merge with recent main changes
9
.github/workflows/close-inactive-issues.yml
vendored
@ -1,11 +1,11 @@
|
||||
name: Close inactive issues
|
||||
on:
|
||||
schedule:
|
||||
- cron: "00 6 * * *"
|
||||
- cron: "00 4 * * *"
|
||||
|
||||
env:
|
||||
DAYS_BEFORE_ISSUE_STALE: 14
|
||||
DAYS_BEFORE_ISSUE_CLOSE: 28
|
||||
DAYS_BEFORE_ISSUE_STALE: 30
|
||||
DAYS_BEFORE_ISSUE_CLOSE: 14
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
@ -14,7 +14,7 @@ jobs:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
- uses: actions/stale@v8
|
||||
with:
|
||||
days-before-issue-stale: ${{ env.DAYS_BEFORE_ISSUE_STALE }}
|
||||
days-before-issue-close: ${{ env.DAYS_BEFORE_ISSUE_CLOSE }}
|
||||
@ -23,5 +23,6 @@ jobs:
|
||||
close-issue-message: "Due to inactivity, this issue was automatically closed. If you are still experiencing the issue, please recreate the issue."
|
||||
days-before-pr-stale: -1
|
||||
days-before-pr-close: -1
|
||||
exempt-issue-labels: "Active Issue"
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
operations-per-run: 500
|
||||
|
BIN
docs/assets/nodes/groupsallscale.png
Normal file
After Width: | Height: | Size: 490 KiB |
BIN
docs/assets/nodes/groupsconditioning.png
Normal file
After Width: | Height: | Size: 335 KiB |
BIN
docs/assets/nodes/groupscontrol.png
Normal file
After Width: | Height: | Size: 217 KiB |
BIN
docs/assets/nodes/groupsimgvae.png
Normal file
After Width: | Height: | Size: 244 KiB |
BIN
docs/assets/nodes/groupsiterate.png
Normal file
After Width: | Height: | Size: 948 KiB |
BIN
docs/assets/nodes/groupslora.png
Normal file
After Width: | Height: | Size: 292 KiB |
BIN
docs/assets/nodes/groupsmultigenseeding.png
Normal file
After Width: | Height: | Size: 420 KiB |
BIN
docs/assets/nodes/groupsnoise.png
Normal file
After Width: | Height: | Size: 179 KiB |
BIN
docs/assets/nodes/groupsrandseed.png
Normal file
After Width: | Height: | Size: 216 KiB |
BIN
docs/assets/nodes/nodescontrol.png
Normal file
After Width: | Height: | Size: 439 KiB |
BIN
docs/assets/nodes/nodesi2i.png
Normal file
After Width: | Height: | Size: 563 KiB |
BIN
docs/assets/nodes/nodest2i.png
Normal file
After Width: | Height: | Size: 353 KiB |
@ -118,49 +118,49 @@ There are several node grouping concepts that can be examined with a narrow focu
|
||||
|
||||
As described, an initial noise tensor is necessary for the latent diffusion process. As a result, all non-image *ToLatents nodes require a noise node input.
|
||||
|
||||
<img width="654" alt="groupsnoise" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/2e8d297e-ad55-4d27-bc93-c119dad2a2c5">
|
||||
![groupsnoise](../assets/nodes/groupsnoise.png)
|
||||
|
||||
### Conditioning
|
||||
|
||||
As described, conditioning is necessary for the latent diffusion process, whether empty or not. As a result, all non-image *ToLatents nodes require positive and negative conditioning inputs. Conditioning is reliant on a CLIP tokenizer provided by the Model Loader node.
|
||||
|
||||
<img width="1024" alt="groupsconditioning" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/f8f7ad8a-8d9c-418e-b5ad-1437b774b27e">
|
||||
![groupsconditioning](../assets/nodes/groupsconditioning.png)
|
||||
|
||||
### Image Space & VAE
|
||||
|
||||
The ImageToLatents node doesn't require a noise node input, but requires a VAE input to convert the image from image space into latent space. In reverse, the LatentsToImage node requires a VAE input to convert from latent space back into image space.
|
||||
|
||||
<img width="637" alt="groupsimgvae" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/dd99969c-e0a8-4f78-9b17-3ffe179cef9a">
|
||||
![groupsimgvae](../assets/nodes/groupsimgvae.png)
|
||||
|
||||
### Defined & Random Seeds
|
||||
|
||||
It is common to want to use both the same seed (for continuity) and random seeds (for variance). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
|
||||
|
||||
<img width="922" alt="groupsrandseed" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/af55bc20-60f6-438e-aba5-3ec871443710">
|
||||
![groupsrandseed](../assets/nodes/groupsrandseed.png)
|
||||
|
||||
### Control
|
||||
|
||||
Control means to guide the diffusion process to adhere to a defined input or structure. Control can be provided as input to non-image *ToLatents nodes from ControlNet nodes. ControlNet nodes usually require an image processor which converts an input image for use with ControlNet.
|
||||
|
||||
<img width="805" alt="groupscontrol" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/cc9c5de7-23a7-46c8-bbad-1f3609d999a6">
|
||||
![groupscontrol](../assets/nodes/groupscontrol.png)
|
||||
|
||||
### LoRA
|
||||
|
||||
The Lora Loader node lets you load a LoRA (say that ten times fast) and pass it as output to both the Prompt (Compel) and non-image *ToLatents nodes. A model's CLIP tokenizer is passed through the LoRA into Prompt (Compel), where it affects conditioning. A model's U-Net is also passed through the LoRA into a non-image *ToLatents node, where it affects noise prediction.
|
||||
|
||||
<img width="993" alt="groupslora" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/630962b0-d914-4505-b3ea-ccae9b0269da">
|
||||
![groupslora](../assets/nodes/groupslora.png)
|
||||
|
||||
### Scaling
|
||||
|
||||
Use the ImageScale, ScaleLatents, and Upscale nodes to upscale images and/or latent images. The chosen method differs across contexts. However, be aware that latents are already noisy and compressed at their original resolution; scaling an image could produce more detailed results.
|
||||
|
||||
<img width="644" alt="groupsallscale" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/99314f05-dd9f-4b6d-b378-31de55346a13">
|
||||
![groupsallscale](../assets/nodes/groupsallscale.png)
|
||||
|
||||
### Iteration + Multiple Images as Input
|
||||
|
||||
Iteration is a common concept in any processing, and means to repeat a process with given input. In nodes, you're able to use the Iterate node to iterate through collections usually gathered by the Collect node. The Iterate node has many potential uses, from processing a collection of images one after another, to varying seeds across multiple image generations and more. This screenshot demonstrates how to collect several images and pass them out one at a time.
|
||||
|
||||
<img width="788" alt="groupsiterate" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/4af5ca27-82c9-4018-8c5b-024d3ee0a121">
|
||||
![groupsiterate](../assets/nodes/groupsiterate.png)
|
||||
|
||||
### Multiple Image Generation + Random Seeds
|
||||
|
||||
@ -168,7 +168,7 @@ Multiple image generation in the node editor is done using the RandomRange node.
|
||||
|
||||
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
|
||||
|
||||
<img width="1027" alt="groupsmultigenseeding" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/518d1b2b-fed1-416b-a052-ab06552521b3">
|
||||
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)
|
||||
|
||||
## Examples
|
||||
|
||||
@ -176,7 +176,7 @@ With our knowledge of node grouping and the diffusion process, let’s break dow
|
||||
|
||||
### Basic text-to-image Node Graph
|
||||
|
||||
<img width="875" alt="nodest2i" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/17c67720-c376-4db8-94f0-5e00381a61ee">
|
||||
![nodest2i](../assets/nodes/nodest2i.png)
|
||||
|
||||
- Model Loader: A necessity to generating images (as we’ve read above). We choose our model from the dropdown. It outputs a U-Net, CLIP tokenizer, and VAE.
|
||||
- Prompt (Compel): Another necessity. Two prompt nodes are created. One will output positive conditioning (what you want, ‘dog’), one will output negative (what you don’t want, ‘cat’). They both input the CLIP tokenizer that the Model Loader node outputs.
|
||||
@ -186,7 +186,7 @@ With our knowledge of node grouping and the diffusion process, let’s break dow
|
||||
|
||||
### Basic image-to-image Node Graph
|
||||
|
||||
<img width="998" alt="nodesi2i" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/3f2c95d5-cee7-4415-9b79-b46ee60a92fe">
|
||||
![nodesi2i](../assets/nodes/nodesi2i.png)
|
||||
|
||||
- Model Loader: Choose a model from the dropdown.
|
||||
- Prompt (Compel): Two prompt nodes. One positive (dog), one negative (dog). Same CLIP inputs from the Model Loader node as before.
|
||||
@ -197,7 +197,7 @@ With our knowledge of node grouping and the diffusion process, let’s break dow
|
||||
|
||||
### Basic ControlNet Node Graph
|
||||
|
||||
<img width="703" alt="nodescontrol" src="https://github.com/ymgenesis/InvokeAI/assets/25252829/b02ded86-ceb4-44a2-9910-e19ad184d471">
|
||||
![nodescontrol](../assets/nodes/nodescontrol.png)
|
||||
|
||||
- Model Loader
|
||||
- Prompt (Compel)
|
||||
|
@ -298,7 +298,7 @@ async def search_for_models(
|
||||
)->List[pathlib.Path]:
|
||||
if not search_path.is_dir():
|
||||
raise HTTPException(status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory")
|
||||
return ApiDependencies.invoker.services.model_manager.search_for_models([search_path])
|
||||
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
|
||||
|
||||
@models_router.get(
|
||||
"/ckpt_confs",
|
||||
|
@ -95,7 +95,7 @@ class CompelInvocation(BaseInvocation):
|
||||
def _lora_loader():
|
||||
for lora in self.clip.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}))
|
||||
**lora.dict(exclude={"weight"}), context=context)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
@ -171,16 +171,16 @@ class CompelInvocation(BaseInvocation):
|
||||
class SDXLPromptInvocationBase:
|
||||
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
|
||||
tokenizer_info = context.services.model_manager.get_model(
|
||||
**clip_field.tokenizer.dict(),
|
||||
**clip_field.tokenizer.dict(), context=context,
|
||||
)
|
||||
text_encoder_info = context.services.model_manager.get_model(
|
||||
**clip_field.text_encoder.dict(),
|
||||
**clip_field.text_encoder.dict(), context=context,
|
||||
)
|
||||
|
||||
def _lora_loader():
|
||||
for lora in clip_field.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}))
|
||||
**lora.dict(exclude={"weight"}), context=context)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
@ -196,6 +196,7 @@ class SDXLPromptInvocationBase:
|
||||
model_name=name,
|
||||
base_model=clip_field.text_encoder.base_model,
|
||||
model_type=ModelType.TextualInversion,
|
||||
context=context,
|
||||
).context.model
|
||||
)
|
||||
except ModelNotFoundException:
|
||||
@ -240,16 +241,16 @@ class SDXLPromptInvocationBase:
|
||||
|
||||
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
|
||||
tokenizer_info = context.services.model_manager.get_model(
|
||||
**clip_field.tokenizer.dict(),
|
||||
**clip_field.tokenizer.dict(), context=context,
|
||||
)
|
||||
text_encoder_info = context.services.model_manager.get_model(
|
||||
**clip_field.text_encoder.dict(),
|
||||
**clip_field.text_encoder.dict(), context=context,
|
||||
)
|
||||
|
||||
def _lora_loader():
|
||||
for lora in clip_field.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}))
|
||||
**lora.dict(exclude={"weight"}), context=context)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
@ -265,6 +266,7 @@ class SDXLPromptInvocationBase:
|
||||
model_name=name,
|
||||
base_model=clip_field.text_encoder.base_model,
|
||||
model_type=ModelType.TextualInversion,
|
||||
context=context,
|
||||
).context.model
|
||||
)
|
||||
except ModelNotFoundException:
|
||||
|
@ -2,15 +2,18 @@ from typing import Literal, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (BaseInvocation,
|
||||
BaseInvocationOutput, InvocationConfig,
|
||||
InvocationContext)
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
InvocationConfig,
|
||||
InvocationContext,
|
||||
)
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.model import (LoRAModelField, MainModelField,
|
||||
VAEModelField)
|
||||
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
|
||||
|
||||
class LoRAMetadataField(BaseModel):
|
||||
"""LoRA metadata for an image generated in InvokeAI."""
|
||||
|
||||
lora: LoRAModelField = Field(description="The LoRA model")
|
||||
weight: float = Field(description="The weight of the LoRA model")
|
||||
|
||||
@ -18,7 +21,9 @@ class LoRAMetadataField(BaseModel):
|
||||
class CoreMetadata(BaseModel):
|
||||
"""Core generation metadata for an image generated in InvokeAI."""
|
||||
|
||||
generation_mode: str = Field(description="The generation mode that output this image",)
|
||||
generation_mode: str = Field(
|
||||
description="The generation mode that output this image",
|
||||
)
|
||||
positive_prompt: str = Field(description="The positive prompt parameter")
|
||||
negative_prompt: str = Field(description="The negative prompt parameter")
|
||||
width: int = Field(description="The width parameter")
|
||||
@ -28,10 +33,20 @@ class CoreMetadata(BaseModel):
|
||||
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
||||
steps: int = Field(description="The number of steps used for inference")
|
||||
scheduler: str = Field(description="The scheduler used for inference")
|
||||
clip_skip: int = Field(description="The number of skipped CLIP layers",)
|
||||
clip_skip: int = Field(
|
||||
description="The number of skipped CLIP layers",
|
||||
)
|
||||
model: MainModelField = Field(description="The main model used for inference")
|
||||
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
|
||||
controlnets: list[ControlField] = Field(
|
||||
description="The ControlNets used for inference"
|
||||
)
|
||||
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
||||
vae: Union[VAEModelField, None] = Field(
|
||||
default=None,
|
||||
description="The VAE used for decoding, if the main model's default was not used",
|
||||
)
|
||||
|
||||
# Latents-to-Latents
|
||||
strength: Union[float, None] = Field(
|
||||
default=None,
|
||||
description="The strength used for latents-to-latents",
|
||||
@ -39,9 +54,34 @@ class CoreMetadata(BaseModel):
|
||||
init_image: Union[str, None] = Field(
|
||||
default=None, description="The name of the initial image"
|
||||
)
|
||||
vae: Union[VAEModelField, None] = Field(
|
||||
|
||||
# SDXL
|
||||
positive_style_prompt: Union[str, None] = Field(
|
||||
default=None, description="The positive style prompt parameter"
|
||||
)
|
||||
negative_style_prompt: Union[str, None] = Field(
|
||||
default=None, description="The negative style prompt parameter"
|
||||
)
|
||||
|
||||
# SDXL Refiner
|
||||
refiner_model: Union[MainModelField, None] = Field(
|
||||
default=None, description="The SDXL Refiner model used"
|
||||
)
|
||||
refiner_cfg_scale: Union[float, None] = Field(
|
||||
default=None,
|
||||
description="The VAE used for decoding, if the main model's default was not used",
|
||||
description="The classifier-free guidance scale parameter used for the refiner",
|
||||
)
|
||||
refiner_steps: Union[int, None] = Field(
|
||||
default=None, description="The number of steps used for the refiner"
|
||||
)
|
||||
refiner_scheduler: Union[str, None] = Field(
|
||||
default=None, description="The scheduler used for the refiner"
|
||||
)
|
||||
refiner_aesthetic_store: Union[float, None] = Field(
|
||||
default=None, description="The aesthetic score used for the refiner"
|
||||
)
|
||||
refiner_start: Union[float, None] = Field(
|
||||
default=None, description="The start value used for refiner denoising"
|
||||
)
|
||||
|
||||
|
||||
@ -70,7 +110,9 @@ class MetadataAccumulatorInvocation(BaseInvocation):
|
||||
|
||||
type: Literal["metadata_accumulator"] = "metadata_accumulator"
|
||||
|
||||
generation_mode: str = Field(description="The generation mode that output this image",)
|
||||
generation_mode: str = Field(
|
||||
description="The generation mode that output this image",
|
||||
)
|
||||
positive_prompt: str = Field(description="The positive prompt parameter")
|
||||
negative_prompt: str = Field(description="The negative prompt parameter")
|
||||
width: int = Field(description="The width parameter")
|
||||
@ -80,9 +122,13 @@ class MetadataAccumulatorInvocation(BaseInvocation):
|
||||
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
||||
steps: int = Field(description="The number of steps used for inference")
|
||||
scheduler: str = Field(description="The scheduler used for inference")
|
||||
clip_skip: int = Field(description="The number of skipped CLIP layers",)
|
||||
clip_skip: int = Field(
|
||||
description="The number of skipped CLIP layers",
|
||||
)
|
||||
model: MainModelField = Field(description="The main model used for inference")
|
||||
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
|
||||
controlnets: list[ControlField] = Field(
|
||||
description="The ControlNets used for inference"
|
||||
)
|
||||
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
||||
strength: Union[float, None] = Field(
|
||||
default=None,
|
||||
@ -96,36 +142,44 @@ class MetadataAccumulatorInvocation(BaseInvocation):
|
||||
description="The VAE used for decoding, if the main model's default was not used",
|
||||
)
|
||||
|
||||
# SDXL
|
||||
positive_style_prompt: Union[str, None] = Field(
|
||||
default=None, description="The positive style prompt parameter"
|
||||
)
|
||||
negative_style_prompt: Union[str, None] = Field(
|
||||
default=None, description="The negative style prompt parameter"
|
||||
)
|
||||
|
||||
# SDXL Refiner
|
||||
refiner_model: Union[MainModelField, None] = Field(
|
||||
default=None, description="The SDXL Refiner model used"
|
||||
)
|
||||
refiner_cfg_scale: Union[float, None] = Field(
|
||||
default=None,
|
||||
description="The classifier-free guidance scale parameter used for the refiner",
|
||||
)
|
||||
refiner_steps: Union[int, None] = Field(
|
||||
default=None, description="The number of steps used for the refiner"
|
||||
)
|
||||
refiner_scheduler: Union[str, None] = Field(
|
||||
default=None, description="The scheduler used for the refiner"
|
||||
)
|
||||
refiner_aesthetic_store: Union[float, None] = Field(
|
||||
default=None, description="The aesthetic score used for the refiner"
|
||||
)
|
||||
refiner_start: Union[float, None] = Field(
|
||||
default=None, description="The start value used for refiner denoising"
|
||||
)
|
||||
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"title": "Metadata Accumulator",
|
||||
"tags": ["image", "metadata", "generation"]
|
||||
"tags": ["image", "metadata", "generation"],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
|
||||
"""Collects and outputs a CoreMetadata object"""
|
||||
|
||||
return MetadataAccumulatorOutput(
|
||||
metadata=CoreMetadata(
|
||||
generation_mode=self.generation_mode,
|
||||
positive_prompt=self.positive_prompt,
|
||||
negative_prompt=self.negative_prompt,
|
||||
width=self.width,
|
||||
height=self.height,
|
||||
seed=self.seed,
|
||||
rand_device=self.rand_device,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
scheduler=self.scheduler,
|
||||
model=self.model,
|
||||
strength=self.strength,
|
||||
init_image=self.init_image,
|
||||
vae=self.vae,
|
||||
controlnets=self.controlnets,
|
||||
loras=self.loras,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
)
|
||||
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))
|
||||
|
@ -119,8 +119,8 @@ class NoiseInvocation(BaseInvocation):
|
||||
|
||||
@validator("seed", pre=True)
|
||||
def modulo_seed(cls, v):
|
||||
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
|
||||
return v % SEED_MAX
|
||||
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
|
||||
return v % (SEED_MAX + 1)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
||||
noise = get_noise(
|
||||
|
@ -138,7 +138,7 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
||||
"ui": {
|
||||
"title": "SDXL Refiner Model Loader",
|
||||
"tags": ["model", "loader", "sdxl_refiner"],
|
||||
"type_hints": {"model": "model"},
|
||||
"type_hints": {"model": "refiner_model"},
|
||||
},
|
||||
}
|
||||
|
||||
@ -295,7 +295,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
|
||||
|
||||
|
||||
unet_info = context.services.model_manager.get_model(
|
||||
**self.unet.unet.dict()
|
||||
**self.unet.unet.dict(), context=context
|
||||
)
|
||||
do_classifier_free_guidance = True
|
||||
cross_attention_kwargs = None
|
||||
@ -463,8 +463,8 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
|
||||
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||
latents: Optional[LatentsField] = Field(description="Initial latents")
|
||||
|
||||
denoising_start: float = Field(default=0.0, ge=0, lt=1, description="")
|
||||
denoising_end: float = Field(default=1.0, gt=0, le=1, description="")
|
||||
denoising_start: float = Field(default=0.0, ge=0, le=1, description="")
|
||||
denoising_end: float = Field(default=1.0, ge=0, le=1, description="")
|
||||
|
||||
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
|
||||
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
@ -549,13 +549,13 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
|
||||
num_inference_steps = num_inference_steps - t_start
|
||||
|
||||
# apply noise(if provided)
|
||||
if self.noise is not None:
|
||||
if self.noise is not None and timesteps.shape[0] > 0:
|
||||
noise = context.services.latents.get(self.noise.latents_name)
|
||||
latents = scheduler.add_noise(latents, noise, timesteps[:1])
|
||||
del noise
|
||||
|
||||
unet_info = context.services.model_manager.get_model(
|
||||
**self.unet.unet.dict()
|
||||
**self.unet.unet.dict(), context=context,
|
||||
)
|
||||
do_classifier_free_guidance = True
|
||||
cross_attention_kwargs = None
|
||||
|
@ -3,7 +3,13 @@
|
||||
from typing import Any, Optional
|
||||
from invokeai.app.models.image import ProgressImage
|
||||
from invokeai.app.util.misc import get_timestamp
|
||||
from invokeai.app.services.model_manager_service import BaseModelType, ModelType, SubModelType, ModelInfo
|
||||
from invokeai.app.services.model_manager_service import (
|
||||
BaseModelType,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
ModelInfo,
|
||||
)
|
||||
|
||||
|
||||
class EventServiceBase:
|
||||
session_event: str = "session_event"
|
||||
@ -38,7 +44,9 @@ class EventServiceBase:
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
progress_image=progress_image.dict() if progress_image is not None else None,
|
||||
progress_image=progress_image.dict()
|
||||
if progress_image is not None
|
||||
else None,
|
||||
step=step,
|
||||
total_steps=total_steps,
|
||||
),
|
||||
@ -67,6 +75,7 @@ class EventServiceBase:
|
||||
graph_execution_state_id: str,
|
||||
node: dict,
|
||||
source_node_id: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
) -> None:
|
||||
"""Emitted when an invocation has completed"""
|
||||
@ -76,6 +85,7 @@ class EventServiceBase:
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
error_type=error_type,
|
||||
error=error,
|
||||
),
|
||||
)
|
||||
@ -145,3 +155,37 @@ class EventServiceBase:
|
||||
precision=str(model_info.precision),
|
||||
),
|
||||
)
|
||||
|
||||
def emit_session_retrieval_error(
|
||||
self,
|
||||
graph_execution_state_id: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
) -> None:
|
||||
"""Emitted when session retrieval fails"""
|
||||
self.__emit_session_event(
|
||||
event_name="session_retrieval_error",
|
||||
payload=dict(
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
error_type=error_type,
|
||||
error=error,
|
||||
),
|
||||
)
|
||||
|
||||
def emit_invocation_retrieval_error(
|
||||
self,
|
||||
graph_execution_state_id: str,
|
||||
node_id: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
) -> None:
|
||||
"""Emitted when invocation retrieval fails"""
|
||||
self.__emit_session_event(
|
||||
event_name="invocation_retrieval_error",
|
||||
payload=dict(
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node_id=node_id,
|
||||
error_type=error_type,
|
||||
error=error,
|
||||
),
|
||||
)
|
||||
|
@ -600,7 +600,7 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
"""
|
||||
Return list of all models found in the designated directory.
|
||||
"""
|
||||
search = FindModels(directory,self.logger)
|
||||
search = FindModels([directory], self.logger)
|
||||
return search.list_models()
|
||||
|
||||
def sync_to_config(self):
|
||||
|
@ -39,21 +39,41 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
try:
|
||||
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
|
||||
except Exception as e:
|
||||
logger.debug("Exception while getting from queue: %s" % e)
|
||||
self.__invoker.services.logger.error("Exception while getting from queue:\n%s" % e)
|
||||
|
||||
if not queue_item: # Probably stopping
|
||||
# do not hammer the queue
|
||||
time.sleep(0.5)
|
||||
continue
|
||||
|
||||
try:
|
||||
graph_execution_state = (
|
||||
self.__invoker.services.graph_execution_manager.get(
|
||||
queue_item.graph_execution_state_id
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
|
||||
self.__invoker.services.events.emit_session_retrieval_error(
|
||||
graph_execution_state_id=queue_item.graph_execution_state_id,
|
||||
error_type=e.__class__.__name__,
|
||||
error=traceback.format_exc(),
|
||||
)
|
||||
continue
|
||||
|
||||
try:
|
||||
invocation = graph_execution_state.execution_graph.get_node(
|
||||
queue_item.invocation_id
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
|
||||
self.__invoker.services.events.emit_invocation_retrieval_error(
|
||||
graph_execution_state_id=queue_item.graph_execution_state_id,
|
||||
node_id=queue_item.invocation_id,
|
||||
error_type=e.__class__.__name__,
|
||||
error=traceback.format_exc(),
|
||||
)
|
||||
continue
|
||||
|
||||
# get the source node id to provide to clients (the prepared node id is not as useful)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
|
||||
@ -114,11 +134,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
graph_execution_state
|
||||
)
|
||||
|
||||
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
|
||||
# Send error event
|
||||
self.__invoker.services.events.emit_invocation_error(
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
node=invocation.dict(),
|
||||
source_node_id=source_node_id,
|
||||
error_type=e.__class__.__name__,
|
||||
error=error,
|
||||
)
|
||||
|
||||
@ -136,11 +158,12 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
try:
|
||||
self.__invoker.invoke(graph_execution_state, invoke_all=True)
|
||||
except Exception as e:
|
||||
logger.error("Error while invoking: %s" % e)
|
||||
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
|
||||
self.__invoker.services.events.emit_invocation_error(
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
node=invocation.dict(),
|
||||
source_node_id=source_node_id,
|
||||
error_type=e.__class__.__name__,
|
||||
error=traceback.format_exc()
|
||||
)
|
||||
elif is_complete:
|
||||
|
@ -14,8 +14,9 @@ def get_datetime_from_iso_timestamp(iso_timestamp: str) -> datetime.datetime:
|
||||
return datetime.datetime.fromisoformat(iso_timestamp)
|
||||
|
||||
|
||||
SEED_MAX = np.iinfo(np.int32).max
|
||||
SEED_MAX = np.iinfo(np.uint32).max
|
||||
|
||||
|
||||
def get_random_seed():
|
||||
return np.random.randint(0, SEED_MAX)
|
||||
rng = np.random.default_rng(seed=0)
|
||||
return int(rng.integers(0, SEED_MAX))
|
||||
|
@ -474,7 +474,7 @@ class ModelPatcher:
|
||||
|
||||
@staticmethod
|
||||
def _lora_forward_hook(
|
||||
applied_loras: List[Tuple[LoraModel, float]],
|
||||
applied_loras: List[Tuple[LoRAModel, float]],
|
||||
layer_name: str,
|
||||
):
|
||||
|
||||
@ -519,7 +519,7 @@ class ModelPatcher:
|
||||
def apply_lora(
|
||||
cls,
|
||||
model: torch.nn.Module,
|
||||
loras: List[Tuple[LoraModel, float]],
|
||||
loras: List[Tuple[LoRAModel, float]],
|
||||
prefix: str,
|
||||
):
|
||||
original_weights = dict()
|
||||
|
@ -98,6 +98,6 @@ class FindModels(ModelSearch):
|
||||
|
||||
def list_models(self) -> List[Path]:
|
||||
self.search()
|
||||
return self.models_found
|
||||
return list(self.models_found)
|
||||
|
||||
|
||||
|
@ -10,6 +10,7 @@ from .base import (
|
||||
SubModelType,
|
||||
classproperty,
|
||||
InvalidModelException,
|
||||
ModelNotFoundException,
|
||||
)
|
||||
# TODO: naming
|
||||
from ..lora import LoRAModel as LoRAModelRaw
|
||||
|
@ -1,2 +1,2 @@
|
||||
export const NUMPY_RAND_MIN = 0;
|
||||
export const NUMPY_RAND_MAX = 2147483647;
|
||||
export const NUMPY_RAND_MAX = 4294967295;
|
||||
|
@ -65,11 +65,14 @@ import { addGeneratorProgressEventListener as addGeneratorProgressListener } fro
|
||||
import { addGraphExecutionStateCompleteEventListener as addGraphExecutionStateCompleteListener } from './listeners/socketio/socketGraphExecutionStateComplete';
|
||||
import { addInvocationCompleteEventListener as addInvocationCompleteListener } from './listeners/socketio/socketInvocationComplete';
|
||||
import { addInvocationErrorEventListener as addInvocationErrorListener } from './listeners/socketio/socketInvocationError';
|
||||
import { addInvocationRetrievalErrorEventListener } from './listeners/socketio/socketInvocationRetrievalError';
|
||||
import { addInvocationStartedEventListener as addInvocationStartedListener } from './listeners/socketio/socketInvocationStarted';
|
||||
import { addModelLoadEventListener } from './listeners/socketio/socketModelLoad';
|
||||
import { addSessionRetrievalErrorEventListener } from './listeners/socketio/socketSessionRetrievalError';
|
||||
import { addSocketSubscribedEventListener as addSocketSubscribedListener } from './listeners/socketio/socketSubscribed';
|
||||
import { addSocketUnsubscribedEventListener as addSocketUnsubscribedListener } from './listeners/socketio/socketUnsubscribed';
|
||||
import { addStagingAreaImageSavedListener } from './listeners/stagingAreaImageSaved';
|
||||
import { addTabChangedListener } from './listeners/tabChanged';
|
||||
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
|
||||
import { addUserInvokedCanvasListener } from './listeners/userInvokedCanvas';
|
||||
import { addUserInvokedImageToImageListener } from './listeners/userInvokedImageToImage';
|
||||
@ -153,6 +156,8 @@ addSocketDisconnectedListener();
|
||||
addSocketSubscribedListener();
|
||||
addSocketUnsubscribedListener();
|
||||
addModelLoadEventListener();
|
||||
addSessionRetrievalErrorEventListener();
|
||||
addInvocationRetrievalErrorEventListener();
|
||||
|
||||
// Session Created
|
||||
addSessionCreatedPendingListener();
|
||||
@ -197,3 +202,6 @@ addFirstListImagesListener();
|
||||
|
||||
// Ad-hoc upscale workflwo
|
||||
addUpscaleRequestedListener();
|
||||
|
||||
// Tab Change
|
||||
addTabChangedListener();
|
||||
|
@ -1,4 +1,8 @@
|
||||
import { setInfillMethod } from 'features/parameters/store/generationSlice';
|
||||
import {
|
||||
shouldUseNSFWCheckerChanged,
|
||||
shouldUseWatermarkerChanged,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import { appInfoApi } from 'services/api/endpoints/appInfo';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
@ -6,12 +10,21 @@ export const addAppConfigReceivedListener = () => {
|
||||
startAppListening({
|
||||
matcher: appInfoApi.endpoints.getAppConfig.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
const { infill_methods } = action.payload;
|
||||
const { infill_methods, nsfw_methods, watermarking_methods } =
|
||||
action.payload;
|
||||
const infillMethod = getState().generation.infillMethod;
|
||||
|
||||
if (!infill_methods.includes(infillMethod)) {
|
||||
dispatch(setInfillMethod(infill_methods[0]));
|
||||
}
|
||||
|
||||
if (!nsfw_methods.includes('nsfw_checker')) {
|
||||
dispatch(shouldUseNSFWCheckerChanged(false));
|
||||
}
|
||||
|
||||
if (!watermarking_methods.includes('invisible_watermark')) {
|
||||
dispatch(shouldUseWatermarkerChanged(false));
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
|
@ -9,13 +9,19 @@ import {
|
||||
zMainModel,
|
||||
zVaeModel,
|
||||
} from 'features/parameters/types/parameterSchemas';
|
||||
import {
|
||||
refinerModelChanged,
|
||||
setShouldUseSDXLRefiner,
|
||||
} from 'features/sdxl/store/sdxlSlice';
|
||||
import { forEach, some } from 'lodash-es';
|
||||
import { modelsApi } from 'services/api/endpoints/models';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
export const addModelsLoadedListener = () => {
|
||||
startAppListening({
|
||||
matcher: modelsApi.endpoints.getMainModels.matchFulfilled,
|
||||
predicate: (state, action) =>
|
||||
modelsApi.endpoints.getMainModels.matchFulfilled(action) &&
|
||||
!action.meta.arg.originalArgs.includes('sdxl-refiner'),
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
// models loaded, we need to ensure the selected model is available and if not, select the first one
|
||||
const log = logger('models');
|
||||
@ -59,6 +65,54 @@ export const addModelsLoadedListener = () => {
|
||||
dispatch(modelChanged(result.data));
|
||||
},
|
||||
});
|
||||
startAppListening({
|
||||
predicate: (state, action) =>
|
||||
modelsApi.endpoints.getMainModels.matchFulfilled(action) &&
|
||||
action.meta.arg.originalArgs.includes('sdxl-refiner'),
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
// models loaded, we need to ensure the selected model is available and if not, select the first one
|
||||
const log = logger('models');
|
||||
log.info(
|
||||
{ models: action.payload.entities },
|
||||
`SDXL Refiner models loaded (${action.payload.ids.length})`
|
||||
);
|
||||
|
||||
const currentModel = getState().sdxl.refinerModel;
|
||||
|
||||
const isCurrentModelAvailable = some(
|
||||
action.payload.entities,
|
||||
(m) =>
|
||||
m?.model_name === currentModel?.model_name &&
|
||||
m?.base_model === currentModel?.base_model
|
||||
);
|
||||
|
||||
if (isCurrentModelAvailable) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstModelId = action.payload.ids[0];
|
||||
const firstModel = action.payload.entities[firstModelId];
|
||||
|
||||
if (!firstModel) {
|
||||
// No models loaded at all
|
||||
dispatch(refinerModelChanged(null));
|
||||
dispatch(setShouldUseSDXLRefiner(false));
|
||||
return;
|
||||
}
|
||||
|
||||
const result = zMainModel.safeParse(firstModel);
|
||||
|
||||
if (!result.success) {
|
||||
log.error(
|
||||
{ error: result.error.format() },
|
||||
'Failed to parse SDXL Refiner Model'
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(refinerModelChanged(result.data));
|
||||
},
|
||||
});
|
||||
startAppListening({
|
||||
matcher: modelsApi.endpoints.getVaeModels.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
|
@ -33,12 +33,11 @@ export const addSessionCreatedRejectedListener = () => {
|
||||
effect: (action) => {
|
||||
const log = logger('session');
|
||||
if (action.payload) {
|
||||
const { error } = action.payload;
|
||||
const { error, status } = action.payload;
|
||||
const graph = parseify(action.meta.arg);
|
||||
const stringifiedError = JSON.stringify(error);
|
||||
log.error(
|
||||
{ graph, error: serializeError(error) },
|
||||
`Problem creating session: ${stringifiedError}`
|
||||
{ graph, status, error: serializeError(error) },
|
||||
`Problem creating session`
|
||||
);
|
||||
}
|
||||
},
|
||||
|
@ -31,13 +31,12 @@ export const addSessionInvokedRejectedListener = () => {
|
||||
const { session_id } = action.meta.arg;
|
||||
if (action.payload) {
|
||||
const { error } = action.payload;
|
||||
const stringifiedError = JSON.stringify(error);
|
||||
log.error(
|
||||
{
|
||||
session_id,
|
||||
error: serializeError(error),
|
||||
},
|
||||
`Problem invoking session: ${stringifiedError}`
|
||||
`Problem invoking session`
|
||||
);
|
||||
}
|
||||
},
|
||||
|
@ -1,4 +1,6 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { LIST_TAG } from 'services/api';
|
||||
import { appInfoApi } from 'services/api/endpoints/appInfo';
|
||||
import { modelsApi } from 'services/api/endpoints/models';
|
||||
import { receivedOpenAPISchema } from 'services/api/thunks/schema';
|
||||
import { appSocketConnected, socketConnected } from 'services/events/actions';
|
||||
@ -24,11 +26,18 @@ export const addSocketConnectedEventListener = () => {
|
||||
dispatch(appSocketConnected(action.payload));
|
||||
|
||||
// update all server state
|
||||
dispatch(modelsApi.endpoints.getMainModels.initiate());
|
||||
dispatch(modelsApi.endpoints.getControlNetModels.initiate());
|
||||
dispatch(modelsApi.endpoints.getLoRAModels.initiate());
|
||||
dispatch(modelsApi.endpoints.getTextualInversionModels.initiate());
|
||||
dispatch(modelsApi.endpoints.getVaeModels.initiate());
|
||||
dispatch(
|
||||
modelsApi.util.invalidateTags([
|
||||
{ type: 'MainModel', id: LIST_TAG },
|
||||
{ type: 'SDXLRefinerModel', id: LIST_TAG },
|
||||
{ type: 'LoRAModel', id: LIST_TAG },
|
||||
{ type: 'ControlNetModel', id: LIST_TAG },
|
||||
{ type: 'VaeModel', id: LIST_TAG },
|
||||
{ type: 'TextualInversionModel', id: LIST_TAG },
|
||||
{ type: 'ScannedModels', id: LIST_TAG },
|
||||
])
|
||||
);
|
||||
dispatch(appInfoApi.util.invalidateTags(['AppConfig', 'AppVersion']));
|
||||
},
|
||||
});
|
||||
};
|
||||
|
@ -0,0 +1,20 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import {
|
||||
appSocketInvocationRetrievalError,
|
||||
socketInvocationRetrievalError,
|
||||
} from 'services/events/actions';
|
||||
import { startAppListening } from '../..';
|
||||
|
||||
export const addInvocationRetrievalErrorEventListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: socketInvocationRetrievalError,
|
||||
effect: (action, { dispatch }) => {
|
||||
const log = logger('socketio');
|
||||
log.error(
|
||||
action.payload,
|
||||
`Invocation retrieval error (${action.payload.data.graph_execution_state_id})`
|
||||
);
|
||||
dispatch(appSocketInvocationRetrievalError(action.payload));
|
||||
},
|
||||
});
|
||||
};
|
@ -21,7 +21,10 @@ export const addInvocationStartedEventListener = () => {
|
||||
return;
|
||||
}
|
||||
|
||||
log.debug(action.payload, 'Invocation started');
|
||||
log.debug(
|
||||
action.payload,
|
||||
`Invocation started (${action.payload.data.node.type})`
|
||||
);
|
||||
dispatch(appSocketInvocationStarted(action.payload));
|
||||
},
|
||||
});
|
||||
|
@ -0,0 +1,20 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import {
|
||||
appSocketSessionRetrievalError,
|
||||
socketSessionRetrievalError,
|
||||
} from 'services/events/actions';
|
||||
import { startAppListening } from '../..';
|
||||
|
||||
export const addSessionRetrievalErrorEventListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: socketSessionRetrievalError,
|
||||
effect: (action, { dispatch }) => {
|
||||
const log = logger('socketio');
|
||||
log.error(
|
||||
action.payload,
|
||||
`Session retrieval error (${action.payload.data.graph_execution_state_id})`
|
||||
);
|
||||
dispatch(appSocketSessionRetrievalError(action.payload));
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,56 @@
|
||||
import { modelChanged } from 'features/parameters/store/generationSlice';
|
||||
import { setActiveTab } from 'features/ui/store/uiSlice';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { NON_REFINER_BASE_MODELS } from 'services/api/constants';
|
||||
import {
|
||||
MainModelConfigEntity,
|
||||
modelsApi,
|
||||
} from 'services/api/endpoints/models';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
export const addTabChangedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: setActiveTab,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const activeTabName = action.payload;
|
||||
if (activeTabName === 'unifiedCanvas') {
|
||||
// grab the models from RTK Query cache
|
||||
const { data } = modelsApi.endpoints.getMainModels.select(
|
||||
NON_REFINER_BASE_MODELS
|
||||
)(getState());
|
||||
|
||||
if (!data) {
|
||||
// no models yet, so we can't do anything
|
||||
dispatch(modelChanged(null));
|
||||
return;
|
||||
}
|
||||
|
||||
// need to filter out all the invalid canvas models (currently, this is just sdxl)
|
||||
const validCanvasModels: MainModelConfigEntity[] = [];
|
||||
|
||||
forEach(data.entities, (entity) => {
|
||||
if (!entity) {
|
||||
return;
|
||||
}
|
||||
if (['sd-1', 'sd-2'].includes(entity.base_model)) {
|
||||
validCanvasModels.push(entity);
|
||||
}
|
||||
});
|
||||
|
||||
// this could still be undefined even tho TS doesn't say so
|
||||
const firstValidCanvasModel = validCanvasModels[0];
|
||||
|
||||
if (!firstValidCanvasModel) {
|
||||
// uh oh, we have no models that are valid for canvas
|
||||
dispatch(modelChanged(null));
|
||||
return;
|
||||
}
|
||||
|
||||
// only store the model name and base model in redux
|
||||
const { base_model, model_name } = firstValidCanvasModel;
|
||||
|
||||
dispatch(modelChanged({ base_model, model_name }));
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -39,8 +39,22 @@ export const addUserInvokedCanvasListener = () => {
|
||||
|
||||
const state = getState();
|
||||
|
||||
const {
|
||||
layerState,
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea,
|
||||
} = state.canvas;
|
||||
|
||||
// Build canvas blobs
|
||||
const canvasBlobsAndImageData = await getCanvasData(state);
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
layerState,
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
log.error('Unable to create canvas data');
|
||||
|
@ -3,6 +3,7 @@ import { userInvoked } from 'app/store/actions';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { imageToImageGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { buildLinearImageToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearImageToImageGraph';
|
||||
import { buildLinearSDXLImageToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearSDXLImageToImageGraph';
|
||||
import { sessionReadyToInvoke } from 'features/system/store/actions';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { startAppListening } from '..';
|
||||
@ -14,8 +15,16 @@ export const addUserInvokedImageToImageListener = () => {
|
||||
effect: async (action, { getState, dispatch, take }) => {
|
||||
const log = logger('session');
|
||||
const state = getState();
|
||||
const model = state.generation.model;
|
||||
|
||||
let graph;
|
||||
|
||||
if (model && model.base_model === 'sdxl') {
|
||||
graph = buildLinearSDXLImageToImageGraph(state);
|
||||
} else {
|
||||
graph = buildLinearImageToImageGraph(state);
|
||||
}
|
||||
|
||||
const graph = buildLinearImageToImageGraph(state);
|
||||
dispatch(imageToImageGraphBuilt(graph));
|
||||
log.debug({ graph: parseify(graph) }, 'Image to Image graph built');
|
||||
|
||||
|
@ -2,6 +2,7 @@ import { logger } from 'app/logging/logger';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { textToImageGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { buildLinearSDXLTextToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearSDXLTextToImageGraph';
|
||||
import { buildLinearTextToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearTextToImageGraph';
|
||||
import { sessionReadyToInvoke } from 'features/system/store/actions';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
@ -14,8 +15,15 @@ export const addUserInvokedTextToImageListener = () => {
|
||||
effect: async (action, { getState, dispatch, take }) => {
|
||||
const log = logger('session');
|
||||
const state = getState();
|
||||
const model = state.generation.model;
|
||||
|
||||
const graph = buildLinearTextToImageGraph(state);
|
||||
let graph;
|
||||
|
||||
if (model && model.base_model === 'sdxl') {
|
||||
graph = buildLinearSDXLTextToImageGraph(state);
|
||||
} else {
|
||||
graph = buildLinearTextToImageGraph(state);
|
||||
}
|
||||
|
||||
dispatch(textToImageGraphBuilt(graph));
|
||||
|
||||
|
@ -15,6 +15,7 @@ import loraReducer from 'features/lora/store/loraSlice';
|
||||
import nodesReducer from 'features/nodes/store/nodesSlice';
|
||||
import generationReducer from 'features/parameters/store/generationSlice';
|
||||
import postprocessingReducer from 'features/parameters/store/postprocessingSlice';
|
||||
import sdxlReducer from 'features/sdxl/store/sdxlSlice';
|
||||
import configReducer from 'features/system/store/configSlice';
|
||||
import systemReducer from 'features/system/store/systemSlice';
|
||||
import modelmanagerReducer from 'features/ui/components/tabs/ModelManager/store/modelManagerSlice';
|
||||
@ -47,6 +48,7 @@ const allReducers = {
|
||||
imageDeletion: imageDeletionReducer,
|
||||
lora: loraReducer,
|
||||
modelmanager: modelmanagerReducer,
|
||||
sdxl: sdxlReducer,
|
||||
[api.reducerPath]: api.reducer,
|
||||
};
|
||||
|
||||
@ -58,6 +60,7 @@ const rememberedKeys: (keyof typeof allReducers)[] = [
|
||||
'canvas',
|
||||
'gallery',
|
||||
'generation',
|
||||
'sdxl',
|
||||
'nodes',
|
||||
'postprocessing',
|
||||
'system',
|
||||
|
@ -95,7 +95,8 @@ export type AppFeature =
|
||||
| 'localization'
|
||||
| 'consoleLogging'
|
||||
| 'dynamicPrompting'
|
||||
| 'batches';
|
||||
| 'batches'
|
||||
| 'syncModels';
|
||||
|
||||
/**
|
||||
* A disable-able Stable Diffusion feature
|
||||
|
@ -5,6 +5,7 @@ import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
// import { validateSeedWeights } from 'common/util/seedWeightPairs';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { NON_REFINER_BASE_MODELS } from 'services/api/constants';
|
||||
import { modelsApi } from '../../services/api/endpoints/models';
|
||||
|
||||
const readinessSelector = createSelector(
|
||||
@ -24,7 +25,7 @@ const readinessSelector = createSelector(
|
||||
}
|
||||
|
||||
const { isSuccess: mainModelsSuccessfullyLoaded } =
|
||||
modelsApi.endpoints.getMainModels.select()(state);
|
||||
modelsApi.endpoints.getMainModels.select(NON_REFINER_BASE_MODELS)(state);
|
||||
if (!mainModelsSuccessfullyLoaded) {
|
||||
isReady = false;
|
||||
reasonsWhyNotReady.push('Models are not loaded');
|
||||
|
@ -2,8 +2,8 @@ import { Box, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import GenerationModeStatusText from 'features/parameters/components/Parameters/Canvas/GenerationModeStatusText';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import roundToHundreth from '../util/roundToHundreth';
|
||||
import IAICanvasStatusTextCursorPos from './IAICanvasStatusText/IAICanvasStatusTextCursorPos';
|
||||
@ -110,6 +110,7 @@ const IAICanvasStatusText = () => {
|
||||
},
|
||||
}}
|
||||
>
|
||||
<GenerationModeStatusText />
|
||||
<Box
|
||||
style={{
|
||||
color: activeLayerColor,
|
||||
|
@ -2,7 +2,15 @@ import { Box, ButtonGroup, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
|
||||
import { useSingleAndDoubleClick } from 'common/hooks/useSingleAndDoubleClick';
|
||||
import {
|
||||
canvasCopiedToClipboard,
|
||||
canvasDownloadedAsImage,
|
||||
canvasMerged,
|
||||
canvasSavedToGallery,
|
||||
} from 'features/canvas/store/actions';
|
||||
import {
|
||||
canvasSelector,
|
||||
isStagingSelector,
|
||||
@ -21,16 +29,8 @@ import {
|
||||
} from 'features/canvas/store/canvasTypes';
|
||||
import { getCanvasBaseLayer } from 'features/canvas/util/konvaInstanceProvider';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { useCopyImageToClipboard } from 'features/ui/hooks/useCopyImageToClipboard';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
|
||||
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
|
||||
import {
|
||||
canvasCopiedToClipboard,
|
||||
canvasDownloadedAsImage,
|
||||
canvasMerged,
|
||||
canvasSavedToGallery,
|
||||
} from 'features/canvas/store/actions';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import {
|
||||
@ -48,7 +48,6 @@ import IAICanvasRedoButton from './IAICanvasRedoButton';
|
||||
import IAICanvasSettingsButtonPopover from './IAICanvasSettingsButtonPopover';
|
||||
import IAICanvasToolChooserOptions from './IAICanvasToolChooserOptions';
|
||||
import IAICanvasUndoButton from './IAICanvasUndoButton';
|
||||
import { useCopyImageToClipboard } from 'features/ui/hooks/useCopyImageToClipboard';
|
||||
|
||||
export const selector = createSelector(
|
||||
[systemSelector, canvasSelector, isStagingSelector],
|
||||
@ -220,7 +219,7 @@ const IAICanvasToolbar = () => {
|
||||
}}
|
||||
>
|
||||
<Box w={24}>
|
||||
<IAIMantineSearchableSelect
|
||||
<IAIMantineSelect
|
||||
tooltip={`${t('unifiedCanvas.layer')} (Q)`}
|
||||
value={layer}
|
||||
data={LAYER_NAMES_DICT}
|
||||
|
@ -0,0 +1,72 @@
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { GenerationMode } from 'features/canvas/store/canvasTypes';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { getCanvasGenerationMode } from 'features/canvas/util/getCanvasGenerationMode';
|
||||
import { useEffect, useState } from 'react';
|
||||
import { useDebounce } from 'react-use';
|
||||
|
||||
export const useCanvasGenerationMode = () => {
|
||||
const layerState = useAppSelector((state) => state.canvas.layerState);
|
||||
|
||||
const boundingBoxCoordinates = useAppSelector(
|
||||
(state) => state.canvas.boundingBoxCoordinates
|
||||
);
|
||||
const boundingBoxDimensions = useAppSelector(
|
||||
(state) => state.canvas.boundingBoxDimensions
|
||||
);
|
||||
const isMaskEnabled = useAppSelector((state) => state.canvas.isMaskEnabled);
|
||||
|
||||
const shouldPreserveMaskedArea = useAppSelector(
|
||||
(state) => state.canvas.shouldPreserveMaskedArea
|
||||
);
|
||||
const [generationMode, setGenerationMode] = useState<
|
||||
GenerationMode | undefined
|
||||
>();
|
||||
|
||||
useEffect(() => {
|
||||
setGenerationMode(undefined);
|
||||
}, [
|
||||
layerState,
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea,
|
||||
]);
|
||||
|
||||
useDebounce(
|
||||
async () => {
|
||||
// Build canvas blobs
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
layerState,
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
return;
|
||||
}
|
||||
|
||||
const { baseImageData, maskImageData } = canvasBlobsAndImageData;
|
||||
|
||||
// Determine the generation mode
|
||||
const generationMode = getCanvasGenerationMode(
|
||||
baseImageData,
|
||||
maskImageData
|
||||
);
|
||||
|
||||
setGenerationMode(generationMode);
|
||||
},
|
||||
1000,
|
||||
[
|
||||
layerState,
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea,
|
||||
]
|
||||
);
|
||||
|
||||
return generationMode;
|
||||
};
|
@ -168,4 +168,7 @@ export interface CanvasState {
|
||||
stageDimensions: Dimensions;
|
||||
stageScale: number;
|
||||
tool: CanvasTool;
|
||||
generationMode?: GenerationMode;
|
||||
}
|
||||
|
||||
export type GenerationMode = 'txt2img' | 'img2img' | 'inpaint' | 'outpaint';
|
||||
|
@ -1,6 +1,10 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { isCanvasMaskLine } from '../store/canvasTypes';
|
||||
import { Vector2d } from 'konva/lib/types';
|
||||
import {
|
||||
CanvasLayerState,
|
||||
Dimensions,
|
||||
isCanvasMaskLine,
|
||||
} from '../store/canvasTypes';
|
||||
import createMaskStage from './createMaskStage';
|
||||
import { getCanvasBaseLayer, getCanvasStage } from './konvaInstanceProvider';
|
||||
import { konvaNodeToBlob } from './konvaNodeToBlob';
|
||||
@ -9,7 +13,13 @@ import { konvaNodeToImageData } from './konvaNodeToImageData';
|
||||
/**
|
||||
* Gets Blob and ImageData objects for the base and mask layers
|
||||
*/
|
||||
export const getCanvasData = async (state: RootState) => {
|
||||
export const getCanvasData = async (
|
||||
layerState: CanvasLayerState,
|
||||
boundingBoxCoordinates: Vector2d,
|
||||
boundingBoxDimensions: Dimensions,
|
||||
isMaskEnabled: boolean,
|
||||
shouldPreserveMaskedArea: boolean
|
||||
) => {
|
||||
const log = logger('canvas');
|
||||
|
||||
const canvasBaseLayer = getCanvasBaseLayer();
|
||||
@ -20,14 +30,6 @@ export const getCanvasData = async (state: RootState) => {
|
||||
return;
|
||||
}
|
||||
|
||||
const {
|
||||
layerState: { objects },
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea,
|
||||
} = state.canvas;
|
||||
|
||||
const boundingBox = {
|
||||
...boundingBoxCoordinates,
|
||||
...boundingBoxDimensions,
|
||||
@ -58,7 +60,7 @@ export const getCanvasData = async (state: RootState) => {
|
||||
|
||||
// For the mask layer, use the normal boundingBox
|
||||
const maskStage = await createMaskStage(
|
||||
isMaskEnabled ? objects.filter(isCanvasMaskLine) : [], // only include mask lines, and only if mask is enabled
|
||||
isMaskEnabled ? layerState.objects.filter(isCanvasMaskLine) : [], // only include mask lines, and only if mask is enabled
|
||||
boundingBox,
|
||||
shouldPreserveMaskedArea
|
||||
);
|
||||
|
@ -2,11 +2,12 @@ import {
|
||||
areAnyPixelsBlack,
|
||||
getImageDataTransparency,
|
||||
} from 'common/util/arrayBuffer';
|
||||
import { GenerationMode } from '../store/canvasTypes';
|
||||
|
||||
export const getCanvasGenerationMode = (
|
||||
baseImageData: ImageData,
|
||||
maskImageData: ImageData
|
||||
) => {
|
||||
): GenerationMode => {
|
||||
const {
|
||||
isPartiallyTransparent: baseIsPartiallyTransparent,
|
||||
isFullyTransparent: baseIsFullyTransparent,
|
||||
|
@ -20,6 +20,7 @@ import StringInputFieldComponent from './fields/StringInputFieldComponent';
|
||||
import UnetInputFieldComponent from './fields/UnetInputFieldComponent';
|
||||
import VaeInputFieldComponent from './fields/VaeInputFieldComponent';
|
||||
import VaeModelInputFieldComponent from './fields/VaeModelInputFieldComponent';
|
||||
import RefinerModelInputFieldComponent from './fields/RefinerModelInputFieldComponent';
|
||||
|
||||
type InputFieldComponentProps = {
|
||||
nodeId: string;
|
||||
@ -155,6 +156,16 @@ const InputFieldComponent = (props: InputFieldComponentProps) => {
|
||||
);
|
||||
}
|
||||
|
||||
if (type === 'refiner_model' && template.type === 'refiner_model') {
|
||||
return (
|
||||
<RefinerModelInputFieldComponent
|
||||
nodeId={nodeId}
|
||||
field={field}
|
||||
template={template}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (type === 'vae_model' && template.type === 'vae_model') {
|
||||
return (
|
||||
<VaeModelInputFieldComponent
|
||||
|
@ -14,8 +14,10 @@ import SyncModelsButton from 'features/ui/components/tabs/ModelManager/subpanels
|
||||
import { forEach } from 'lodash-es';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { NON_REFINER_BASE_MODELS } from 'services/api/constants';
|
||||
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
|
||||
import { FieldComponentProps } from './types';
|
||||
import { useFeatureStatus } from '../../../system/hooks/useFeatureStatus';
|
||||
|
||||
const ModelInputFieldComponent = (
|
||||
props: FieldComponentProps<MainModelInputFieldValue, ModelInputFieldTemplate>
|
||||
@ -24,8 +26,11 @@ const ModelInputFieldComponent = (
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const isSyncModelEnabled = useFeatureStatus('syncModels').isFeatureEnabled;
|
||||
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery();
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery(
|
||||
NON_REFINER_BASE_MODELS
|
||||
);
|
||||
|
||||
const data = useMemo(() => {
|
||||
if (!mainModels) {
|
||||
@ -103,9 +108,11 @@ const ModelInputFieldComponent = (
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
/>
|
||||
{isSyncModelEnabled && (
|
||||
<Box mt={7}>
|
||||
<SyncModelsButton iconMode />
|
||||
</Box>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -0,0 +1,120 @@
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
|
||||
import { fieldValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import {
|
||||
RefinerModelInputFieldTemplate,
|
||||
RefinerModelInputFieldValue,
|
||||
} from 'features/nodes/types/types';
|
||||
import { MODEL_TYPE_MAP } from 'features/parameters/types/constants';
|
||||
import { modelIdToMainModelParam } from 'features/parameters/util/modelIdToMainModelParam';
|
||||
import SyncModelsButton from 'features/ui/components/tabs/ModelManager/subpanels/ModelManagerSettingsPanel/SyncModelsButton';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { REFINER_BASE_MODELS } from 'services/api/constants';
|
||||
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
|
||||
import { FieldComponentProps } from './types';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
|
||||
const RefinerModelInputFieldComponent = (
|
||||
props: FieldComponentProps<
|
||||
RefinerModelInputFieldValue,
|
||||
RefinerModelInputFieldTemplate
|
||||
>
|
||||
) => {
|
||||
const { nodeId, field } = props;
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const isSyncModelEnabled = useFeatureStatus('syncModels').isFeatureEnabled;
|
||||
const { data: refinerModels, isLoading } =
|
||||
useGetMainModelsQuery(REFINER_BASE_MODELS);
|
||||
|
||||
const data = useMemo(() => {
|
||||
if (!refinerModels) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const data: SelectItem[] = [];
|
||||
|
||||
forEach(refinerModels.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.model_name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
|
||||
return data;
|
||||
}, [refinerModels]);
|
||||
|
||||
// grab the full model entity from the RTK Query cache
|
||||
// TODO: maybe we should just store the full model entity in state?
|
||||
const selectedModel = useMemo(
|
||||
() =>
|
||||
refinerModels?.entities[
|
||||
`${field.value?.base_model}/main/${field.value?.model_name}`
|
||||
] ?? null,
|
||||
[field.value?.base_model, field.value?.model_name, refinerModels?.entities]
|
||||
);
|
||||
|
||||
const handleChangeModel = useCallback(
|
||||
(v: string | null) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
|
||||
const newModel = modelIdToMainModelParam(v);
|
||||
|
||||
if (!newModel) {
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(
|
||||
fieldValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value: newModel,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
);
|
||||
|
||||
return isLoading ? (
|
||||
<IAIMantineSearchableSelect
|
||||
label={t('modelManager.model')}
|
||||
placeholder="Loading..."
|
||||
disabled={true}
|
||||
data={[]}
|
||||
/>
|
||||
) : (
|
||||
<Flex w="100%" alignItems="center" gap={2}>
|
||||
<IAIMantineSearchableSelect
|
||||
tooltip={selectedModel?.description}
|
||||
label={
|
||||
selectedModel?.base_model && MODEL_TYPE_MAP[selectedModel?.base_model]
|
||||
}
|
||||
value={selectedModel?.id}
|
||||
placeholder={data.length > 0 ? 'Select a model' : 'No models available'}
|
||||
data={data}
|
||||
error={data.length === 0}
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
/>
|
||||
{isSyncModelEnabled && (
|
||||
<Box mt={7}>
|
||||
<SyncModelsButton iconMode />
|
||||
</Box>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(RefinerModelInputFieldComponent);
|
@ -17,6 +17,7 @@ export const FIELD_TYPE_MAP: Record<string, FieldType> = {
|
||||
ClipField: 'clip',
|
||||
VaeField: 'vae',
|
||||
model: 'model',
|
||||
refiner_model: 'refiner_model',
|
||||
vae_model: 'vae_model',
|
||||
lora_model: 'lora_model',
|
||||
controlnet_model: 'controlnet_model',
|
||||
@ -120,6 +121,12 @@ export const FIELDS: Record<FieldType, FieldUIConfig> = {
|
||||
title: 'Model',
|
||||
description: 'Models are models.',
|
||||
},
|
||||
refiner_model: {
|
||||
color: 'teal',
|
||||
colorCssVar: getColorTokenCssVariable('teal'),
|
||||
title: 'Refiner Model',
|
||||
description: 'Models are models.',
|
||||
},
|
||||
vae_model: {
|
||||
color: 'teal',
|
||||
colorCssVar: getColorTokenCssVariable('teal'),
|
||||
|
@ -70,6 +70,7 @@ export type FieldType =
|
||||
| 'vae'
|
||||
| 'control'
|
||||
| 'model'
|
||||
| 'refiner_model'
|
||||
| 'vae_model'
|
||||
| 'lora_model'
|
||||
| 'controlnet_model'
|
||||
@ -100,6 +101,7 @@ export type InputFieldValue =
|
||||
| ControlInputFieldValue
|
||||
| EnumInputFieldValue
|
||||
| MainModelInputFieldValue
|
||||
| RefinerModelInputFieldValue
|
||||
| VaeModelInputFieldValue
|
||||
| LoRAModelInputFieldValue
|
||||
| ControlNetModelInputFieldValue
|
||||
@ -128,6 +130,7 @@ export type InputFieldTemplate =
|
||||
| ControlInputFieldTemplate
|
||||
| EnumInputFieldTemplate
|
||||
| ModelInputFieldTemplate
|
||||
| RefinerModelInputFieldTemplate
|
||||
| VaeModelInputFieldTemplate
|
||||
| LoRAModelInputFieldTemplate
|
||||
| ControlNetModelInputFieldTemplate
|
||||
@ -243,6 +246,11 @@ export type MainModelInputFieldValue = FieldValueBase & {
|
||||
value?: MainModelParam;
|
||||
};
|
||||
|
||||
export type RefinerModelInputFieldValue = FieldValueBase & {
|
||||
type: 'refiner_model';
|
||||
value?: MainModelParam;
|
||||
};
|
||||
|
||||
export type VaeModelInputFieldValue = FieldValueBase & {
|
||||
type: 'vae_model';
|
||||
value?: VaeModelParam;
|
||||
@ -367,6 +375,11 @@ export type ModelInputFieldTemplate = InputFieldTemplateBase & {
|
||||
type: 'model';
|
||||
};
|
||||
|
||||
export type RefinerModelInputFieldTemplate = InputFieldTemplateBase & {
|
||||
default: string;
|
||||
type: 'refiner_model';
|
||||
};
|
||||
|
||||
export type VaeModelInputFieldTemplate = InputFieldTemplateBase & {
|
||||
default: string;
|
||||
type: 'vae_model';
|
||||
|
@ -22,6 +22,7 @@ import {
|
||||
LoRAModelInputFieldTemplate,
|
||||
ModelInputFieldTemplate,
|
||||
OutputFieldTemplate,
|
||||
RefinerModelInputFieldTemplate,
|
||||
StringInputFieldTemplate,
|
||||
TypeHints,
|
||||
UNetInputFieldTemplate,
|
||||
@ -178,6 +179,21 @@ const buildModelInputFieldTemplate = ({
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildRefinerModelInputFieldTemplate = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
}: BuildInputFieldArg): RefinerModelInputFieldTemplate => {
|
||||
const template: RefinerModelInputFieldTemplate = {
|
||||
...baseField,
|
||||
type: 'refiner_model',
|
||||
inputRequirement: 'always',
|
||||
inputKind: 'direct',
|
||||
default: schemaObject.default ?? undefined,
|
||||
};
|
||||
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildVaeModelInputFieldTemplate = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
@ -492,6 +508,9 @@ export const buildInputFieldTemplate = (
|
||||
if (['model'].includes(fieldType)) {
|
||||
return buildModelInputFieldTemplate({ schemaObject, baseField });
|
||||
}
|
||||
if (['refiner_model'].includes(fieldType)) {
|
||||
return buildRefinerModelInputFieldTemplate({ schemaObject, baseField });
|
||||
}
|
||||
if (['vae_model'].includes(fieldType)) {
|
||||
return buildVaeModelInputFieldTemplate({ schemaObject, baseField });
|
||||
}
|
||||
|
@ -76,6 +76,10 @@ export const buildInputFieldValue = (
|
||||
fieldValue.value = undefined;
|
||||
}
|
||||
|
||||
if (template.type === 'refiner_model') {
|
||||
fieldValue.value = undefined;
|
||||
}
|
||||
|
||||
if (template.type === 'vae_model') {
|
||||
fieldValue.value = undefined;
|
||||
}
|
||||
|
@ -0,0 +1,70 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import {
|
||||
ImageNSFWBlurInvocation,
|
||||
LatentsToImageInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
} from 'services/api/types';
|
||||
import {
|
||||
LATENTS_TO_IMAGE,
|
||||
METADATA_ACCUMULATOR,
|
||||
NSFW_CHECKER,
|
||||
} from './constants';
|
||||
|
||||
export const addNSFWCheckerToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
nodeIdToAddTo = LATENTS_TO_IMAGE
|
||||
): void => {
|
||||
const activeTabName = activeTabNameSelector(state);
|
||||
|
||||
const is_intermediate =
|
||||
activeTabName === 'unifiedCanvas' ? !state.canvas.shouldAutoSave : false;
|
||||
|
||||
const nodeToAddTo = graph.nodes[nodeIdToAddTo] as
|
||||
| LatentsToImageInvocation
|
||||
| undefined;
|
||||
|
||||
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
|
||||
| MetadataAccumulatorInvocation
|
||||
| undefined;
|
||||
|
||||
if (!nodeToAddTo) {
|
||||
// something has gone terribly awry
|
||||
return;
|
||||
}
|
||||
|
||||
nodeToAddTo.is_intermediate = true;
|
||||
|
||||
const nsfwCheckerNode: ImageNSFWBlurInvocation = {
|
||||
id: NSFW_CHECKER,
|
||||
type: 'img_nsfw',
|
||||
is_intermediate,
|
||||
};
|
||||
|
||||
graph.nodes[NSFW_CHECKER] = nsfwCheckerNode;
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: nodeIdToAddTo,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
|
||||
if (metadataAccumulator) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
}
|
||||
};
|
@ -0,0 +1,186 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { MetadataAccumulatorInvocation } from 'services/api/types';
|
||||
import { NonNullableGraph } from '../../types/types';
|
||||
import {
|
||||
IMAGE_TO_LATENTS,
|
||||
LATENTS_TO_IMAGE,
|
||||
METADATA_ACCUMULATOR,
|
||||
SDXL_LATENTS_TO_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_REFINER_LATENTS_TO_LATENTS,
|
||||
SDXL_REFINER_MODEL_LOADER,
|
||||
SDXL_REFINER_NEGATIVE_CONDITIONING,
|
||||
SDXL_REFINER_POSITIVE_CONDITIONING,
|
||||
} from './constants';
|
||||
|
||||
export const addSDXLRefinerToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string
|
||||
): void => {
|
||||
const { positivePrompt, negativePrompt } = state.generation;
|
||||
const {
|
||||
refinerModel,
|
||||
refinerAestheticScore,
|
||||
positiveStylePrompt,
|
||||
negativeStylePrompt,
|
||||
refinerSteps,
|
||||
refinerScheduler,
|
||||
refinerCFGScale,
|
||||
refinerStart,
|
||||
} = state.sdxl;
|
||||
|
||||
if (!refinerModel) return;
|
||||
|
||||
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
|
||||
| MetadataAccumulatorInvocation
|
||||
| undefined;
|
||||
|
||||
if (metadataAccumulator) {
|
||||
metadataAccumulator.refiner_model = refinerModel;
|
||||
metadataAccumulator.refiner_aesthetic_store = refinerAestheticScore;
|
||||
metadataAccumulator.refiner_cfg_scale = refinerCFGScale;
|
||||
metadataAccumulator.refiner_scheduler = refinerScheduler;
|
||||
metadataAccumulator.refiner_start = refinerStart;
|
||||
metadataAccumulator.refiner_steps = refinerSteps;
|
||||
}
|
||||
|
||||
// Unplug SDXL Latents Generation To Latents To Image
|
||||
graph.edges = graph.edges.filter(
|
||||
(e) =>
|
||||
!(e.source.node_id === baseNodeId && ['latents'].includes(e.source.field))
|
||||
);
|
||||
|
||||
graph.edges = graph.edges.filter(
|
||||
(e) =>
|
||||
!(
|
||||
e.source.node_id === SDXL_MODEL_LOADER &&
|
||||
['vae'].includes(e.source.field)
|
||||
)
|
||||
);
|
||||
|
||||
// connect the VAE back to the i2l, which we just removed in the filter
|
||||
// but only if we are doing l2l
|
||||
if (baseNodeId === SDXL_LATENTS_TO_LATENTS) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'vae',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
graph.nodes[SDXL_REFINER_MODEL_LOADER] = {
|
||||
type: 'sdxl_refiner_model_loader',
|
||||
id: SDXL_REFINER_MODEL_LOADER,
|
||||
model: refinerModel,
|
||||
};
|
||||
graph.nodes[SDXL_REFINER_POSITIVE_CONDITIONING] = {
|
||||
type: 'sdxl_refiner_compel_prompt',
|
||||
id: SDXL_REFINER_POSITIVE_CONDITIONING,
|
||||
style: `${positivePrompt} ${positiveStylePrompt}`,
|
||||
aesthetic_score: refinerAestheticScore,
|
||||
};
|
||||
graph.nodes[SDXL_REFINER_NEGATIVE_CONDITIONING] = {
|
||||
type: 'sdxl_refiner_compel_prompt',
|
||||
id: SDXL_REFINER_NEGATIVE_CONDITIONING,
|
||||
style: `${negativePrompt} ${negativeStylePrompt}`,
|
||||
aesthetic_score: refinerAestheticScore,
|
||||
};
|
||||
graph.nodes[SDXL_REFINER_LATENTS_TO_LATENTS] = {
|
||||
type: 'l2l_sdxl',
|
||||
id: SDXL_REFINER_LATENTS_TO_LATENTS,
|
||||
cfg_scale: refinerCFGScale,
|
||||
steps: refinerSteps / (1 - Math.min(refinerStart, 0.99)),
|
||||
scheduler: refinerScheduler,
|
||||
denoising_start: refinerStart,
|
||||
denoising_end: 1,
|
||||
};
|
||||
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_LATENTS_TO_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_POSITIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_MODEL_LOADER,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_NEGATIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_POSITIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_LATENTS_TO_LATENTS,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_NEGATIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_LATENTS_TO_LATENTS,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: baseNodeId,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_REFINER_LATENTS_TO_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_REFINER_LATENTS_TO_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'latents',
|
||||
},
|
||||
}
|
||||
);
|
||||
};
|
@ -0,0 +1,95 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import {
|
||||
ImageNSFWBlurInvocation,
|
||||
ImageWatermarkInvocation,
|
||||
LatentsToImageInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
} from 'services/api/types';
|
||||
import {
|
||||
LATENTS_TO_IMAGE,
|
||||
METADATA_ACCUMULATOR,
|
||||
NSFW_CHECKER,
|
||||
WATERMARKER,
|
||||
} from './constants';
|
||||
|
||||
export const addWatermarkerToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
nodeIdToAddTo = LATENTS_TO_IMAGE
|
||||
): void => {
|
||||
const activeTabName = activeTabNameSelector(state);
|
||||
|
||||
const is_intermediate =
|
||||
activeTabName === 'unifiedCanvas' ? !state.canvas.shouldAutoSave : false;
|
||||
|
||||
const nodeToAddTo = graph.nodes[nodeIdToAddTo] as
|
||||
| LatentsToImageInvocation
|
||||
| undefined;
|
||||
|
||||
const nsfwCheckerNode = graph.nodes[NSFW_CHECKER] as
|
||||
| ImageNSFWBlurInvocation
|
||||
| undefined;
|
||||
|
||||
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
|
||||
| MetadataAccumulatorInvocation
|
||||
| undefined;
|
||||
|
||||
if (!nodeToAddTo) {
|
||||
// something has gone terribly awry
|
||||
return;
|
||||
}
|
||||
|
||||
const watermarkerNode: ImageWatermarkInvocation = {
|
||||
id: WATERMARKER,
|
||||
type: 'img_watermark',
|
||||
is_intermediate,
|
||||
};
|
||||
|
||||
graph.nodes[WATERMARKER] = watermarkerNode;
|
||||
|
||||
// no matter the situation, we want the l2i node to be intermediate
|
||||
nodeToAddTo.is_intermediate = true;
|
||||
|
||||
if (nsfwCheckerNode) {
|
||||
// if we are using NSFW checker, we need to "disable" it output by marking it intermediate,
|
||||
// then connect it to the watermark node
|
||||
nsfwCheckerNode.is_intermediate = true;
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
} else {
|
||||
// otherwise we just connect to the watermark node
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: nodeIdToAddTo,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
if (metadataAccumulator) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
}
|
||||
};
|
@ -10,7 +10,9 @@ import {
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
IMAGE_TO_IMAGE_GRAPH,
|
||||
@ -23,8 +25,6 @@ import {
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
RESIZE,
|
||||
NSFW_CHECKER,
|
||||
WATERMARKER,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -105,11 +105,6 @@ export const buildCanvasImageToImageGraph = (
|
||||
is_intermediate: true,
|
||||
skipped_layers: clipSkip,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[LATENTS_TO_LATENTS]: {
|
||||
type: 'l2l',
|
||||
id: LATENTS_TO_LATENTS,
|
||||
@ -128,15 +123,10 @@ export const buildCanvasImageToImageGraph = (
|
||||
// image_name: initialImage.image_name,
|
||||
// },
|
||||
},
|
||||
[NSFW_CHECKER]: {
|
||||
type: 'img_nsfw',
|
||||
id: NSFW_CHECKER,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[WATERMARKER]: {
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
is_intermediate: !shouldAutoSave,
|
||||
type: 'img_watermark',
|
||||
id: WATERMARKER,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
@ -180,26 +170,6 @@ export const buildCanvasImageToImageGraph = (
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
@ -342,17 +312,6 @@ export const buildCanvasImageToImageGraph = (
|
||||
init_image: initialImage.image_name,
|
||||
};
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
@ -365,5 +324,16 @@ export const buildCanvasImageToImageGraph = (
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
}
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -20,6 +20,8 @@ import {
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
} from './constants';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
|
||||
/**
|
||||
* Builds the Canvas tab's Inpaint graph.
|
||||
@ -249,5 +251,16 @@ export const buildCanvasInpaintGraph = (
|
||||
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
|
||||
}
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph, INPAINT);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph, INPAINT);
|
||||
}
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -5,7 +5,9 @@ import { initialGenerationState } from 'features/parameters/store/generationSlic
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
@ -16,8 +18,6 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
TEXT_TO_IMAGE_GRAPH,
|
||||
TEXT_TO_LATENTS,
|
||||
NSFW_CHECKER,
|
||||
WATERMARKER,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -109,16 +109,6 @@ export const buildCanvasTextToImageGraph = (
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[NSFW_CHECKER]: {
|
||||
type: 'img_nsfw',
|
||||
id: NSFW_CHECKER,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[WATERMARKER]: {
|
||||
type: 'img_watermark',
|
||||
id: WATERMARKER,
|
||||
is_intermediate: !shouldAutoSave,
|
||||
},
|
||||
},
|
||||
@ -193,26 +183,6 @@ export const buildCanvasTextToImageGraph = (
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE,
|
||||
@ -247,17 +217,6 @@ export const buildCanvasTextToImageGraph = (
|
||||
clip_skip: clipSkip,
|
||||
};
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
@ -270,5 +229,16 @@ export const buildCanvasTextToImageGraph = (
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
}
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -9,7 +9,9 @@ import {
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
IMAGE_TO_IMAGE_GRAPH,
|
||||
@ -22,8 +24,6 @@ import {
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
RESIZE,
|
||||
NSFW_CHECKER,
|
||||
WATERMARKER,
|
||||
} from './constants';
|
||||
|
||||
/**
|
||||
@ -48,6 +48,7 @@ export const buildLinearImageToImageGraph = (
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
} = state.generation;
|
||||
|
||||
// TODO: add batch functionality
|
||||
@ -115,7 +116,7 @@ export const buildLinearImageToImageGraph = (
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
is_intermediate: true,
|
||||
fp32: vaePrecision === 'fp32' ? true : false,
|
||||
},
|
||||
[LATENTS_TO_LATENTS]: {
|
||||
type: 'l2l',
|
||||
@ -131,15 +132,8 @@ export const buildLinearImageToImageGraph = (
|
||||
// must be set manually later, bc `fit` parameter may require a resize node inserted
|
||||
// image: {
|
||||
// image_name: initialImage.image_name,
|
||||
},
|
||||
[NSFW_CHECKER]: {
|
||||
type: 'img_nsfw',
|
||||
id: NSFW_CHECKER,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[WATERMARKER]: {
|
||||
type: 'img_watermark',
|
||||
id: WATERMARKER,
|
||||
// },
|
||||
fp32: vaePrecision === 'fp32' ? true : false,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
@ -193,26 +187,6 @@ export const buildLinearImageToImageGraph = (
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
@ -325,42 +299,6 @@ export const buildLinearImageToImageGraph = (
|
||||
});
|
||||
}
|
||||
|
||||
// TODO: add batch functionality
|
||||
// if (isBatchEnabled && asInitialImage && batchImageNames.length > 0) {
|
||||
// // we are going to connect an iterate up to the init image
|
||||
// delete (graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image;
|
||||
|
||||
// const imageCollection: ImageCollectionInvocation = {
|
||||
// id: IMAGE_COLLECTION,
|
||||
// type: 'image_collection',
|
||||
// images: batchImageNames.map((image_name) => ({ image_name })),
|
||||
// };
|
||||
|
||||
// const imageCollectionIterate: IterateInvocation = {
|
||||
// id: IMAGE_COLLECTION_ITERATE,
|
||||
// type: 'iterate',
|
||||
// };
|
||||
|
||||
// graph.nodes[IMAGE_COLLECTION] = imageCollection;
|
||||
// graph.nodes[IMAGE_COLLECTION_ITERATE] = imageCollectionIterate;
|
||||
|
||||
// graph.edges.push({
|
||||
// source: { node_id: IMAGE_COLLECTION, field: 'collection' },
|
||||
// destination: {
|
||||
// node_id: IMAGE_COLLECTION_ITERATE,
|
||||
// field: 'collection',
|
||||
// },
|
||||
// });
|
||||
|
||||
// graph.edges.push({
|
||||
// source: { node_id: IMAGE_COLLECTION_ITERATE, field: 'item' },
|
||||
// destination: {
|
||||
// node_id: IMAGE_TO_LATENTS,
|
||||
// field: 'image',
|
||||
// },
|
||||
// });
|
||||
// }
|
||||
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
@ -384,17 +322,6 @@ export const buildLinearImageToImageGraph = (
|
||||
init_image: initialImage.imageName,
|
||||
};
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
@ -407,5 +334,16 @@ export const buildLinearImageToImageGraph = (
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
}
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -0,0 +1,382 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import {
|
||||
ImageResizeInvocation,
|
||||
ImageToLatentsInvocation,
|
||||
} from 'services/api/types';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import {
|
||||
IMAGE_TO_LATENTS,
|
||||
LATENTS_TO_IMAGE,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
RESIZE,
|
||||
SDXL_IMAGE_TO_IMAGE_GRAPH,
|
||||
SDXL_LATENTS_TO_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
} from './constants';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
|
||||
/**
|
||||
* Builds the Image to Image tab graph.
|
||||
*/
|
||||
export const buildLinearSDXLImageToImageGraph = (
|
||||
state: RootState
|
||||
): NonNullableGraph => {
|
||||
const log = logger('nodes');
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
initialImage,
|
||||
shouldFitToWidthHeight,
|
||||
width,
|
||||
height,
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
positiveStylePrompt,
|
||||
negativeStylePrompt,
|
||||
shouldUseSDXLRefiner,
|
||||
refinerStart,
|
||||
sdxlImg2ImgDenoisingStrength: strength,
|
||||
} = state.sdxl;
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
* ids.
|
||||
*
|
||||
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
||||
* the `fit` param. These are added to the graph at the end.
|
||||
*/
|
||||
|
||||
if (!initialImage) {
|
||||
log.error('No initial image found in state');
|
||||
throw new Error('No initial image found in state');
|
||||
}
|
||||
|
||||
if (!model) {
|
||||
log.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_IMAGE_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[SDXL_MODEL_LOADER]: {
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
model,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
style: positiveStylePrompt,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
style: negativeStylePrompt,
|
||||
},
|
||||
[NOISE]: {
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
use_cpu,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32' ? true : false,
|
||||
},
|
||||
[SDXL_LATENTS_TO_LATENTS]: {
|
||||
type: 'l2l_sdxl',
|
||||
id: SDXL_LATENTS_TO_LATENTS,
|
||||
cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: shouldUseSDXLRefiner
|
||||
? Math.min(refinerStart, 1 - strength)
|
||||
: 1 - strength,
|
||||
denoising_end: shouldUseSDXLRefiner ? refinerStart : 1,
|
||||
},
|
||||
[IMAGE_TO_LATENTS]: {
|
||||
type: 'i2l',
|
||||
id: IMAGE_TO_LATENTS,
|
||||
// must be set manually later, bc `fit` parameter may require a resize node inserted
|
||||
// image: {
|
||||
// image_name: initialImage.image_name,
|
||||
// },
|
||||
fp32: vaePrecision === 'fp32' ? true : false,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_LATENTS_TO_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_LATENTS_TO_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_LATENTS_TO_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_LATENTS_TO_LATENTS,
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_LATENTS_TO_LATENTS,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_LATENTS_TO_LATENTS,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
// handle `fit`
|
||||
if (
|
||||
shouldFitToWidthHeight &&
|
||||
(initialImage.width !== width || initialImage.height !== height)
|
||||
) {
|
||||
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
|
||||
|
||||
// Create a resize node, explicitly setting its image
|
||||
const resizeNode: ImageResizeInvocation = {
|
||||
id: RESIZE,
|
||||
type: 'img_resize',
|
||||
image: {
|
||||
image_name: initialImage.imageName,
|
||||
},
|
||||
is_intermediate: true,
|
||||
width,
|
||||
height,
|
||||
};
|
||||
|
||||
graph.nodes[RESIZE] = resizeNode;
|
||||
|
||||
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
|
||||
graph.edges.push({
|
||||
source: { node_id: RESIZE, field: 'image' },
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
|
||||
// The `RESIZE` node also passes its width and height to `NOISE`
|
||||
graph.edges.push({
|
||||
source: { node_id: RESIZE, field: 'width' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'width',
|
||||
},
|
||||
});
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: RESIZE, field: 'height' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'height',
|
||||
},
|
||||
});
|
||||
} else {
|
||||
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
|
||||
(graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image = {
|
||||
image_name: initialImage.imageName,
|
||||
};
|
||||
|
||||
// Pass the image's dimensions to the `NOISE` node
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'width',
|
||||
},
|
||||
});
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'height',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'sdxl_img2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined,
|
||||
controlnets: [],
|
||||
loras: [],
|
||||
clip_skip: clipSkip,
|
||||
strength: strength,
|
||||
init_image: initialImage.imageName,
|
||||
positive_style_prompt: positiveStylePrompt,
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
};
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_LATENTS_TO_LATENTS);
|
||||
}
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
}
|
||||
|
||||
return graph;
|
||||
};
|
@ -0,0 +1,264 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import {
|
||||
LATENTS_TO_IMAGE,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_TEXT_TO_IMAGE_GRAPH,
|
||||
SDXL_TEXT_TO_LATENTS,
|
||||
} from './constants';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
|
||||
export const buildLinearSDXLTextToImageGraph = (
|
||||
state: RootState
|
||||
): NonNullableGraph => {
|
||||
const log = logger('nodes');
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
width,
|
||||
height,
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
positiveStylePrompt,
|
||||
negativeStylePrompt,
|
||||
shouldUseSDXLRefiner,
|
||||
refinerStart,
|
||||
} = state.sdxl;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
|
||||
if (!model) {
|
||||
log.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
* ids.
|
||||
*
|
||||
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
||||
* the `fit` param. These are added to the graph at the end.
|
||||
*/
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_TEXT_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[SDXL_MODEL_LOADER]: {
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
model,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
style: positiveStylePrompt,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
style: negativeStylePrompt,
|
||||
},
|
||||
[NOISE]: {
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
width,
|
||||
height,
|
||||
use_cpu,
|
||||
},
|
||||
[SDXL_TEXT_TO_LATENTS]: {
|
||||
type: 't2l_sdxl',
|
||||
id: SDXL_TEXT_TO_LATENTS,
|
||||
cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_end: shouldUseSDXLRefiner ? refinerStart : 1,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32' ? true : false,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_TEXT_TO_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_MODEL_LOADER,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_TEXT_TO_LATENTS,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_TEXT_TO_LATENTS,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_TEXT_TO_LATENTS,
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_TEXT_TO_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'sdxl_txt2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined,
|
||||
controlnets: [],
|
||||
loras: [],
|
||||
clip_skip: clipSkip,
|
||||
positive_style_prompt: positiveStylePrompt,
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
};
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (shouldUseSDXLRefiner) {
|
||||
addSDXLRefinerToGraph(state, graph, SDXL_TEXT_TO_LATENTS);
|
||||
}
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
}
|
||||
|
||||
return graph;
|
||||
};
|
@ -5,7 +5,9 @@ import { initialGenerationState } from 'features/parameters/store/generationSlic
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
@ -16,8 +18,6 @@ import {
|
||||
POSITIVE_CONDITIONING,
|
||||
TEXT_TO_IMAGE_GRAPH,
|
||||
TEXT_TO_LATENTS,
|
||||
NSFW_CHECKER,
|
||||
WATERMARKER,
|
||||
} from './constants';
|
||||
|
||||
export const buildLinearTextToImageGraph = (
|
||||
@ -36,6 +36,7 @@ export const buildLinearTextToImageGraph = (
|
||||
clipSkip,
|
||||
shouldUseCpuNoise,
|
||||
shouldUseNoiseSettings,
|
||||
vaePrecision,
|
||||
} = state.generation;
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
@ -97,16 +98,7 @@ export const buildLinearTextToImageGraph = (
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[NSFW_CHECKER]: {
|
||||
type: 'img_nsfw',
|
||||
id: NSFW_CHECKER,
|
||||
is_intermediate: true,
|
||||
},
|
||||
[WATERMARKER]: {
|
||||
type: 'img_watermark',
|
||||
id: WATERMARKER,
|
||||
fp32: vaePrecision === 'fp32' ? true : false,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
@ -190,26 +182,6 @@ export const buildLinearTextToImageGraph = (
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NSFW_CHECKER,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
@ -234,17 +206,6 @@ export const buildLinearTextToImageGraph = (
|
||||
clip_skip: clipSkip,
|
||||
};
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: WATERMARKER,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
@ -257,5 +218,16 @@ export const buildLinearTextToImageGraph = (
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
}
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -25,8 +25,19 @@ export const METADATA_ACCUMULATOR = 'metadata_accumulator';
|
||||
export const REALESRGAN = 'esrgan';
|
||||
export const DIVIDE = 'divide';
|
||||
export const SCALE = 'scale_image';
|
||||
export const SDXL_MODEL_LOADER = 'sdxl_model_loader';
|
||||
export const SDXL_TEXT_TO_LATENTS = 't2l_sdxl';
|
||||
export const SDXL_LATENTS_TO_LATENTS = 'l2l_sdxl';
|
||||
export const SDXL_REFINER_MODEL_LOADER = 'sdxl_refiner_model_loader';
|
||||
export const SDXL_REFINER_POSITIVE_CONDITIONING =
|
||||
'sdxl_refiner_positive_conditioning';
|
||||
export const SDXL_REFINER_NEGATIVE_CONDITIONING =
|
||||
'sdxl_refiner_negative_conditioning';
|
||||
export const SDXL_REFINER_LATENTS_TO_LATENTS = 'l2l_sdxl_refiner';
|
||||
|
||||
// friendly graph ids
|
||||
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';
|
||||
export const SDXL_TEXT_TO_IMAGE_GRAPH = 'sdxl_text_to_image_graph';
|
||||
export const SDXL_IMAGE_TO_IMAGE_GRAPH = 'sxdl_image_to_image_graph';
|
||||
export const IMAGE_TO_IMAGE_GRAPH = 'image_to_image_graph';
|
||||
export const INPAINT_GRAPH = 'inpaint_graph';
|
||||
|
@ -13,7 +13,12 @@ import {
|
||||
buildOutputFieldTemplates,
|
||||
} from './fieldTemplateBuilders';
|
||||
|
||||
const RESERVED_FIELD_NAMES = ['id', 'type', 'is_intermediate', 'metadata'];
|
||||
const getReservedFieldNames = (type: string): string[] => {
|
||||
if (type === 'l2i') {
|
||||
return ['id', 'type', 'metadata'];
|
||||
}
|
||||
return ['id', 'type', 'is_intermediate', 'metadata'];
|
||||
};
|
||||
|
||||
const invocationDenylist = [
|
||||
'Graph',
|
||||
@ -21,11 +26,11 @@ const invocationDenylist = [
|
||||
'MetadataAccumulatorInvocation',
|
||||
];
|
||||
|
||||
export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||
// filter out non-invocation schemas, plus some tricky invocations for now
|
||||
export const parseSchema = (
|
||||
openAPI: OpenAPIV3.Document
|
||||
): Record<string, InvocationTemplate> => {
|
||||
const filteredSchemas = filter(
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
openAPI.components!.schemas,
|
||||
openAPI.components?.schemas,
|
||||
(schema, key) =>
|
||||
key.includes('Invocation') &&
|
||||
!key.includes('InvocationOutput') &&
|
||||
@ -35,21 +40,17 @@ export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||
const invocations = filteredSchemas.reduce<
|
||||
Record<string, InvocationTemplate>
|
||||
>((acc, schema) => {
|
||||
// only want SchemaObjects
|
||||
if (isInvocationSchemaObject(schema)) {
|
||||
const type = schema.properties.type.default;
|
||||
const RESERVED_FIELD_NAMES = getReservedFieldNames(type);
|
||||
|
||||
const title = schema.ui?.title ?? schema.title.replace('Invocation', '');
|
||||
|
||||
const typeHints = schema.ui?.type_hints;
|
||||
|
||||
const inputs: Record<string, InputFieldTemplate> = {};
|
||||
|
||||
if (type === 'collect') {
|
||||
const itemProperty = schema.properties[
|
||||
'item'
|
||||
] as InvocationSchemaObject;
|
||||
// Handle the special Collect node
|
||||
const itemProperty = schema.properties.item as InvocationSchemaObject;
|
||||
inputs.item = {
|
||||
type: 'item',
|
||||
name: 'item',
|
||||
@ -60,10 +61,8 @@ export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||
default: undefined,
|
||||
};
|
||||
} else if (type === 'iterate') {
|
||||
const itemProperty = schema.properties[
|
||||
'collection'
|
||||
] as InvocationSchemaObject;
|
||||
|
||||
const itemProperty = schema.properties
|
||||
.collection as InvocationSchemaObject;
|
||||
inputs.collection = {
|
||||
type: 'array',
|
||||
name: 'collection',
|
||||
@ -74,18 +73,18 @@ export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||
inputKind: 'connection',
|
||||
};
|
||||
} else {
|
||||
// All other nodes
|
||||
reduce(
|
||||
schema.properties,
|
||||
(inputsAccumulator, property, propertyName) => {
|
||||
if (
|
||||
// `type` and `id` are not valid inputs/outputs
|
||||
!RESERVED_FIELD_NAMES.includes(propertyName) &&
|
||||
isSchemaObject(property)
|
||||
) {
|
||||
const field: InputFieldTemplate | undefined =
|
||||
buildInputFieldTemplate(property, propertyName, typeHints);
|
||||
|
||||
const field = buildInputFieldTemplate(
|
||||
property,
|
||||
propertyName,
|
||||
typeHints
|
||||
);
|
||||
if (field) {
|
||||
inputsAccumulator[propertyName] = field;
|
||||
}
|
||||
@ -97,22 +96,17 @@ export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||
}
|
||||
|
||||
const rawOutput = (schema as InvocationSchemaObject).output;
|
||||
|
||||
let outputs: Record<string, OutputFieldTemplate>;
|
||||
|
||||
// some special handling is needed for collect, iterate and range nodes
|
||||
if (type === 'iterate') {
|
||||
// this is guaranteed to be a SchemaObject
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
const iterationOutput = openAPI.components!.schemas![
|
||||
const iterationOutput = openAPI.components?.schemas?.[
|
||||
'IterateInvocationOutput'
|
||||
] as OpenAPIV3.SchemaObject;
|
||||
|
||||
outputs = {
|
||||
item: {
|
||||
name: 'item',
|
||||
title: iterationOutput.title ?? '',
|
||||
description: iterationOutput.description ?? '',
|
||||
title: iterationOutput?.title ?? '',
|
||||
description: iterationOutput?.description ?? '',
|
||||
type: 'array',
|
||||
},
|
||||
};
|
||||
|
@ -0,0 +1,21 @@
|
||||
import { Box } from '@chakra-ui/react';
|
||||
import { useCanvasGenerationMode } from 'features/canvas/hooks/useCanvasGenerationMode';
|
||||
|
||||
const GENERATION_MODE_NAME_MAP = {
|
||||
txt2img: 'Text to Image',
|
||||
img2img: 'Image to Image',
|
||||
inpaint: 'Inpaint',
|
||||
outpaint: 'Inpaint',
|
||||
};
|
||||
|
||||
const GenerationModeStatusText = () => {
|
||||
const generationMode = useCanvasGenerationMode();
|
||||
|
||||
return (
|
||||
<Box>
|
||||
Mode: {generationMode ? GENERATION_MODE_NAME_MAP[generationMode] : '...'}
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default GenerationModeStatusText;
|
@ -4,6 +4,7 @@ import { memo } from 'react';
|
||||
import ParamMainModelSelect from '../MainModel/ParamMainModelSelect';
|
||||
import ParamVAEModelSelect from '../VAEModel/ParamVAEModelSelect';
|
||||
import ParamScheduler from './ParamScheduler';
|
||||
import ParamVAEPrecision from '../VAEModel/ParamVAEPrecision';
|
||||
|
||||
const ParamModelandVAEandScheduler = () => {
|
||||
const isVaeEnabled = useFeatureStatus('vae').isFeatureEnabled;
|
||||
@ -13,16 +14,15 @@ const ParamModelandVAEandScheduler = () => {
|
||||
<Box w="full">
|
||||
<ParamMainModelSelect />
|
||||
</Box>
|
||||
<Flex gap={3} w="full">
|
||||
{isVaeEnabled && (
|
||||
<Box w="full">
|
||||
<ParamVAEModelSelect />
|
||||
</Box>
|
||||
)}
|
||||
<Box w="full">
|
||||
<ParamScheduler />
|
||||
</Box>
|
||||
{isVaeEnabled && (
|
||||
<Flex w="full" gap={3}>
|
||||
<ParamVAEModelSelect />
|
||||
<ParamVAEPrecision />
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -13,8 +13,11 @@ import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { MODEL_TYPE_MAP } from 'features/parameters/types/constants';
|
||||
import { modelIdToMainModelParam } from 'features/parameters/util/modelIdToMainModelParam';
|
||||
import SyncModelsButton from 'features/ui/components/tabs/ModelManager/subpanels/ModelManagerSettingsPanel/SyncModelsButton';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { NON_REFINER_BASE_MODELS } from 'services/api/constants';
|
||||
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
|
||||
import { useFeatureStatus } from '../../../../system/hooks/useFeatureStatus';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
@ -28,7 +31,12 @@ const ParamMainModelSelect = () => {
|
||||
|
||||
const { model } = useAppSelector(selector);
|
||||
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery();
|
||||
const isSyncModelEnabled = useFeatureStatus('syncModels').isFeatureEnabled;
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery(
|
||||
NON_REFINER_BASE_MODELS
|
||||
);
|
||||
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
|
||||
const data = useMemo(() => {
|
||||
if (!mainModels) {
|
||||
@ -38,7 +46,10 @@ const ParamMainModelSelect = () => {
|
||||
const data: SelectItem[] = [];
|
||||
|
||||
forEach(mainModels.entities, (model, id) => {
|
||||
if (!model || ['sdxl', 'sdxl-refiner'].includes(model.base_model)) {
|
||||
if (
|
||||
!model ||
|
||||
(activeTabName === 'unifiedCanvas' && model.base_model === 'sdxl')
|
||||
) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -50,7 +61,7 @@ const ParamMainModelSelect = () => {
|
||||
});
|
||||
|
||||
return data;
|
||||
}, [mainModels]);
|
||||
}, [mainModels, activeTabName]);
|
||||
|
||||
// grab the full model entity from the RTK Query cache
|
||||
// TODO: maybe we should just store the full model entity in state?
|
||||
@ -86,7 +97,7 @@ const ParamMainModelSelect = () => {
|
||||
data={[]}
|
||||
/>
|
||||
) : (
|
||||
<Flex w="100%" alignItems="center" gap={2}>
|
||||
<Flex w="100%" alignItems="center" gap={3}>
|
||||
<IAIMantineSearchableSelect
|
||||
tooltip={selectedModel?.description}
|
||||
label={t('modelManager.model')}
|
||||
@ -98,9 +109,11 @@ const ParamMainModelSelect = () => {
|
||||
onChange={handleChangeModel}
|
||||
w="100%"
|
||||
/>
|
||||
{isSyncModelEnabled && (
|
||||
<Box mt={7}>
|
||||
<SyncModelsButton iconMode />
|
||||
</Box>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -32,11 +32,6 @@ export default function ParamSeed() {
|
||||
isInvalid={seed < 0 && shouldGenerateVariations}
|
||||
onChange={handleChangeSeed}
|
||||
value={seed}
|
||||
formControlProps={{
|
||||
display: 'flex',
|
||||
alignItems: 'center',
|
||||
gap: 3, // really this should work with 2 but seems to need to be 3 to match gap 2?
|
||||
}}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -6,7 +6,7 @@ import ParamSeedRandomize from './ParamSeedRandomize';
|
||||
|
||||
const ParamSeedFull = () => {
|
||||
return (
|
||||
<Flex sx={{ gap: 4, alignItems: 'center' }}>
|
||||
<Flex sx={{ gap: 3, alignItems: 'flex-end' }}>
|
||||
<ParamSeed />
|
||||
<ParamSeedShuffle />
|
||||
<ParamSeedRandomize />
|
||||
|
@ -0,0 +1,46 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
import { vaePrecisionChanged } from 'features/parameters/store/generationSlice';
|
||||
import { PrecisionParam } from 'features/parameters/types/parameterSchemas';
|
||||
import { memo, useCallback } from 'react';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
({ generation }) => {
|
||||
const { vaePrecision } = generation;
|
||||
return { vaePrecision };
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const DATA = ['fp16', 'fp32'];
|
||||
|
||||
const ParamVAEModelSelect = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { vaePrecision } = useAppSelector(selector);
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: string | null) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(vaePrecisionChanged(v as PrecisionParam));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return (
|
||||
<IAIMantineSelect
|
||||
label="VAE Precision"
|
||||
value={vaePrecision}
|
||||
data={DATA}
|
||||
onChange={handleChange}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamVAEModelSelect);
|
@ -11,6 +11,7 @@ import {
|
||||
MainModelParam,
|
||||
NegativePromptParam,
|
||||
PositivePromptParam,
|
||||
PrecisionParam,
|
||||
SchedulerParam,
|
||||
SeedParam,
|
||||
StepsParam,
|
||||
@ -51,6 +52,7 @@ export interface GenerationState {
|
||||
verticalSymmetrySteps: number;
|
||||
model: MainModelField | null;
|
||||
vae: VaeModelParam | null;
|
||||
vaePrecision: PrecisionParam;
|
||||
seamlessXAxis: boolean;
|
||||
seamlessYAxis: boolean;
|
||||
clipSkip: number;
|
||||
@ -89,6 +91,7 @@ export const initialGenerationState: GenerationState = {
|
||||
verticalSymmetrySteps: 0,
|
||||
model: null,
|
||||
vae: null,
|
||||
vaePrecision: 'fp32',
|
||||
seamlessXAxis: false,
|
||||
seamlessYAxis: false,
|
||||
clipSkip: 0,
|
||||
@ -241,6 +244,9 @@ export const generationSlice = createSlice({
|
||||
// null is a valid VAE!
|
||||
state.vae = action.payload;
|
||||
},
|
||||
vaePrecisionChanged: (state, action: PayloadAction<PrecisionParam>) => {
|
||||
state.vaePrecision = action.payload;
|
||||
},
|
||||
setClipSkip: (state, action: PayloadAction<number>) => {
|
||||
state.clipSkip = action.payload;
|
||||
},
|
||||
@ -327,6 +333,7 @@ export const {
|
||||
shouldUseCpuNoiseChanged,
|
||||
setShouldShowAdvancedOptions,
|
||||
setAspectRatio,
|
||||
vaePrecisionChanged,
|
||||
} = generationSlice.actions;
|
||||
|
||||
export default generationSlice.reducer;
|
||||
|
@ -42,6 +42,42 @@ export const isValidNegativePrompt = (
|
||||
val: unknown
|
||||
): val is NegativePromptParam => zNegativePrompt.safeParse(val).success;
|
||||
|
||||
/**
|
||||
* Zod schema for SDXL positive style prompt parameter
|
||||
*/
|
||||
export const zPositiveStylePromptSDXL = z.string();
|
||||
/**
|
||||
* Type alias for SDXL positive style prompt parameter, inferred from its zod schema
|
||||
*/
|
||||
export type PositiveStylePromptSDXLParam = z.infer<
|
||||
typeof zPositiveStylePromptSDXL
|
||||
>;
|
||||
/**
|
||||
* Validates/type-guards a value as a SDXL positive style prompt parameter
|
||||
*/
|
||||
export const isValidSDXLPositiveStylePrompt = (
|
||||
val: unknown
|
||||
): val is PositiveStylePromptSDXLParam =>
|
||||
zPositiveStylePromptSDXL.safeParse(val).success;
|
||||
|
||||
/**
|
||||
* Zod schema for SDXL negative style prompt parameter
|
||||
*/
|
||||
export const zNegativeStylePromptSDXL = z.string();
|
||||
/**
|
||||
* Type alias for SDXL negative style prompt parameter, inferred from its zod schema
|
||||
*/
|
||||
export type NegativeStylePromptSDXLParam = z.infer<
|
||||
typeof zNegativeStylePromptSDXL
|
||||
>;
|
||||
/**
|
||||
* Validates/type-guards a value as a SDXL negative style prompt parameter
|
||||
*/
|
||||
export const isValidSDXLNegativeStylePrompt = (
|
||||
val: unknown
|
||||
): val is NegativeStylePromptSDXLParam =>
|
||||
zNegativeStylePromptSDXL.safeParse(val).success;
|
||||
|
||||
/**
|
||||
* Zod schema for steps parameter
|
||||
*/
|
||||
@ -260,6 +296,20 @@ export type StrengthParam = z.infer<typeof zStrength>;
|
||||
export const isValidStrength = (val: unknown): val is StrengthParam =>
|
||||
zStrength.safeParse(val).success;
|
||||
|
||||
/**
|
||||
* Zod schema for a precision parameter
|
||||
*/
|
||||
export const zPrecision = z.enum(['fp16', 'fp32']);
|
||||
/**
|
||||
* Type alias for precision parameter, inferred from its zod schema
|
||||
*/
|
||||
export type PrecisionParam = z.infer<typeof zPrecision>;
|
||||
/**
|
||||
* Validates/type-guards a value as a precision parameter
|
||||
*/
|
||||
export const isValidPrecision = (val: unknown): val is PrecisionParam =>
|
||||
zPrecision.safeParse(val).success;
|
||||
|
||||
// /**
|
||||
// * Zod schema for BaseModelType
|
||||
// */
|
||||
|
@ -0,0 +1,53 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { setSDXLImg2ImgDenoisingStrength } from '../store/sdxlSlice';
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
({ sdxl }) => {
|
||||
const { sdxlImg2ImgDenoisingStrength } = sdxl;
|
||||
|
||||
return {
|
||||
sdxlImg2ImgDenoisingStrength,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLImg2ImgDenoisingStrength = () => {
|
||||
const { sdxlImg2ImgDenoisingStrength } = useAppSelector(selector);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: number) => dispatch(setSDXLImg2ImgDenoisingStrength(v)),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const handleReset = useCallback(() => {
|
||||
dispatch(setSDXLImg2ImgDenoisingStrength(0.7));
|
||||
}, [dispatch]);
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={`${t('parameters.denoisingStrength')}`}
|
||||
step={0.01}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={handleChange}
|
||||
handleReset={handleReset}
|
||||
value={sdxlImg2ImgDenoisingStrength}
|
||||
isInteger={false}
|
||||
withInput
|
||||
withSliderMarks
|
||||
withReset
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSDXLImg2ImgDenoisingStrength);
|
@ -0,0 +1,149 @@
|
||||
import { Box, FormControl, useDisclosure } from '@chakra-ui/react';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { ChangeEvent, KeyboardEvent, useCallback, useRef } from 'react';
|
||||
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { clampSymmetrySteps } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
import IAITextarea from 'common/components/IAITextarea';
|
||||
import { useIsReadyToInvoke } from 'common/hooks/useIsReadyToInvoke';
|
||||
import AddEmbeddingButton from 'features/embedding/components/AddEmbeddingButton';
|
||||
import ParamEmbeddingPopover from 'features/embedding/components/ParamEmbeddingPopover';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { flushSync } from 'react-dom';
|
||||
import { setNegativeStylePromptSDXL } from '../store/sdxlSlice';
|
||||
|
||||
const promptInputSelector = createSelector(
|
||||
[stateSelector, activeTabNameSelector],
|
||||
({ sdxl }, activeTabName) => {
|
||||
return {
|
||||
prompt: sdxl.negativeStylePrompt,
|
||||
activeTabName,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
/**
|
||||
* Prompt input text area.
|
||||
*/
|
||||
const ParamSDXLNegativeStyleConditioning = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { prompt, activeTabName } = useAppSelector(promptInputSelector);
|
||||
const isReady = useIsReadyToInvoke();
|
||||
const promptRef = useRef<HTMLTextAreaElement>(null);
|
||||
const { isOpen, onClose, onOpen } = useDisclosure();
|
||||
|
||||
const handleChangePrompt = useCallback(
|
||||
(e: ChangeEvent<HTMLTextAreaElement>) => {
|
||||
dispatch(setNegativeStylePromptSDXL(e.target.value));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const handleSelectEmbedding = useCallback(
|
||||
(v: string) => {
|
||||
if (!promptRef.current) {
|
||||
return;
|
||||
}
|
||||
|
||||
// this is where we insert the TI trigger
|
||||
const caret = promptRef.current.selectionStart;
|
||||
|
||||
if (caret === undefined) {
|
||||
return;
|
||||
}
|
||||
|
||||
let newPrompt = prompt.slice(0, caret);
|
||||
|
||||
if (newPrompt[newPrompt.length - 1] !== '<') {
|
||||
newPrompt += '<';
|
||||
}
|
||||
|
||||
newPrompt += `${v}>`;
|
||||
|
||||
// we insert the cursor after the `>`
|
||||
const finalCaretPos = newPrompt.length;
|
||||
|
||||
newPrompt += prompt.slice(caret);
|
||||
|
||||
// must flush dom updates else selection gets reset
|
||||
flushSync(() => {
|
||||
dispatch(setNegativeStylePromptSDXL(newPrompt));
|
||||
});
|
||||
|
||||
// set the caret position to just after the TI trigger
|
||||
promptRef.current.selectionStart = finalCaretPos;
|
||||
promptRef.current.selectionEnd = finalCaretPos;
|
||||
onClose();
|
||||
},
|
||||
[dispatch, onClose, prompt]
|
||||
);
|
||||
|
||||
const isEmbeddingEnabled = useFeatureStatus('embedding').isFeatureEnabled;
|
||||
|
||||
const handleKeyDown = useCallback(
|
||||
(e: KeyboardEvent<HTMLTextAreaElement>) => {
|
||||
if (e.key === 'Enter' && e.shiftKey === false && isReady) {
|
||||
e.preventDefault();
|
||||
dispatch(clampSymmetrySteps());
|
||||
dispatch(userInvoked(activeTabName));
|
||||
}
|
||||
if (isEmbeddingEnabled && e.key === '<') {
|
||||
onOpen();
|
||||
}
|
||||
},
|
||||
[isReady, dispatch, activeTabName, onOpen, isEmbeddingEnabled]
|
||||
);
|
||||
|
||||
// const handleSelect = (e: MouseEvent<HTMLTextAreaElement>) => {
|
||||
// const target = e.target as HTMLTextAreaElement;
|
||||
// setCaret({ start: target.selectionStart, end: target.selectionEnd });
|
||||
// };
|
||||
|
||||
return (
|
||||
<Box position="relative">
|
||||
<FormControl>
|
||||
<ParamEmbeddingPopover
|
||||
isOpen={isOpen}
|
||||
onClose={onClose}
|
||||
onSelect={handleSelectEmbedding}
|
||||
>
|
||||
<IAITextarea
|
||||
id="prompt"
|
||||
name="prompt"
|
||||
ref={promptRef}
|
||||
value={prompt}
|
||||
placeholder="Negative Style Prompt"
|
||||
onChange={handleChangePrompt}
|
||||
onKeyDown={handleKeyDown}
|
||||
resize="vertical"
|
||||
fontSize="sm"
|
||||
minH={16}
|
||||
/>
|
||||
</ParamEmbeddingPopover>
|
||||
</FormControl>
|
||||
{!isOpen && isEmbeddingEnabled && (
|
||||
<Box
|
||||
sx={{
|
||||
position: 'absolute',
|
||||
top: 0,
|
||||
insetInlineEnd: 0,
|
||||
}}
|
||||
>
|
||||
<AddEmbeddingButton onClick={onOpen} />
|
||||
</Box>
|
||||
)}
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default ParamSDXLNegativeStyleConditioning;
|
@ -0,0 +1,148 @@
|
||||
import { Box, FormControl, useDisclosure } from '@chakra-ui/react';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { ChangeEvent, KeyboardEvent, useCallback, useRef } from 'react';
|
||||
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { clampSymmetrySteps } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
import IAITextarea from 'common/components/IAITextarea';
|
||||
import { useIsReadyToInvoke } from 'common/hooks/useIsReadyToInvoke';
|
||||
import AddEmbeddingButton from 'features/embedding/components/AddEmbeddingButton';
|
||||
import ParamEmbeddingPopover from 'features/embedding/components/ParamEmbeddingPopover';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { flushSync } from 'react-dom';
|
||||
import { setPositiveStylePromptSDXL } from '../store/sdxlSlice';
|
||||
|
||||
const promptInputSelector = createSelector(
|
||||
[stateSelector, activeTabNameSelector],
|
||||
({ sdxl }, activeTabName) => {
|
||||
return {
|
||||
prompt: sdxl.positiveStylePrompt,
|
||||
activeTabName,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
/**
|
||||
* Prompt input text area.
|
||||
*/
|
||||
const ParamSDXLPositiveStyleConditioning = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { prompt, activeTabName } = useAppSelector(promptInputSelector);
|
||||
const isReady = useIsReadyToInvoke();
|
||||
const promptRef = useRef<HTMLTextAreaElement>(null);
|
||||
const { isOpen, onClose, onOpen } = useDisclosure();
|
||||
|
||||
const handleChangePrompt = useCallback(
|
||||
(e: ChangeEvent<HTMLTextAreaElement>) => {
|
||||
dispatch(setPositiveStylePromptSDXL(e.target.value));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const handleSelectEmbedding = useCallback(
|
||||
(v: string) => {
|
||||
if (!promptRef.current) {
|
||||
return;
|
||||
}
|
||||
|
||||
// this is where we insert the TI trigger
|
||||
const caret = promptRef.current.selectionStart;
|
||||
|
||||
if (caret === undefined) {
|
||||
return;
|
||||
}
|
||||
|
||||
let newPrompt = prompt.slice(0, caret);
|
||||
|
||||
if (newPrompt[newPrompt.length - 1] !== '<') {
|
||||
newPrompt += '<';
|
||||
}
|
||||
|
||||
newPrompt += `${v}>`;
|
||||
|
||||
// we insert the cursor after the `>`
|
||||
const finalCaretPos = newPrompt.length;
|
||||
|
||||
newPrompt += prompt.slice(caret);
|
||||
|
||||
// must flush dom updates else selection gets reset
|
||||
flushSync(() => {
|
||||
dispatch(setPositiveStylePromptSDXL(newPrompt));
|
||||
});
|
||||
|
||||
// set the caret position to just after the TI trigger
|
||||
promptRef.current.selectionStart = finalCaretPos;
|
||||
promptRef.current.selectionEnd = finalCaretPos;
|
||||
onClose();
|
||||
},
|
||||
[dispatch, onClose, prompt]
|
||||
);
|
||||
|
||||
const isEmbeddingEnabled = useFeatureStatus('embedding').isFeatureEnabled;
|
||||
|
||||
const handleKeyDown = useCallback(
|
||||
(e: KeyboardEvent<HTMLTextAreaElement>) => {
|
||||
if (e.key === 'Enter' && e.shiftKey === false && isReady) {
|
||||
e.preventDefault();
|
||||
dispatch(clampSymmetrySteps());
|
||||
dispatch(userInvoked(activeTabName));
|
||||
}
|
||||
if (isEmbeddingEnabled && e.key === '<') {
|
||||
onOpen();
|
||||
}
|
||||
},
|
||||
[isReady, dispatch, activeTabName, onOpen, isEmbeddingEnabled]
|
||||
);
|
||||
|
||||
// const handleSelect = (e: MouseEvent<HTMLTextAreaElement>) => {
|
||||
// const target = e.target as HTMLTextAreaElement;
|
||||
// setCaret({ start: target.selectionStart, end: target.selectionEnd });
|
||||
// };
|
||||
|
||||
return (
|
||||
<Box position="relative">
|
||||
<FormControl>
|
||||
<ParamEmbeddingPopover
|
||||
isOpen={isOpen}
|
||||
onClose={onClose}
|
||||
onSelect={handleSelectEmbedding}
|
||||
>
|
||||
<IAITextarea
|
||||
id="prompt"
|
||||
name="prompt"
|
||||
ref={promptRef}
|
||||
value={prompt}
|
||||
placeholder="Positive Style Prompt"
|
||||
onChange={handleChangePrompt}
|
||||
onKeyDown={handleKeyDown}
|
||||
resize="vertical"
|
||||
minH={16}
|
||||
/>
|
||||
</ParamEmbeddingPopover>
|
||||
</FormControl>
|
||||
{!isOpen && isEmbeddingEnabled && (
|
||||
<Box
|
||||
sx={{
|
||||
position: 'absolute',
|
||||
top: 0,
|
||||
insetInlineEnd: 0,
|
||||
}}
|
||||
>
|
||||
<AddEmbeddingButton onClick={onOpen} />
|
||||
</Box>
|
||||
)}
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default ParamSDXLPositiveStyleConditioning;
|
@ -0,0 +1,48 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAICollapse from 'common/components/IAICollapse';
|
||||
import ParamSDXLRefinerAestheticScore from './SDXLRefiner/ParamSDXLRefinerAestheticScore';
|
||||
import ParamSDXLRefinerCFGScale from './SDXLRefiner/ParamSDXLRefinerCFGScale';
|
||||
import ParamSDXLRefinerModelSelect from './SDXLRefiner/ParamSDXLRefinerModelSelect';
|
||||
import ParamSDXLRefinerScheduler from './SDXLRefiner/ParamSDXLRefinerScheduler';
|
||||
import ParamSDXLRefinerStart from './SDXLRefiner/ParamSDXLRefinerStart';
|
||||
import ParamSDXLRefinerSteps from './SDXLRefiner/ParamSDXLRefinerSteps';
|
||||
import ParamUseSDXLRefiner from './SDXLRefiner/ParamUseSDXLRefiner';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
(state) => {
|
||||
const { shouldUseSDXLRefiner } = state.sdxl;
|
||||
const { shouldUseSliders } = state.ui;
|
||||
return {
|
||||
activeLabel: shouldUseSDXLRefiner ? 'Enabled' : undefined,
|
||||
shouldUseSliders,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLRefinerCollapse = () => {
|
||||
const { activeLabel, shouldUseSliders } = useAppSelector(selector);
|
||||
|
||||
return (
|
||||
<IAICollapse label="Refiner" activeLabel={activeLabel}>
|
||||
<Flex sx={{ gap: 2, flexDir: 'column' }}>
|
||||
<ParamUseSDXLRefiner />
|
||||
<ParamSDXLRefinerModelSelect />
|
||||
<Flex gap={2} flexDirection={shouldUseSliders ? 'column' : 'row'}>
|
||||
<ParamSDXLRefinerSteps />
|
||||
<ParamSDXLRefinerCFGScale />
|
||||
</Flex>
|
||||
<ParamSDXLRefinerScheduler />
|
||||
<ParamSDXLRefinerAestheticScore />
|
||||
<ParamSDXLRefinerStart />
|
||||
</Flex>
|
||||
</IAICollapse>
|
||||
);
|
||||
};
|
||||
|
||||
export default ParamSDXLRefinerCollapse;
|
@ -0,0 +1,78 @@
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAICollapse from 'common/components/IAICollapse';
|
||||
import ParamCFGScale from 'features/parameters/components/Parameters/Core/ParamCFGScale';
|
||||
import ParamIterations from 'features/parameters/components/Parameters/Core/ParamIterations';
|
||||
import ParamModelandVAEandScheduler from 'features/parameters/components/Parameters/Core/ParamModelandVAEandScheduler';
|
||||
import ParamSize from 'features/parameters/components/Parameters/Core/ParamSize';
|
||||
import ParamSteps from 'features/parameters/components/Parameters/Core/ParamSteps';
|
||||
import ImageToImageFit from 'features/parameters/components/Parameters/ImageToImage/ImageToImageFit';
|
||||
import ParamSeedFull from 'features/parameters/components/Parameters/Seed/ParamSeedFull';
|
||||
import { generationSelector } from 'features/parameters/store/generationSelectors';
|
||||
import { uiSelector } from 'features/ui/store/uiSelectors';
|
||||
import { memo } from 'react';
|
||||
import ParamSDXLImg2ImgDenoisingStrength from './ParamSDXLImg2ImgDenoisingStrength';
|
||||
|
||||
const selector = createSelector(
|
||||
[uiSelector, generationSelector],
|
||||
(ui, generation) => {
|
||||
const { shouldUseSliders } = ui;
|
||||
const { shouldRandomizeSeed } = generation;
|
||||
|
||||
const activeLabel = !shouldRandomizeSeed ? 'Manual Seed' : undefined;
|
||||
|
||||
return { shouldUseSliders, activeLabel };
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const SDXLImageToImageTabCoreParameters = () => {
|
||||
const { shouldUseSliders, activeLabel } = useAppSelector(selector);
|
||||
|
||||
return (
|
||||
<IAICollapse
|
||||
label={'General'}
|
||||
activeLabel={activeLabel}
|
||||
defaultIsOpen={true}
|
||||
>
|
||||
<Flex
|
||||
sx={{
|
||||
flexDirection: 'column',
|
||||
gap: 3,
|
||||
}}
|
||||
>
|
||||
{shouldUseSliders ? (
|
||||
<>
|
||||
<ParamIterations />
|
||||
<ParamSteps />
|
||||
<ParamCFGScale />
|
||||
<ParamModelandVAEandScheduler />
|
||||
<Box pt={2}>
|
||||
<ParamSeedFull />
|
||||
</Box>
|
||||
<ParamSize />
|
||||
</>
|
||||
) : (
|
||||
<>
|
||||
<Flex gap={3}>
|
||||
<ParamIterations />
|
||||
<ParamSteps />
|
||||
<ParamCFGScale />
|
||||
</Flex>
|
||||
<ParamModelandVAEandScheduler />
|
||||
<Box pt={2}>
|
||||
<ParamSeedFull />
|
||||
</Box>
|
||||
<ParamSize />
|
||||
</>
|
||||
)}
|
||||
<ParamSDXLImg2ImgDenoisingStrength />
|
||||
<ImageToImageFit />
|
||||
</Flex>
|
||||
</IAICollapse>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(SDXLImageToImageTabCoreParameters);
|
@ -0,0 +1,28 @@
|
||||
import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/ParamDynamicPromptsCollapse';
|
||||
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
|
||||
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
|
||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||
// import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
|
||||
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
||||
import ParamSDXLNegativeStyleConditioning from './ParamSDXLNegativeStyleConditioning';
|
||||
import ParamSDXLPositiveStyleConditioning from './ParamSDXLPositiveStyleConditioning';
|
||||
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
||||
import SDXLImageToImageTabCoreParameters from './SDXLImageToImageTabCoreParameters';
|
||||
|
||||
const SDXLImageToImageTabParameters = () => {
|
||||
return (
|
||||
<>
|
||||
<ParamPositiveConditioning />
|
||||
<ParamSDXLPositiveStyleConditioning />
|
||||
<ParamNegativeConditioning />
|
||||
<ParamSDXLNegativeStyleConditioning />
|
||||
<ProcessButtons />
|
||||
<SDXLImageToImageTabCoreParameters />
|
||||
<ParamSDXLRefinerCollapse />
|
||||
<ParamDynamicPromptsCollapse />
|
||||
<ParamNoiseCollapse />
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default SDXLImageToImageTabParameters;
|
@ -0,0 +1,60 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setRefinerAestheticScore } from 'features/sdxl/store/sdxlSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useIsRefinerAvailable } from 'services/api/hooks/useIsRefinerAvailable';
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
({ sdxl, hotkeys }) => {
|
||||
const { refinerAestheticScore } = sdxl;
|
||||
const { shift } = hotkeys;
|
||||
|
||||
return {
|
||||
refinerAestheticScore,
|
||||
shift,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLRefinerAestheticScore = () => {
|
||||
const { refinerAestheticScore, shift } = useAppSelector(selector);
|
||||
|
||||
const isRefinerAvailable = useIsRefinerAvailable();
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: number) => dispatch(setRefinerAestheticScore(v)),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const handleReset = useCallback(
|
||||
() => dispatch(setRefinerAestheticScore(6)),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label="Aesthetic Score"
|
||||
step={shift ? 0.1 : 0.5}
|
||||
min={1}
|
||||
max={10}
|
||||
onChange={handleChange}
|
||||
handleReset={handleReset}
|
||||
value={refinerAestheticScore}
|
||||
sliderNumberInputProps={{ max: 10 }}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
isInteger={false}
|
||||
isDisabled={!isRefinerAvailable}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSDXLRefinerAestheticScore);
|
@ -0,0 +1,75 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setRefinerCFGScale } from 'features/sdxl/store/sdxlSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useIsRefinerAvailable } from 'services/api/hooks/useIsRefinerAvailable';
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
({ sdxl, ui, hotkeys }) => {
|
||||
const { refinerCFGScale } = sdxl;
|
||||
const { shouldUseSliders } = ui;
|
||||
const { shift } = hotkeys;
|
||||
|
||||
return {
|
||||
refinerCFGScale,
|
||||
shouldUseSliders,
|
||||
shift,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLRefinerCFGScale = () => {
|
||||
const { refinerCFGScale, shouldUseSliders, shift } = useAppSelector(selector);
|
||||
const isRefinerAvailable = useIsRefinerAvailable();
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: number) => dispatch(setRefinerCFGScale(v)),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const handleReset = useCallback(
|
||||
() => dispatch(setRefinerCFGScale(7)),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return shouldUseSliders ? (
|
||||
<IAISlider
|
||||
label={t('parameters.cfgScale')}
|
||||
step={shift ? 0.1 : 0.5}
|
||||
min={1}
|
||||
max={20}
|
||||
onChange={handleChange}
|
||||
handleReset={handleReset}
|
||||
value={refinerCFGScale}
|
||||
sliderNumberInputProps={{ max: 200 }}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
isInteger={false}
|
||||
isDisabled={!isRefinerAvailable}
|
||||
/>
|
||||
) : (
|
||||
<IAINumberInput
|
||||
label={t('parameters.cfgScale')}
|
||||
step={0.5}
|
||||
min={1}
|
||||
max={200}
|
||||
onChange={handleChange}
|
||||
value={refinerCFGScale}
|
||||
isInteger={false}
|
||||
numberInputFieldProps={{ textAlign: 'center' }}
|
||||
isDisabled={!isRefinerAvailable}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSDXLRefinerCFGScale);
|
@ -0,0 +1,111 @@
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
|
||||
import { MODEL_TYPE_MAP } from 'features/parameters/types/constants';
|
||||
import { modelIdToMainModelParam } from 'features/parameters/util/modelIdToMainModelParam';
|
||||
import { refinerModelChanged } from 'features/sdxl/store/sdxlSlice';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import SyncModelsButton from 'features/ui/components/tabs/ModelManager/subpanels/ModelManagerSettingsPanel/SyncModelsButton';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { REFINER_BASE_MODELS } from 'services/api/constants';
|
||||
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
(state) => ({ model: state.sdxl.refinerModel }),
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLRefinerModelSelect = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const isSyncModelEnabled = useFeatureStatus('syncModels').isFeatureEnabled;
|
||||
|
||||
const { model } = useAppSelector(selector);
|
||||
|
||||
const { data: refinerModels, isLoading } =
|
||||
useGetMainModelsQuery(REFINER_BASE_MODELS);
|
||||
|
||||
const data = useMemo(() => {
|
||||
if (!refinerModels) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const data: SelectItem[] = [];
|
||||
|
||||
forEach(refinerModels.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.model_name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
|
||||
return data;
|
||||
}, [refinerModels]);
|
||||
|
||||
// grab the full model entity from the RTK Query cache
|
||||
// TODO: maybe we should just store the full model entity in state?
|
||||
const selectedModel = useMemo(
|
||||
() =>
|
||||
refinerModels?.entities[
|
||||
`${model?.base_model}/main/${model?.model_name}`
|
||||
] ?? null,
|
||||
[refinerModels?.entities, model]
|
||||
);
|
||||
|
||||
const handleChangeModel = useCallback(
|
||||
(v: string | null) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
|
||||
const newModel = modelIdToMainModelParam(v);
|
||||
|
||||
if (!newModel) {
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(refinerModelChanged(newModel));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return isLoading ? (
|
||||
<IAIMantineSearchableSelect
|
||||
label="Refiner Model"
|
||||
placeholder="Loading..."
|
||||
disabled={true}
|
||||
data={[]}
|
||||
/>
|
||||
) : (
|
||||
<Flex w="100%" alignItems="center" gap={2}>
|
||||
<IAIMantineSearchableSelect
|
||||
tooltip={selectedModel?.description}
|
||||
label="Refiner Model"
|
||||
value={selectedModel?.id}
|
||||
placeholder={data.length > 0 ? 'Select a model' : 'No models available'}
|
||||
data={data}
|
||||
error={data.length === 0}
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
w="100%"
|
||||
/>
|
||||
{isSyncModelEnabled && (
|
||||
<Box mt={7}>
|
||||
<SyncModelsButton iconMode />
|
||||
</Box>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSDXLRefinerModelSelect);
|
@ -0,0 +1,65 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
|
||||
import {
|
||||
SCHEDULER_LABEL_MAP,
|
||||
SchedulerParam,
|
||||
} from 'features/parameters/types/parameterSchemas';
|
||||
import { setRefinerScheduler } from 'features/sdxl/store/sdxlSlice';
|
||||
import { map } from 'lodash-es';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useIsRefinerAvailable } from 'services/api/hooks/useIsRefinerAvailable';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
({ ui, sdxl }) => {
|
||||
const { refinerScheduler } = sdxl;
|
||||
const { favoriteSchedulers: enabledSchedulers } = ui;
|
||||
|
||||
const data = map(SCHEDULER_LABEL_MAP, (label, name) => ({
|
||||
value: name,
|
||||
label: label,
|
||||
group: enabledSchedulers.includes(name as SchedulerParam)
|
||||
? 'Favorites'
|
||||
: undefined,
|
||||
})).sort((a, b) => a.label.localeCompare(b.label));
|
||||
|
||||
return {
|
||||
refinerScheduler,
|
||||
data,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLRefinerScheduler = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const { refinerScheduler, data } = useAppSelector(selector);
|
||||
const isRefinerAvailable = useIsRefinerAvailable();
|
||||
const handleChange = useCallback(
|
||||
(v: string | null) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
dispatch(setRefinerScheduler(v as SchedulerParam));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return (
|
||||
<IAIMantineSearchableSelect
|
||||
w="100%"
|
||||
label={t('parameters.scheduler')}
|
||||
value={refinerScheduler}
|
||||
data={data}
|
||||
onChange={handleChange}
|
||||
disabled={!isRefinerAvailable}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSDXLRefinerScheduler);
|
@ -0,0 +1,53 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setRefinerStart } from 'features/sdxl/store/sdxlSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useIsRefinerAvailable } from 'services/api/hooks/useIsRefinerAvailable';
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
({ sdxl }) => {
|
||||
const { refinerStart } = sdxl;
|
||||
return {
|
||||
refinerStart,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLRefinerStart = () => {
|
||||
const { refinerStart } = useAppSelector(selector);
|
||||
const dispatch = useAppDispatch();
|
||||
const isRefinerAvailable = useIsRefinerAvailable();
|
||||
const handleChange = useCallback(
|
||||
(v: number) => dispatch(setRefinerStart(v)),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const handleReset = useCallback(
|
||||
() => dispatch(setRefinerStart(0.7)),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label="Refiner Start"
|
||||
step={0.01}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={handleChange}
|
||||
handleReset={handleReset}
|
||||
value={refinerStart}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
isInteger={false}
|
||||
isDisabled={!isRefinerAvailable}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSDXLRefinerStart);
|
@ -0,0 +1,72 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setRefinerSteps } from 'features/sdxl/store/sdxlSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useIsRefinerAvailable } from 'services/api/hooks/useIsRefinerAvailable';
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
({ sdxl, ui }) => {
|
||||
const { refinerSteps } = sdxl;
|
||||
const { shouldUseSliders } = ui;
|
||||
|
||||
return {
|
||||
refinerSteps,
|
||||
shouldUseSliders,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamSDXLRefinerSteps = () => {
|
||||
const { refinerSteps, shouldUseSliders } = useAppSelector(selector);
|
||||
const isRefinerAvailable = useIsRefinerAvailable();
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(setRefinerSteps(v));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
const handleReset = useCallback(() => {
|
||||
dispatch(setRefinerSteps(20));
|
||||
}, [dispatch]);
|
||||
|
||||
return shouldUseSliders ? (
|
||||
<IAISlider
|
||||
label={t('parameters.steps')}
|
||||
min={1}
|
||||
max={100}
|
||||
step={1}
|
||||
onChange={handleChange}
|
||||
handleReset={handleReset}
|
||||
value={refinerSteps}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
sliderNumberInputProps={{ max: 500 }}
|
||||
isDisabled={!isRefinerAvailable}
|
||||
/>
|
||||
) : (
|
||||
<IAINumberInput
|
||||
label={t('parameters.steps')}
|
||||
min={1}
|
||||
max={500}
|
||||
step={1}
|
||||
onChange={handleChange}
|
||||
value={refinerSteps}
|
||||
numberInputFieldProps={{ textAlign: 'center' }}
|
||||
isDisabled={!isRefinerAvailable}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamSDXLRefinerSteps);
|
@ -0,0 +1,28 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISwitch from 'common/components/IAISwitch';
|
||||
import { setShouldUseSDXLRefiner } from 'features/sdxl/store/sdxlSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import { useIsRefinerAvailable } from 'services/api/hooks/useIsRefinerAvailable';
|
||||
|
||||
export default function ParamUseSDXLRefiner() {
|
||||
const shouldUseSDXLRefiner = useAppSelector(
|
||||
(state: RootState) => state.sdxl.shouldUseSDXLRefiner
|
||||
);
|
||||
const isRefinerAvailable = useIsRefinerAvailable();
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleUseSDXLRefinerChange = (e: ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(setShouldUseSDXLRefiner(e.target.checked));
|
||||
};
|
||||
|
||||
return (
|
||||
<IAISwitch
|
||||
label="Use Refiner"
|
||||
isChecked={shouldUseSDXLRefiner}
|
||||
onChange={handleUseSDXLRefinerChange}
|
||||
isDisabled={!isRefinerAvailable}
|
||||
/>
|
||||
);
|
||||
}
|
@ -0,0 +1,27 @@
|
||||
import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/ParamDynamicPromptsCollapse';
|
||||
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
|
||||
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
|
||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
||||
import TextToImageTabCoreParameters from 'features/ui/components/tabs/TextToImage/TextToImageTabCoreParameters';
|
||||
import ParamSDXLNegativeStyleConditioning from './ParamSDXLNegativeStyleConditioning';
|
||||
import ParamSDXLPositiveStyleConditioning from './ParamSDXLPositiveStyleConditioning';
|
||||
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
||||
|
||||
const SDXLTextToImageTabParameters = () => {
|
||||
return (
|
||||
<>
|
||||
<ParamPositiveConditioning />
|
||||
<ParamSDXLPositiveStyleConditioning />
|
||||
<ParamNegativeConditioning />
|
||||
<ParamSDXLNegativeStyleConditioning />
|
||||
<ProcessButtons />
|
||||
<TextToImageTabCoreParameters />
|
||||
<ParamSDXLRefinerCollapse />
|
||||
<ParamDynamicPromptsCollapse />
|
||||
<ParamNoiseCollapse />
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default SDXLTextToImageTabParameters;
|
89
invokeai/frontend/web/src/features/sdxl/store/sdxlSlice.ts
Normal file
@ -0,0 +1,89 @@
|
||||
import { PayloadAction, createSlice } from '@reduxjs/toolkit';
|
||||
import {
|
||||
MainModelParam,
|
||||
NegativeStylePromptSDXLParam,
|
||||
PositiveStylePromptSDXLParam,
|
||||
SchedulerParam,
|
||||
} from 'features/parameters/types/parameterSchemas';
|
||||
import { MainModelField } from 'services/api/types';
|
||||
|
||||
type SDXLInitialState = {
|
||||
positiveStylePrompt: PositiveStylePromptSDXLParam;
|
||||
negativeStylePrompt: NegativeStylePromptSDXLParam;
|
||||
shouldUseSDXLRefiner: boolean;
|
||||
sdxlImg2ImgDenoisingStrength: number;
|
||||
refinerModel: MainModelField | null;
|
||||
refinerSteps: number;
|
||||
refinerCFGScale: number;
|
||||
refinerScheduler: SchedulerParam;
|
||||
refinerAestheticScore: number;
|
||||
refinerStart: number;
|
||||
};
|
||||
|
||||
const sdxlInitialState: SDXLInitialState = {
|
||||
positiveStylePrompt: '',
|
||||
negativeStylePrompt: '',
|
||||
shouldUseSDXLRefiner: false,
|
||||
sdxlImg2ImgDenoisingStrength: 0.7,
|
||||
refinerModel: null,
|
||||
refinerSteps: 20,
|
||||
refinerCFGScale: 7.5,
|
||||
refinerScheduler: 'euler',
|
||||
refinerAestheticScore: 6,
|
||||
refinerStart: 0.7,
|
||||
};
|
||||
|
||||
const sdxlSlice = createSlice({
|
||||
name: 'sdxl',
|
||||
initialState: sdxlInitialState,
|
||||
reducers: {
|
||||
setPositiveStylePromptSDXL: (state, action: PayloadAction<string>) => {
|
||||
state.positiveStylePrompt = action.payload;
|
||||
},
|
||||
setNegativeStylePromptSDXL: (state, action: PayloadAction<string>) => {
|
||||
state.negativeStylePrompt = action.payload;
|
||||
},
|
||||
setShouldUseSDXLRefiner: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldUseSDXLRefiner = action.payload;
|
||||
},
|
||||
setSDXLImg2ImgDenoisingStrength: (state, action: PayloadAction<number>) => {
|
||||
state.sdxlImg2ImgDenoisingStrength = action.payload;
|
||||
},
|
||||
refinerModelChanged: (
|
||||
state,
|
||||
action: PayloadAction<MainModelParam | null>
|
||||
) => {
|
||||
state.refinerModel = action.payload;
|
||||
},
|
||||
setRefinerSteps: (state, action: PayloadAction<number>) => {
|
||||
state.refinerSteps = action.payload;
|
||||
},
|
||||
setRefinerCFGScale: (state, action: PayloadAction<number>) => {
|
||||
state.refinerCFGScale = action.payload;
|
||||
},
|
||||
setRefinerScheduler: (state, action: PayloadAction<SchedulerParam>) => {
|
||||
state.refinerScheduler = action.payload;
|
||||
},
|
||||
setRefinerAestheticScore: (state, action: PayloadAction<number>) => {
|
||||
state.refinerAestheticScore = action.payload;
|
||||
},
|
||||
setRefinerStart: (state, action: PayloadAction<number>) => {
|
||||
state.refinerStart = action.payload;
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
export const {
|
||||
setPositiveStylePromptSDXL,
|
||||
setNegativeStylePromptSDXL,
|
||||
setShouldUseSDXLRefiner,
|
||||
setSDXLImg2ImgDenoisingStrength,
|
||||
refinerModelChanged,
|
||||
setRefinerSteps,
|
||||
setRefinerCFGScale,
|
||||
setRefinerScheduler,
|
||||
setRefinerAestheticScore,
|
||||
setRefinerStart,
|
||||
} = sdxlSlice.actions;
|
||||
|
||||
export default sdxlSlice.reducer;
|
@ -26,6 +26,8 @@ import {
|
||||
setShouldConfirmOnDelete,
|
||||
shouldAntialiasProgressImageChanged,
|
||||
shouldLogToConsoleChanged,
|
||||
shouldUseNSFWCheckerChanged,
|
||||
shouldUseWatermarkerChanged,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import {
|
||||
setShouldShowProgressInViewer,
|
||||
@ -42,6 +44,7 @@ import {
|
||||
} from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { LogLevelName } from 'roarr';
|
||||
import { useGetAppConfigQuery } from 'services/api/endpoints/appInfo';
|
||||
import SettingSwitch from './SettingSwitch';
|
||||
import SettingsClearIntermediates from './SettingsClearIntermediates';
|
||||
import SettingsSchedulers from './SettingsSchedulers';
|
||||
@ -57,6 +60,8 @@ const selector = createSelector(
|
||||
shouldLogToConsole,
|
||||
shouldAntialiasProgressImage,
|
||||
isNodesEnabled,
|
||||
shouldUseNSFWChecker,
|
||||
shouldUseWatermarker,
|
||||
} = system;
|
||||
|
||||
const {
|
||||
@ -78,6 +83,8 @@ const selector = createSelector(
|
||||
shouldAntialiasProgressImage,
|
||||
shouldShowAdvancedOptions,
|
||||
isNodesEnabled,
|
||||
shouldUseNSFWChecker,
|
||||
shouldUseWatermarker,
|
||||
};
|
||||
},
|
||||
{
|
||||
@ -120,6 +127,16 @@ const SettingsModal = ({ children, config }: SettingsModalProps) => {
|
||||
}
|
||||
}, [shouldShowDeveloperSettings, dispatch]);
|
||||
|
||||
const { isNSFWCheckerAvailable, isWatermarkerAvailable } =
|
||||
useGetAppConfigQuery(undefined, {
|
||||
selectFromResult: ({ data }) => ({
|
||||
isNSFWCheckerAvailable:
|
||||
data?.nsfw_methods.includes('nsfw_checker') ?? false,
|
||||
isWatermarkerAvailable:
|
||||
data?.watermarking_methods.includes('invisible_watermark') ?? false,
|
||||
}),
|
||||
});
|
||||
|
||||
const {
|
||||
isOpen: isSettingsModalOpen,
|
||||
onOpen: onSettingsModalOpen,
|
||||
@ -143,6 +160,8 @@ const SettingsModal = ({ children, config }: SettingsModalProps) => {
|
||||
shouldAntialiasProgressImage,
|
||||
shouldShowAdvancedOptions,
|
||||
isNodesEnabled,
|
||||
shouldUseNSFWChecker,
|
||||
shouldUseWatermarker,
|
||||
} = useAppSelector(selector);
|
||||
|
||||
const handleClickResetWebUI = useCallback(() => {
|
||||
@ -221,6 +240,22 @@ const SettingsModal = ({ children, config }: SettingsModalProps) => {
|
||||
<StyledFlex>
|
||||
<Heading size="sm">{t('settings.generation')}</Heading>
|
||||
<SettingsSchedulers />
|
||||
<SettingSwitch
|
||||
label="Enable NSFW Checker"
|
||||
isDisabled={!isNSFWCheckerAvailable}
|
||||
isChecked={shouldUseNSFWChecker}
|
||||
onChange={(e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(shouldUseNSFWCheckerChanged(e.target.checked))
|
||||
}
|
||||
/>
|
||||
<SettingSwitch
|
||||
label="Enable Invisible Watermark"
|
||||
isDisabled={!isWatermarkerAvailable}
|
||||
isChecked={shouldUseWatermarker}
|
||||
onChange={(e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(shouldUseWatermarkerChanged(e.target.checked))
|
||||
}
|
||||
/>
|
||||
</StyledFlex>
|
||||
|
||||
<StyledFlex>
|
||||
|
@ -1,5 +1,5 @@
|
||||
import { UseToastOptions } from '@chakra-ui/react';
|
||||
import { PayloadAction, createSlice } from '@reduxjs/toolkit';
|
||||
import { PayloadAction, createSlice, isAnyOf } from '@reduxjs/toolkit';
|
||||
import { InvokeLogLevel } from 'app/logging/logger';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
import { nodeTemplatesBuilt } from 'features/nodes/store/nodesSlice';
|
||||
@ -16,13 +16,16 @@ import {
|
||||
appSocketGraphExecutionStateComplete,
|
||||
appSocketInvocationComplete,
|
||||
appSocketInvocationError,
|
||||
appSocketInvocationRetrievalError,
|
||||
appSocketInvocationStarted,
|
||||
appSocketSessionRetrievalError,
|
||||
appSocketSubscribed,
|
||||
appSocketUnsubscribed,
|
||||
} from 'services/events/actions';
|
||||
import { ProgressImage } from 'services/events/types';
|
||||
import { makeToast } from '../util/makeToast';
|
||||
import { LANGUAGES } from './constants';
|
||||
import { startCase } from 'lodash-es';
|
||||
|
||||
export type CancelStrategy = 'immediate' | 'scheduled';
|
||||
|
||||
@ -84,6 +87,8 @@ export interface SystemState {
|
||||
language: keyof typeof LANGUAGES;
|
||||
isUploading: boolean;
|
||||
isNodesEnabled: boolean;
|
||||
shouldUseNSFWChecker: boolean;
|
||||
shouldUseWatermarker: boolean;
|
||||
}
|
||||
|
||||
export const initialSystemState: SystemState = {
|
||||
@ -116,6 +121,8 @@ export const initialSystemState: SystemState = {
|
||||
language: 'en',
|
||||
isUploading: false,
|
||||
isNodesEnabled: false,
|
||||
shouldUseNSFWChecker: true,
|
||||
shouldUseWatermarker: true,
|
||||
};
|
||||
|
||||
export const systemSlice = createSlice({
|
||||
@ -191,6 +198,12 @@ export const systemSlice = createSlice({
|
||||
setIsNodesEnabled(state, action: PayloadAction<boolean>) {
|
||||
state.isNodesEnabled = action.payload;
|
||||
},
|
||||
shouldUseNSFWCheckerChanged(state, action: PayloadAction<boolean>) {
|
||||
state.shouldUseNSFWChecker = action.payload;
|
||||
},
|
||||
shouldUseWatermarkerChanged(state, action: PayloadAction<boolean>) {
|
||||
state.shouldUseWatermarker = action.payload;
|
||||
},
|
||||
},
|
||||
extraReducers(builder) {
|
||||
/**
|
||||
@ -288,25 +301,6 @@ export const systemSlice = createSlice({
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Invocation Error
|
||||
*/
|
||||
builder.addCase(appSocketInvocationError, (state) => {
|
||||
state.isProcessing = false;
|
||||
state.isCancelable = true;
|
||||
// state.currentIteration = 0;
|
||||
// state.totalIterations = 0;
|
||||
state.currentStatusHasSteps = false;
|
||||
state.currentStep = 0;
|
||||
state.totalSteps = 0;
|
||||
state.statusTranslationKey = 'common.statusError';
|
||||
state.progressImage = null;
|
||||
|
||||
state.toastQueue.push(
|
||||
makeToast({ title: t('toast.serverError'), status: 'error' })
|
||||
);
|
||||
});
|
||||
|
||||
/**
|
||||
* Graph Execution State Complete
|
||||
*/
|
||||
@ -362,7 +356,7 @@ export const systemSlice = createSlice({
|
||||
* Session Invoked - REJECTED
|
||||
* Session Created - REJECTED
|
||||
*/
|
||||
builder.addMatcher(isAnySessionRejected, (state) => {
|
||||
builder.addMatcher(isAnySessionRejected, (state, action) => {
|
||||
state.isProcessing = false;
|
||||
state.isCancelable = false;
|
||||
state.isCancelScheduled = false;
|
||||
@ -372,7 +366,35 @@ export const systemSlice = createSlice({
|
||||
state.progressImage = null;
|
||||
|
||||
state.toastQueue.push(
|
||||
makeToast({ title: t('toast.serverError'), status: 'error' })
|
||||
makeToast({
|
||||
title: t('toast.serverError'),
|
||||
status: 'error',
|
||||
description:
|
||||
action.payload?.status === 422 ? 'Validation Error' : undefined,
|
||||
})
|
||||
);
|
||||
});
|
||||
|
||||
/**
|
||||
* Any server error
|
||||
*/
|
||||
builder.addMatcher(isAnyServerError, (state, action) => {
|
||||
state.isProcessing = false;
|
||||
state.isCancelable = true;
|
||||
// state.currentIteration = 0;
|
||||
// state.totalIterations = 0;
|
||||
state.currentStatusHasSteps = false;
|
||||
state.currentStep = 0;
|
||||
state.totalSteps = 0;
|
||||
state.statusTranslationKey = 'common.statusError';
|
||||
state.progressImage = null;
|
||||
|
||||
state.toastQueue.push(
|
||||
makeToast({
|
||||
title: t('toast.serverError'),
|
||||
status: 'error',
|
||||
description: startCase(action.payload.data.error_type),
|
||||
})
|
||||
);
|
||||
});
|
||||
},
|
||||
@ -397,6 +419,14 @@ export const {
|
||||
languageChanged,
|
||||
progressImageSet,
|
||||
setIsNodesEnabled,
|
||||
shouldUseNSFWCheckerChanged,
|
||||
shouldUseWatermarkerChanged,
|
||||
} = systemSlice.actions;
|
||||
|
||||
export default systemSlice.reducer;
|
||||
|
||||
const isAnyServerError = isAnyOf(
|
||||
appSocketInvocationError,
|
||||
appSocketSessionRetrievalError,
|
||||
appSocketInvocationRetrievalError
|
||||
);
|
||||
|
@ -16,7 +16,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { requestCanvasRescale } from 'features/canvas/store/thunks/requestCanvasScale';
|
||||
import ImageGalleryContent from 'features/gallery/components/ImageGalleryContent';
|
||||
import { configSelector } from 'features/system/store/configSelectors';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { InvokeTabName, tabMap } from 'features/ui/store/tabMap';
|
||||
import { setActiveTab, togglePanels } from 'features/ui/store/uiSlice';
|
||||
import { ResourceKey } from 'i18next';
|
||||
import { isEqual } from 'lodash-es';
|
||||
@ -172,13 +172,22 @@ const InvokeTabs = () => {
|
||||
const { ref: galleryPanelRef, minSizePct: galleryMinSizePct } =
|
||||
useMinimumPanelSize(MIN_GALLERY_WIDTH, DEFAULT_GALLERY_PCT, 'app');
|
||||
|
||||
const handleTabChange = useCallback(
|
||||
(index: number) => {
|
||||
const activeTabName = tabMap[index];
|
||||
if (!activeTabName) {
|
||||
return;
|
||||
}
|
||||
dispatch(setActiveTab(activeTabName));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return (
|
||||
<Tabs
|
||||
defaultIndex={activeTab}
|
||||
index={activeTab}
|
||||
onChange={(index: number) => {
|
||||
dispatch(setActiveTab(index));
|
||||
}}
|
||||
onChange={handleTabChange}
|
||||
sx={{
|
||||
flexGrow: 1,
|
||||
gap: 4,
|
||||
|
@ -1,7 +1,9 @@
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { requestCanvasRescale } from 'features/canvas/store/thunks/requestCanvasScale';
|
||||
import InitialImageDisplay from 'features/parameters/components/Parameters/ImageToImage/InitialImageDisplay';
|
||||
import SDXLImageToImageTabParameters from 'features/sdxl/components/SDXLImageToImageTabParameters';
|
||||
import { memo, useCallback, useRef } from 'react';
|
||||
import {
|
||||
ImperativePanelGroupHandle,
|
||||
@ -16,6 +18,7 @@ import ImageToImageTabParameters from './ImageToImageTabParameters';
|
||||
const ImageToImageTab = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const panelGroupRef = useRef<ImperativePanelGroupHandle>(null);
|
||||
const model = useAppSelector((state: RootState) => state.generation.model);
|
||||
|
||||
const handleDoubleClickHandle = useCallback(() => {
|
||||
if (!panelGroupRef.current) {
|
||||
@ -28,7 +31,11 @@ const ImageToImageTab = () => {
|
||||
return (
|
||||
<Flex sx={{ gap: 4, w: 'full', h: 'full' }}>
|
||||
<ParametersPinnedWrapper>
|
||||
{model && model.base_model === 'sdxl' ? (
|
||||
<SDXLImageToImageTabParameters />
|
||||
) : (
|
||||
<ImageToImageTabParameters />
|
||||
)}
|
||||
</ParametersPinnedWrapper>
|
||||
<Box sx={{ w: 'full', h: 'full' }}>
|
||||
<PanelGroup
|
||||
|
@ -16,6 +16,7 @@ import {
|
||||
useImportMainModelsMutation,
|
||||
} from 'services/api/endpoints/models';
|
||||
import { setAdvancedAddScanModel } from '../../store/modelManagerSlice';
|
||||
import { ALL_BASE_MODELS } from 'services/api/constants';
|
||||
|
||||
export default function FoundModelsList() {
|
||||
const searchFolder = useAppSelector(
|
||||
@ -24,7 +25,7 @@ export default function FoundModelsList() {
|
||||
const [nameFilter, setNameFilter] = useState<string>('');
|
||||
|
||||
// Get paths of models that are already installed
|
||||
const { data: installedModels } = useGetMainModelsQuery();
|
||||
const { data: installedModels } = useGetMainModelsQuery(ALL_BASE_MODELS);
|
||||
|
||||
// Get all model paths from a given directory
|
||||
const { foundModels, alreadyInstalled, filteredModels } =
|
||||
|
@ -1,5 +1,4 @@
|
||||
import { Flex, Radio, RadioGroup, Text, Tooltip } from '@chakra-ui/react';
|
||||
import { makeToast } from 'features/system/util/makeToast';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import IAIInput from 'common/components/IAIInput';
|
||||
@ -8,9 +7,11 @@ import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
import IAISimpleCheckbox from 'common/components/IAISimpleCheckbox';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { makeToast } from 'features/system/util/makeToast';
|
||||
import { pickBy } from 'lodash-es';
|
||||
import { useMemo, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { ALL_BASE_MODELS } from 'services/api/constants';
|
||||
import {
|
||||
useGetMainModelsQuery,
|
||||
useMergeMainModelsMutation,
|
||||
@ -32,7 +33,7 @@ export default function MergeModelsPanel() {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const { data } = useGetMainModelsQuery();
|
||||
const { data } = useGetMainModelsQuery(ALL_BASE_MODELS);
|
||||
|
||||
const [mergeModels, { isLoading }] = useMergeMainModelsMutation();
|
||||
|
||||
|
@ -8,10 +8,11 @@ import {
|
||||
import CheckpointModelEdit from './ModelManagerPanel/CheckpointModelEdit';
|
||||
import DiffusersModelEdit from './ModelManagerPanel/DiffusersModelEdit';
|
||||
import ModelList from './ModelManagerPanel/ModelList';
|
||||
import { ALL_BASE_MODELS } from 'services/api/constants';
|
||||
|
||||
export default function ModelManagerPanel() {
|
||||
const [selectedModelId, setSelectedModelId] = useState<string>();
|
||||
const { model } = useGetMainModelsQuery(undefined, {
|
||||
const { model } = useGetMainModelsQuery(ALL_BASE_MODELS, {
|
||||
selectFromResult: ({ data }) => ({
|
||||
model: selectedModelId ? data?.entities[selectedModelId] : undefined,
|
||||
}),
|
||||
|
@ -11,6 +11,7 @@ import {
|
||||
useGetMainModelsQuery,
|
||||
} from 'services/api/endpoints/models';
|
||||
import ModelListItem from './ModelListItem';
|
||||
import { ALL_BASE_MODELS } from 'services/api/constants';
|
||||
|
||||
type ModelListProps = {
|
||||
selectedModelId: string | undefined;
|
||||
@ -26,13 +27,13 @@ const ModelList = (props: ModelListProps) => {
|
||||
const [modelFormatFilter, setModelFormatFilter] =
|
||||
useState<ModelFormat>('images');
|
||||
|
||||
const { filteredDiffusersModels } = useGetMainModelsQuery(undefined, {
|
||||
const { filteredDiffusersModels } = useGetMainModelsQuery(ALL_BASE_MODELS, {
|
||||
selectFromResult: ({ data }) => ({
|
||||
filteredDiffusersModels: modelsFilter(data, 'diffusers', nameFilter),
|
||||
}),
|
||||
});
|
||||
|
||||
const { filteredCheckpointModels } = useGetMainModelsQuery(undefined, {
|
||||
const { filteredCheckpointModels } = useGetMainModelsQuery(ALL_BASE_MODELS, {
|
||||
selectFromResult: ({ data }) => ({
|
||||
filteredCheckpointModels: modelsFilter(data, 'checkpoint', nameFilter),
|
||||
}),
|
||||
|
@ -1,14 +1,22 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import TextToImageSDXLTabParameters from 'features/sdxl/components/SDXLTextToImageTabParameters';
|
||||
import { memo } from 'react';
|
||||
import ParametersPinnedWrapper from '../../ParametersPinnedWrapper';
|
||||
import TextToImageTabMain from './TextToImageTabMain';
|
||||
import TextToImageTabParameters from './TextToImageTabParameters';
|
||||
|
||||
const TextToImageTab = () => {
|
||||
const model = useAppSelector((state: RootState) => state.generation.model);
|
||||
return (
|
||||
<Flex sx={{ gap: 4, w: 'full', h: 'full' }}>
|
||||
<ParametersPinnedWrapper>
|
||||
{model && model.base_model === 'sdxl' ? (
|
||||
<TextToImageSDXLTabParameters />
|
||||
) : (
|
||||
<TextToImageTabParameters />
|
||||
)}
|
||||
</ParametersPinnedWrapper>
|
||||
<TextToImageTabMain />
|
||||
</Flex>
|
||||
|