class = (
StableDiffusionInpaintPipeline if variant == ModelVariantType.Inpaint else StableDiffusionPipeline
)
config_file = config.config_path config_file = config.config_path
prediction_type = config.prediction_type.value
upcast_attention = config.upcast_attention
image_size = (
1024
if base == BaseModelType.StableDiffusionXL
else 768
if config.prediction_type == SchedulerPredictionType.VPrediction and base == BaseModelType.StableDiffusion2
else 512
)
self._logger.info(f"Converting {model_path} to diffusers format") self._logger.info(f"Converting {model_path} to diffusers format")
convert_ckpt_to_diffusers( convert_ckpt_to_diffusers(
model_path, model_path,
output_path, output_path,
model_type=self.model_base_to_model_type[base], model_type=self.model_base_to_model_type[base],
model_version=base,
model_variant=variant,
original_config_file=self._app_config.root_path / config_file, original_config_file=self._app_config.root_path / config_file,
extract_ema=True, extract_ema=True,
scan_needed=True,
pipeline_class=pipeline_class,
from_safetensors=model_path.suffix == ".safetensors", from_safetensors=model_path.suffix == ".safetensors",
precision=self._torch_dtype, precision=self._torch_dtype,
prediction_type=prediction_type,
image_size=image_size,
upcast_attention=upcast_attention,
load_safety_checker=False, load_safety_checker=False,
) )
return output_path return output_path

View File

@ -57,12 +57,12 @@ class VAELoader(GenericDiffusersLoader):
ckpt_config = OmegaConf.load(self._app_config.root_path / config_file) ckpt_config = OmegaConf.load(self._app_config.root_path / config_file)
assert isinstance(ckpt_config, DictConfig) assert isinstance(ckpt_config, DictConfig)
self._logger.info(f"Converting {model_path} to diffusers format")
vae_model = convert_ldm_vae_to_diffusers( vae_model = convert_ldm_vae_to_diffusers(
checkpoint=checkpoint, checkpoint=checkpoint,
vae_config=ckpt_config, vae_config=ckpt_config,
image_size=512, image_size=512,
precision=self._torch_dtype,
) )
vae_model.to(self._torch_dtype) # set precision appropriately
vae_model.save_pretrained(output_path, safe_serialization=True) vae_model.save_pretrained(output_path, safe_serialization=True)
return output_path return output_path

View File

@ -319,7 +319,7 @@ class ModelProbe(object):
@classmethod @classmethod
def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType: def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType:
with SilenceWarnings(): with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".bin")): if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin")):
cls._scan_model(model_path.name, model_path) cls._scan_model(model_path.name, model_path)
model = torch.load(model_path) model = torch.load(model_path)
assert isinstance(model, dict) assert isinstance(model, dict)