mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into fix/detect-more-loras
This commit is contained in:
commit
a8d3e078c0
@ -1,22 +1,20 @@
|
|||||||
import io
|
import io
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
|
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
|
||||||
from fastapi.responses import FileResponse
|
from fastapi.responses import FileResponse
|
||||||
from fastapi.routing import APIRouter
|
from fastapi.routing import APIRouter
|
||||||
from PIL import Image
|
from pydantic import BaseModel
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
|
|
||||||
from invokeai.app.invocations.metadata import ImageMetadata
|
from invokeai.app.invocations.metadata import ImageMetadata
|
||||||
from invokeai.app.models.image import ImageCategory, ResourceOrigin
|
from invokeai.app.models.image import ImageCategory, ResourceOrigin
|
||||||
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
|
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
|
||||||
from invokeai.app.services.item_storage import PaginatedResults
|
|
||||||
from invokeai.app.services.models.image_record import (
|
from invokeai.app.services.models.image_record import (
|
||||||
ImageDTO,
|
ImageDTO,
|
||||||
ImageRecordChanges,
|
ImageRecordChanges,
|
||||||
ImageUrlsDTO,
|
ImageUrlsDTO,
|
||||||
)
|
)
|
||||||
|
|
||||||
from ..dependencies import ApiDependencies
|
from ..dependencies import ApiDependencies
|
||||||
|
|
||||||
images_router = APIRouter(prefix="/v1/images", tags=["images"])
|
images_router = APIRouter(prefix="/v1/images", tags=["images"])
|
||||||
@ -152,8 +150,9 @@ async def get_image_metadata(
|
|||||||
raise HTTPException(status_code=404)
|
raise HTTPException(status_code=404)
|
||||||
|
|
||||||
|
|
||||||
@images_router.get(
|
@images_router.api_route(
|
||||||
"/i/{image_name}/full",
|
"/i/{image_name}/full",
|
||||||
|
methods=["GET", "HEAD"],
|
||||||
operation_id="get_image_full",
|
operation_id="get_image_full",
|
||||||
response_class=Response,
|
response_class=Response,
|
||||||
responses={
|
responses={
|
||||||
|
@ -661,27 +661,23 @@ class ImageHueAdjustmentInvocation(BaseInvocation):
|
|||||||
|
|
||||||
# Inputs
|
# Inputs
|
||||||
image: ImageField = Field(default=None, description="The image to adjust")
|
image: ImageField = Field(default=None, description="The image to adjust")
|
||||||
hue: int = Field(default=0, description="The degrees by which to rotate the hue")
|
hue: int = Field(default=0, description="The degrees by which to rotate the hue, 0-360")
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
pil_image = context.services.images.get_pil_image(self.image.image_name)
|
pil_image = context.services.images.get_pil_image(self.image.image_name)
|
||||||
|
|
||||||
# Convert PIL image to OpenCV format (numpy array), note color channel
|
|
||||||
# ordering is changed from RGB to BGR
|
|
||||||
image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1]
|
|
||||||
|
|
||||||
# Convert image to HSV color space
|
# Convert image to HSV color space
|
||||||
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
hsv_image = numpy.array(pil_image.convert("HSV"))
|
||||||
|
|
||||||
# Adjust the hue
|
# Convert hue from 0..360 to 0..256
|
||||||
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + self.hue) % 180
|
hue = int(256 * ((self.hue % 360) / 360))
|
||||||
|
|
||||||
# Convert image back to BGR color space
|
# Increment each hue and wrap around at 255
|
||||||
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
|
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + hue) % 256
|
||||||
|
|
||||||
# Convert back to PIL format and to original color mode
|
# Convert back to PIL format and to original color mode
|
||||||
pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA")
|
pil_image = Image.fromarray(hsv_image, mode="HSV").convert("RGBA")
|
||||||
|
|
||||||
image_dto = context.services.images.create(
|
image_dto = context.services.images.create(
|
||||||
image=pil_image,
|
image=pil_image,
|
||||||
|
@ -228,19 +228,19 @@ the root is the InvokeAI ROOTDIR.
|
|||||||
"""
|
"""
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import os
|
|
||||||
import hashlib
|
import hashlib
|
||||||
|
import os
|
||||||
import textwrap
|
import textwrap
|
||||||
import yaml
|
import types
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Literal, Optional, List, Tuple, Union, Dict, Set, Callable, types
|
|
||||||
from shutil import rmtree, move
|
from shutil import rmtree, move
|
||||||
|
from typing import Optional, List, Literal, Tuple, Union, Dict, Set, Callable
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import yaml
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from omegaconf.dictconfig import DictConfig
|
from omegaconf.dictconfig import DictConfig
|
||||||
|
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
import invokeai.backend.util.logging as logger
|
||||||
@ -259,6 +259,7 @@ from .models import (
|
|||||||
ModelNotFoundException,
|
ModelNotFoundException,
|
||||||
InvalidModelException,
|
InvalidModelException,
|
||||||
DuplicateModelException,
|
DuplicateModelException,
|
||||||
|
ModelBase,
|
||||||
)
|
)
|
||||||
|
|
||||||
# We are only starting to number the config file with release 3.
|
# We are only starting to number the config file with release 3.
|
||||||
@ -361,7 +362,7 @@ class ModelManager(object):
|
|||||||
if model_key.startswith("_"):
|
if model_key.startswith("_"):
|
||||||
continue
|
continue
|
||||||
model_name, base_model, model_type = self.parse_key(model_key)
|
model_name, base_model, model_type = self.parse_key(model_key)
|
||||||
model_class = MODEL_CLASSES[base_model][model_type]
|
model_class = self._get_implementation(base_model, model_type)
|
||||||
# alias for config file
|
# alias for config file
|
||||||
model_config["model_format"] = model_config.pop("format")
|
model_config["model_format"] = model_config.pop("format")
|
||||||
self.models[model_key] = model_class.create_config(**model_config)
|
self.models[model_key] = model_class.create_config(**model_config)
|
||||||
@ -381,18 +382,24 @@ class ModelManager(object):
|
|||||||
# causing otherwise unreferenced models to be removed from memory
|
# causing otherwise unreferenced models to be removed from memory
|
||||||
self._read_models()
|
self._read_models()
|
||||||
|
|
||||||
def model_exists(
|
def model_exists(self, model_name: str, base_model: BaseModelType, model_type: ModelType, *, rescan=False) -> bool:
|
||||||
self,
|
|
||||||
model_name: str,
|
|
||||||
base_model: BaseModelType,
|
|
||||||
model_type: ModelType,
|
|
||||||
) -> bool:
|
|
||||||
"""
|
"""
|
||||||
Given a model name, returns True if it is a valid
|
Given a model name, returns True if it is a valid identifier.
|
||||||
identifier.
|
|
||||||
|
:param model_name: symbolic name of the model in models.yaml
|
||||||
|
:param model_type: ModelType enum indicating the type of model to return
|
||||||
|
:param base_model: BaseModelType enum indicating the base model used by this model
|
||||||
|
:param rescan: if True, scan_models_directory
|
||||||
"""
|
"""
|
||||||
model_key = self.create_key(model_name, base_model, model_type)
|
model_key = self.create_key(model_name, base_model, model_type)
|
||||||
return model_key in self.models
|
exists = model_key in self.models
|
||||||
|
|
||||||
|
# if model not found try to find it (maybe file just pasted)
|
||||||
|
if rescan and not exists:
|
||||||
|
self.scan_models_directory(base_model=base_model, model_type=model_type)
|
||||||
|
exists = self.model_exists(model_name, base_model, model_type, rescan=False)
|
||||||
|
|
||||||
|
return exists
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def create_key(
|
def create_key(
|
||||||
@ -443,39 +450,32 @@ class ModelManager(object):
|
|||||||
:param model_name: symbolic name of the model in models.yaml
|
:param model_name: symbolic name of the model in models.yaml
|
||||||
:param model_type: ModelType enum indicating the type of model to return
|
:param model_type: ModelType enum indicating the type of model to return
|
||||||
:param base_model: BaseModelType enum indicating the base model used by this model
|
:param base_model: BaseModelType enum indicating the base model used by this model
|
||||||
:param submode_typel: an ModelType enum indicating the portion of
|
:param submodel_type: an ModelType enum indicating the portion of
|
||||||
the model to retrieve (e.g. ModelType.Vae)
|
the model to retrieve (e.g. ModelType.Vae)
|
||||||
"""
|
"""
|
||||||
model_class = MODEL_CLASSES[base_model][model_type]
|
|
||||||
model_key = self.create_key(model_name, base_model, model_type)
|
model_key = self.create_key(model_name, base_model, model_type)
|
||||||
|
|
||||||
# if model not found try to find it (maybe file just pasted)
|
if not self.model_exists(model_name, base_model, model_type, rescan=True):
|
||||||
if model_key not in self.models:
|
|
||||||
self.scan_models_directory(base_model=base_model, model_type=model_type)
|
|
||||||
if model_key not in self.models:
|
|
||||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||||
|
|
||||||
model_config = self.models[model_key]
|
model_config = self._get_model_config(base_model, model_name, model_type)
|
||||||
model_path = self.resolve_model_path(model_config.path)
|
|
||||||
|
model_path, is_submodel_override = self._get_model_path(model_config, submodel_type)
|
||||||
|
|
||||||
|
if is_submodel_override:
|
||||||
|
model_type = submodel_type
|
||||||
|
submodel_type = None
|
||||||
|
|
||||||
|
model_class = self._get_implementation(base_model, model_type)
|
||||||
|
|
||||||
if not model_path.exists():
|
if not model_path.exists():
|
||||||
if model_class.save_to_config:
|
if model_class.save_to_config:
|
||||||
self.models[model_key].error = ModelError.NotFound
|
self.models[model_key].error = ModelError.NotFound
|
||||||
raise Exception(f'Files for model "{model_key}" not found')
|
raise Exception(f'Files for model "{model_key}" not found at {model_path}')
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.models.pop(model_key, None)
|
self.models.pop(model_key, None)
|
||||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
raise ModelNotFoundException(f'Files for model "{model_key}" not found at {model_path}')
|
||||||
|
|
||||||
# vae/movq override
|
|
||||||
# TODO:
|
|
||||||
if submodel_type is not None and hasattr(model_config, submodel_type):
|
|
||||||
override_path = getattr(model_config, submodel_type)
|
|
||||||
if override_path:
|
|
||||||
model_path = self.resolve_model_path(override_path)
|
|
||||||
model_type = submodel_type
|
|
||||||
submodel_type = None
|
|
||||||
model_class = MODEL_CLASSES[base_model][model_type]
|
|
||||||
|
|
||||||
# TODO: path
|
# TODO: path
|
||||||
# TODO: is it accurate to use path as id
|
# TODO: is it accurate to use path as id
|
||||||
@ -513,6 +513,55 @@ class ModelManager(object):
|
|||||||
_cache=self.cache,
|
_cache=self.cache,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def _get_model_path(
|
||||||
|
self, model_config: ModelConfigBase, submodel_type: Optional[SubModelType] = None
|
||||||
|
) -> (Path, bool):
|
||||||
|
"""Extract a model's filesystem path from its config.
|
||||||
|
|
||||||
|
:return: The fully qualified Path of the module (or submodule).
|
||||||
|
"""
|
||||||
|
model_path = model_config.path
|
||||||
|
is_submodel_override = False
|
||||||
|
|
||||||
|
# Does the config explicitly override the submodel?
|
||||||
|
if submodel_type is not None and hasattr(model_config, submodel_type):
|
||||||
|
submodel_path = getattr(model_config, submodel_type)
|
||||||
|
if submodel_path is not None:
|
||||||
|
model_path = getattr(model_config, submodel_type)
|
||||||
|
is_submodel_override = True
|
||||||
|
|
||||||
|
model_path = self.resolve_model_path(model_path)
|
||||||
|
return model_path, is_submodel_override
|
||||||
|
|
||||||
|
def _get_model_config(self, base_model: BaseModelType, model_name: str, model_type: ModelType) -> ModelConfigBase:
|
||||||
|
"""Get a model's config object."""
|
||||||
|
model_key = self.create_key(model_name, base_model, model_type)
|
||||||
|
try:
|
||||||
|
model_config = self.models[model_key]
|
||||||
|
except KeyError:
|
||||||
|
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||||
|
return model_config
|
||||||
|
|
||||||
|
def _get_implementation(self, base_model: BaseModelType, model_type: ModelType) -> type[ModelBase]:
|
||||||
|
"""Get the concrete implementation class for a specific model type."""
|
||||||
|
model_class = MODEL_CLASSES[base_model][model_type]
|
||||||
|
return model_class
|
||||||
|
|
||||||
|
def _instantiate(
|
||||||
|
self,
|
||||||
|
model_name: str,
|
||||||
|
base_model: BaseModelType,
|
||||||
|
model_type: ModelType,
|
||||||
|
submodel_type: Optional[SubModelType] = None,
|
||||||
|
) -> ModelBase:
|
||||||
|
"""Make a new instance of this model, without loading it."""
|
||||||
|
model_config = self._get_model_config(base_model, model_name, model_type)
|
||||||
|
model_path, is_submodel_override = self._get_model_path(model_config, submodel_type)
|
||||||
|
# FIXME: do non-overriden submodels get the right class?
|
||||||
|
constructor = self._get_implementation(base_model, model_type)
|
||||||
|
instance = constructor(model_path, base_model, model_type)
|
||||||
|
return instance
|
||||||
|
|
||||||
def model_info(
|
def model_info(
|
||||||
self,
|
self,
|
||||||
model_name: str,
|
model_name: str,
|
||||||
@ -660,7 +709,7 @@ class ModelManager(object):
|
|||||||
if path := model_attributes.get("path"):
|
if path := model_attributes.get("path"):
|
||||||
model_attributes["path"] = str(self.relative_model_path(Path(path)))
|
model_attributes["path"] = str(self.relative_model_path(Path(path)))
|
||||||
|
|
||||||
model_class = MODEL_CLASSES[base_model][model_type]
|
model_class = self._get_implementation(base_model, model_type)
|
||||||
model_config = model_class.create_config(**model_attributes)
|
model_config = model_class.create_config(**model_attributes)
|
||||||
model_key = self.create_key(model_name, base_model, model_type)
|
model_key = self.create_key(model_name, base_model, model_type)
|
||||||
|
|
||||||
@ -851,7 +900,7 @@ class ModelManager(object):
|
|||||||
|
|
||||||
for model_key, model_config in self.models.items():
|
for model_key, model_config in self.models.items():
|
||||||
model_name, base_model, model_type = self.parse_key(model_key)
|
model_name, base_model, model_type = self.parse_key(model_key)
|
||||||
model_class = MODEL_CLASSES[base_model][model_type]
|
model_class = self._get_implementation(base_model, model_type)
|
||||||
if model_class.save_to_config:
|
if model_class.save_to_config:
|
||||||
# TODO: or exclude_unset better fits here?
|
# TODO: or exclude_unset better fits here?
|
||||||
data_to_save[model_key] = model_config.dict(exclude_defaults=True, exclude={"error"})
|
data_to_save[model_key] = model_config.dict(exclude_defaults=True, exclude={"error"})
|
||||||
@ -909,7 +958,7 @@ class ModelManager(object):
|
|||||||
|
|
||||||
model_path = self.resolve_model_path(model_config.path).absolute()
|
model_path = self.resolve_model_path(model_config.path).absolute()
|
||||||
if not model_path.exists():
|
if not model_path.exists():
|
||||||
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
|
model_class = self._get_implementation(cur_base_model, cur_model_type)
|
||||||
if model_class.save_to_config:
|
if model_class.save_to_config:
|
||||||
model_config.error = ModelError.NotFound
|
model_config.error = ModelError.NotFound
|
||||||
self.models.pop(model_key, None)
|
self.models.pop(model_key, None)
|
||||||
@ -925,7 +974,7 @@ class ModelManager(object):
|
|||||||
for cur_model_type in ModelType:
|
for cur_model_type in ModelType:
|
||||||
if model_type is not None and cur_model_type != model_type:
|
if model_type is not None and cur_model_type != model_type:
|
||||||
continue
|
continue
|
||||||
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
|
model_class = self._get_implementation(cur_base_model, cur_model_type)
|
||||||
models_dir = self.resolve_model_path(Path(cur_base_model.value, cur_model_type.value))
|
models_dir = self.resolve_model_path(Path(cur_base_model.value, cur_model_type.value))
|
||||||
|
|
||||||
if not models_dir.exists():
|
if not models_dir.exists():
|
||||||
|
@ -1,9 +1,14 @@
|
|||||||
import os
|
import os
|
||||||
import torch
|
|
||||||
import safetensors
|
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional, Union, Literal
|
from typing import Optional
|
||||||
|
|
||||||
|
import safetensors
|
||||||
|
import torch
|
||||||
|
from diffusers.utils import is_safetensors_available
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
|
||||||
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from .base import (
|
from .base import (
|
||||||
ModelBase,
|
ModelBase,
|
||||||
ModelConfigBase,
|
ModelConfigBase,
|
||||||
@ -18,9 +23,6 @@ from .base import (
|
|||||||
InvalidModelException,
|
InvalidModelException,
|
||||||
ModelNotFoundException,
|
ModelNotFoundException,
|
||||||
)
|
)
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
|
||||||
from diffusers.utils import is_safetensors_available
|
|
||||||
from omegaconf import OmegaConf
|
|
||||||
|
|
||||||
|
|
||||||
class VaeModelFormat(str, Enum):
|
class VaeModelFormat(str, Enum):
|
||||||
@ -80,7 +82,7 @@ class VaeModel(ModelBase):
|
|||||||
@classmethod
|
@classmethod
|
||||||
def detect_format(cls, path: str):
|
def detect_format(cls, path: str):
|
||||||
if not os.path.exists(path):
|
if not os.path.exists(path):
|
||||||
raise ModelNotFoundException()
|
raise ModelNotFoundException(f"Does not exist as local file: {path}")
|
||||||
|
|
||||||
if os.path.isdir(path):
|
if os.path.isdir(path):
|
||||||
if os.path.exists(os.path.join(path, "config.json")):
|
if os.path.exists(os.path.join(path, "config.json")):
|
||||||
|
@ -96,7 +96,8 @@ export type AppFeature =
|
|||||||
| 'consoleLogging'
|
| 'consoleLogging'
|
||||||
| 'dynamicPrompting'
|
| 'dynamicPrompting'
|
||||||
| 'batches'
|
| 'batches'
|
||||||
| 'syncModels';
|
| 'syncModels'
|
||||||
|
| 'multiselect';
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* A disable-able Stable Diffusion feature
|
* A disable-able Stable Diffusion feature
|
||||||
|
@ -9,6 +9,7 @@ import { useListImagesQuery } from 'services/api/endpoints/images';
|
|||||||
import { ImageDTO } from 'services/api/types';
|
import { ImageDTO } from 'services/api/types';
|
||||||
import { selectionChanged } from '../store/gallerySlice';
|
import { selectionChanged } from '../store/gallerySlice';
|
||||||
import { imagesSelectors } from 'services/api/util';
|
import { imagesSelectors } from 'services/api/util';
|
||||||
|
import { useFeatureStatus } from '../../system/hooks/useFeatureStatus';
|
||||||
|
|
||||||
const selector = createSelector(
|
const selector = createSelector(
|
||||||
[stateSelector, selectListImagesBaseQueryArgs],
|
[stateSelector, selectListImagesBaseQueryArgs],
|
||||||
@ -33,11 +34,18 @@ export const useMultiselect = (imageDTO?: ImageDTO) => {
|
|||||||
}),
|
}),
|
||||||
});
|
});
|
||||||
|
|
||||||
|
const isMultiSelectEnabled = useFeatureStatus('multiselect').isFeatureEnabled;
|
||||||
|
|
||||||
const handleClick = useCallback(
|
const handleClick = useCallback(
|
||||||
(e: MouseEvent<HTMLDivElement>) => {
|
(e: MouseEvent<HTMLDivElement>) => {
|
||||||
if (!imageDTO) {
|
if (!imageDTO) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
if (!isMultiSelectEnabled) {
|
||||||
|
dispatch(selectionChanged([imageDTO]));
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if (e.shiftKey) {
|
if (e.shiftKey) {
|
||||||
const rangeEndImageName = imageDTO.image_name;
|
const rangeEndImageName = imageDTO.image_name;
|
||||||
const lastSelectedImage = selection[selection.length - 1]?.image_name;
|
const lastSelectedImage = selection[selection.length - 1]?.image_name;
|
||||||
@ -71,7 +79,7 @@ export const useMultiselect = (imageDTO?: ImageDTO) => {
|
|||||||
dispatch(selectionChanged([imageDTO]));
|
dispatch(selectionChanged([imageDTO]));
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
[dispatch, imageDTO, imageDTOs, selection]
|
[dispatch, imageDTO, imageDTOs, selection, isMultiSelectEnabled]
|
||||||
);
|
);
|
||||||
|
|
||||||
const isSelected = useMemo(
|
const isSelected = useMemo(
|
||||||
|
@ -31,7 +31,7 @@ const ParamLoraCollapse = () => {
|
|||||||
}
|
}
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<IAICollapse label={'LoRA'} activeLabel={activeLabel}>
|
<IAICollapse label="LoRA" activeLabel={activeLabel}>
|
||||||
<Flex sx={{ flexDir: 'column', gap: 2 }}>
|
<Flex sx={{ flexDir: 'column', gap: 2 }}>
|
||||||
<ParamLoRASelect />
|
<ParamLoRASelect />
|
||||||
<ParamLoraList />
|
<ParamLoraList />
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import { Divider } from '@chakra-ui/react';
|
||||||
import { createSelector } from '@reduxjs/toolkit';
|
import { createSelector } from '@reduxjs/toolkit';
|
||||||
import { stateSelector } from 'app/store/store';
|
import { stateSelector } from 'app/store/store';
|
||||||
import { useAppSelector } from 'app/store/storeHooks';
|
import { useAppSelector } from 'app/store/storeHooks';
|
||||||
@ -8,20 +9,21 @@ import ParamLora from './ParamLora';
|
|||||||
const selector = createSelector(
|
const selector = createSelector(
|
||||||
stateSelector,
|
stateSelector,
|
||||||
({ lora }) => {
|
({ lora }) => {
|
||||||
const { loras } = lora;
|
return { lorasArray: map(lora.loras) };
|
||||||
|
|
||||||
return { loras };
|
|
||||||
},
|
},
|
||||||
defaultSelectorOptions
|
defaultSelectorOptions
|
||||||
);
|
);
|
||||||
|
|
||||||
const ParamLoraList = () => {
|
const ParamLoraList = () => {
|
||||||
const { loras } = useAppSelector(selector);
|
const { lorasArray } = useAppSelector(selector);
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<>
|
<>
|
||||||
{map(loras, (lora) => (
|
{lorasArray.map((lora, i) => (
|
||||||
|
<>
|
||||||
|
{i > 0 && <Divider key={`${lora.model_name}-divider`} pt={1} />}
|
||||||
<ParamLora key={lora.model_name} lora={lora} />
|
<ParamLora key={lora.model_name} lora={lora} />
|
||||||
|
</>
|
||||||
))}
|
))}
|
||||||
</>
|
</>
|
||||||
);
|
);
|
||||||
|
@ -9,7 +9,6 @@ import {
|
|||||||
CLIP_SKIP,
|
CLIP_SKIP,
|
||||||
LORA_LOADER,
|
LORA_LOADER,
|
||||||
MAIN_MODEL_LOADER,
|
MAIN_MODEL_LOADER,
|
||||||
ONNX_MODEL_LOADER,
|
|
||||||
METADATA_ACCUMULATOR,
|
METADATA_ACCUMULATOR,
|
||||||
NEGATIVE_CONDITIONING,
|
NEGATIVE_CONDITIONING,
|
||||||
POSITIVE_CONDITIONING,
|
POSITIVE_CONDITIONING,
|
||||||
@ -36,15 +35,11 @@ export const addLoRAsToGraph = (
|
|||||||
| undefined;
|
| undefined;
|
||||||
|
|
||||||
if (loraCount > 0) {
|
if (loraCount > 0) {
|
||||||
// Remove MAIN_MODEL_LOADER unet connection to feed it to LoRAs
|
// Remove modelLoaderNodeId unet connection to feed it to LoRAs
|
||||||
graph.edges = graph.edges.filter(
|
graph.edges = graph.edges.filter(
|
||||||
(e) =>
|
(e) =>
|
||||||
!(
|
!(
|
||||||
e.source.node_id === MAIN_MODEL_LOADER &&
|
e.source.node_id === modelLoaderNodeId &&
|
||||||
['unet'].includes(e.source.field)
|
|
||||||
) &&
|
|
||||||
!(
|
|
||||||
e.source.node_id === ONNX_MODEL_LOADER &&
|
|
||||||
['unet'].includes(e.source.field)
|
['unet'].includes(e.source.field)
|
||||||
)
|
)
|
||||||
);
|
);
|
||||||
|
@ -0,0 +1,212 @@
|
|||||||
|
import { RootState } from 'app/store/store';
|
||||||
|
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||||
|
import { forEach, size } from 'lodash-es';
|
||||||
|
import {
|
||||||
|
MetadataAccumulatorInvocation,
|
||||||
|
SDXLLoraLoaderInvocation,
|
||||||
|
} from 'services/api/types';
|
||||||
|
import {
|
||||||
|
LORA_LOADER,
|
||||||
|
METADATA_ACCUMULATOR,
|
||||||
|
NEGATIVE_CONDITIONING,
|
||||||
|
POSITIVE_CONDITIONING,
|
||||||
|
SDXL_MODEL_LOADER,
|
||||||
|
} from './constants';
|
||||||
|
|
||||||
|
export const addSDXLLoRAsToGraph = (
|
||||||
|
state: RootState,
|
||||||
|
graph: NonNullableGraph,
|
||||||
|
baseNodeId: string,
|
||||||
|
modelLoaderNodeId: string = SDXL_MODEL_LOADER
|
||||||
|
): void => {
|
||||||
|
/**
|
||||||
|
* LoRA nodes get the UNet and CLIP models from the main model loader and apply the LoRA to them.
|
||||||
|
* They then output the UNet and CLIP models references on to either the next LoRA in the chain,
|
||||||
|
* or to the inference/conditioning nodes.
|
||||||
|
*
|
||||||
|
* So we need to inject a LoRA chain into the graph.
|
||||||
|
*/
|
||||||
|
|
||||||
|
const { loras } = state.lora;
|
||||||
|
const loraCount = size(loras);
|
||||||
|
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
|
||||||
|
| MetadataAccumulatorInvocation
|
||||||
|
| undefined;
|
||||||
|
|
||||||
|
if (loraCount > 0) {
|
||||||
|
// Remove modelLoaderNodeId unet/clip/clip2 connections to feed it to LoRAs
|
||||||
|
graph.edges = graph.edges.filter(
|
||||||
|
(e) =>
|
||||||
|
!(
|
||||||
|
e.source.node_id === modelLoaderNodeId &&
|
||||||
|
['unet'].includes(e.source.field)
|
||||||
|
) &&
|
||||||
|
!(
|
||||||
|
e.source.node_id === modelLoaderNodeId &&
|
||||||
|
['clip'].includes(e.source.field)
|
||||||
|
) &&
|
||||||
|
!(
|
||||||
|
e.source.node_id === modelLoaderNodeId &&
|
||||||
|
['clip2'].includes(e.source.field)
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// we need to remember the last lora so we can chain from it
|
||||||
|
let lastLoraNodeId = '';
|
||||||
|
let currentLoraIndex = 0;
|
||||||
|
|
||||||
|
forEach(loras, (lora) => {
|
||||||
|
const { model_name, base_model, weight } = lora;
|
||||||
|
const currentLoraNodeId = `${LORA_LOADER}_${model_name.replace('.', '_')}`;
|
||||||
|
|
||||||
|
const loraLoaderNode: SDXLLoraLoaderInvocation = {
|
||||||
|
type: 'sdxl_lora_loader',
|
||||||
|
id: currentLoraNodeId,
|
||||||
|
is_intermediate: true,
|
||||||
|
lora: { model_name, base_model },
|
||||||
|
weight,
|
||||||
|
};
|
||||||
|
|
||||||
|
// add the lora to the metadata accumulator
|
||||||
|
if (metadataAccumulator) {
|
||||||
|
metadataAccumulator.loras.push({
|
||||||
|
lora: { model_name, base_model },
|
||||||
|
weight,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// add to graph
|
||||||
|
graph.nodes[currentLoraNodeId] = loraLoaderNode;
|
||||||
|
if (currentLoraIndex === 0) {
|
||||||
|
// first lora = start the lora chain, attach directly to model loader
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: modelLoaderNodeId,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: modelLoaderNodeId,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: modelLoaderNodeId,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
// we are in the middle of the lora chain, instead connect to the previous lora
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: lastLoraNodeId,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: lastLoraNodeId,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: lastLoraNodeId,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
if (currentLoraIndex === loraCount - 1) {
|
||||||
|
// final lora, end the lora chain - we need to connect up to inference and conditioning nodes
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: baseNodeId,
|
||||||
|
field: 'unet',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: POSITIVE_CONDITIONING,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: NEGATIVE_CONDITIONING,
|
||||||
|
field: 'clip',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: POSITIVE_CONDITIONING,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
graph.edges.push({
|
||||||
|
source: {
|
||||||
|
node_id: currentLoraNodeId,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
destination: {
|
||||||
|
node_id: NEGATIVE_CONDITIONING,
|
||||||
|
field: 'clip2',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// increment the lora for the next one in the chain
|
||||||
|
lastLoraNodeId = currentLoraNodeId;
|
||||||
|
currentLoraIndex += 1;
|
||||||
|
});
|
||||||
|
};
|
@ -22,6 +22,7 @@ import {
|
|||||||
SDXL_LATENTS_TO_LATENTS,
|
SDXL_LATENTS_TO_LATENTS,
|
||||||
SDXL_MODEL_LOADER,
|
SDXL_MODEL_LOADER,
|
||||||
} from './constants';
|
} from './constants';
|
||||||
|
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Builds the Image to Image tab graph.
|
* Builds the Image to Image tab graph.
|
||||||
@ -364,6 +365,8 @@ export const buildLinearSDXLImageToImageGraph = (
|
|||||||
},
|
},
|
||||||
});
|
});
|
||||||
|
|
||||||
|
addSDXLLoRAsToGraph(state, graph, SDXL_LATENTS_TO_LATENTS, SDXL_MODEL_LOADER);
|
||||||
|
|
||||||
// Add Refiner if enabled
|
// Add Refiner if enabled
|
||||||
if (shouldUseSDXLRefiner) {
|
if (shouldUseSDXLRefiner) {
|
||||||
addSDXLRefinerToGraph(state, graph, SDXL_LATENTS_TO_LATENTS);
|
addSDXLRefinerToGraph(state, graph, SDXL_LATENTS_TO_LATENTS);
|
||||||
|
@ -4,6 +4,7 @@ import { NonNullableGraph } from 'features/nodes/types/types';
|
|||||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||||
|
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||||
import {
|
import {
|
||||||
@ -246,6 +247,8 @@ export const buildLinearSDXLTextToImageGraph = (
|
|||||||
},
|
},
|
||||||
});
|
});
|
||||||
|
|
||||||
|
addSDXLLoRAsToGraph(state, graph, SDXL_TEXT_TO_LATENTS, SDXL_MODEL_LOADER);
|
||||||
|
|
||||||
// Add Refiner if enabled
|
// Add Refiner if enabled
|
||||||
if (shouldUseSDXLRefiner) {
|
if (shouldUseSDXLRefiner) {
|
||||||
addSDXLRefinerToGraph(state, graph, SDXL_TEXT_TO_LATENTS);
|
addSDXLRefinerToGraph(state, graph, SDXL_TEXT_TO_LATENTS);
|
||||||
|
@ -4,6 +4,7 @@ import ProcessButtons from 'features/parameters/components/ProcessButtons/Proces
|
|||||||
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
|
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
|
||||||
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
||||||
import SDXLImageToImageTabCoreParameters from './SDXLImageToImageTabCoreParameters';
|
import SDXLImageToImageTabCoreParameters from './SDXLImageToImageTabCoreParameters';
|
||||||
|
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
|
||||||
|
|
||||||
const SDXLImageToImageTabParameters = () => {
|
const SDXLImageToImageTabParameters = () => {
|
||||||
return (
|
return (
|
||||||
@ -12,6 +13,7 @@ const SDXLImageToImageTabParameters = () => {
|
|||||||
<ProcessButtons />
|
<ProcessButtons />
|
||||||
<SDXLImageToImageTabCoreParameters />
|
<SDXLImageToImageTabCoreParameters />
|
||||||
<ParamSDXLRefinerCollapse />
|
<ParamSDXLRefinerCollapse />
|
||||||
|
<ParamLoraCollapse />
|
||||||
<ParamDynamicPromptsCollapse />
|
<ParamDynamicPromptsCollapse />
|
||||||
<ParamNoiseCollapse />
|
<ParamNoiseCollapse />
|
||||||
</>
|
</>
|
||||||
|
@ -4,6 +4,7 @@ import ProcessButtons from 'features/parameters/components/ProcessButtons/Proces
|
|||||||
import TextToImageTabCoreParameters from 'features/ui/components/tabs/TextToImage/TextToImageTabCoreParameters';
|
import TextToImageTabCoreParameters from 'features/ui/components/tabs/TextToImage/TextToImageTabCoreParameters';
|
||||||
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
|
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
|
||||||
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
|
||||||
|
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
|
||||||
|
|
||||||
const SDXLTextToImageTabParameters = () => {
|
const SDXLTextToImageTabParameters = () => {
|
||||||
return (
|
return (
|
||||||
@ -12,6 +13,7 @@ const SDXLTextToImageTabParameters = () => {
|
|||||||
<ProcessButtons />
|
<ProcessButtons />
|
||||||
<TextToImageTabCoreParameters />
|
<TextToImageTabCoreParameters />
|
||||||
<ParamSDXLRefinerCollapse />
|
<ParamSDXLRefinerCollapse />
|
||||||
|
<ParamLoraCollapse />
|
||||||
<ParamDynamicPromptsCollapse />
|
<ParamDynamicPromptsCollapse />
|
||||||
<ParamNoiseCollapse />
|
<ParamNoiseCollapse />
|
||||||
</>
|
</>
|
||||||
|
@ -4,6 +4,7 @@ import {
|
|||||||
ASSETS_CATEGORIES,
|
ASSETS_CATEGORIES,
|
||||||
BoardId,
|
BoardId,
|
||||||
IMAGE_CATEGORIES,
|
IMAGE_CATEGORIES,
|
||||||
|
IMAGE_LIMIT,
|
||||||
} from 'features/gallery/store/types';
|
} from 'features/gallery/store/types';
|
||||||
import { keyBy } from 'lodash';
|
import { keyBy } from 'lodash';
|
||||||
import { ApiFullTagDescription, LIST_TAG, api } from '..';
|
import { ApiFullTagDescription, LIST_TAG, api } from '..';
|
||||||
@ -167,7 +168,14 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
},
|
},
|
||||||
};
|
};
|
||||||
},
|
},
|
||||||
invalidatesTags: (result, error, imageDTOs) => [],
|
invalidatesTags: (result, error, { imageDTOs }) => {
|
||||||
|
// for now, assume bulk delete is all on one board
|
||||||
|
const boardId = imageDTOs[0]?.board_id;
|
||||||
|
return [
|
||||||
|
{ type: 'BoardImagesTotal', id: boardId ?? 'none' },
|
||||||
|
{ type: 'BoardAssetsTotal', id: boardId ?? 'none' },
|
||||||
|
];
|
||||||
|
},
|
||||||
async onQueryStarted({ imageDTOs }, { dispatch, queryFulfilled }) {
|
async onQueryStarted({ imageDTOs }, { dispatch, queryFulfilled }) {
|
||||||
/**
|
/**
|
||||||
* Cache changes for `deleteImages`:
|
* Cache changes for `deleteImages`:
|
||||||
@ -889,18 +897,25 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
board_id,
|
board_id,
|
||||||
},
|
},
|
||||||
}),
|
}),
|
||||||
invalidatesTags: (result, error, { board_id }) => [
|
invalidatesTags: (result, error, { imageDTOs, board_id }) => {
|
||||||
|
//assume all images are being moved from one board for now
|
||||||
|
const oldBoardId = imageDTOs[0]?.board_id;
|
||||||
|
return [
|
||||||
// update the destination board
|
// update the destination board
|
||||||
{ type: 'Board', id: board_id ?? 'none' },
|
{ type: 'Board', id: board_id ?? 'none' },
|
||||||
// update old board totals
|
// update new board totals
|
||||||
{ type: 'BoardImagesTotal', id: board_id ?? 'none' },
|
{ type: 'BoardImagesTotal', id: board_id ?? 'none' },
|
||||||
{ type: 'BoardAssetsTotal', id: board_id ?? 'none' },
|
{ type: 'BoardAssetsTotal', id: board_id ?? 'none' },
|
||||||
|
// update old board totals
|
||||||
|
{ type: 'BoardImagesTotal', id: oldBoardId ?? 'none' },
|
||||||
|
{ type: 'BoardAssetsTotal', id: oldBoardId ?? 'none' },
|
||||||
// update the no_board totals
|
// update the no_board totals
|
||||||
{ type: 'BoardImagesTotal', id: 'none' },
|
{ type: 'BoardImagesTotal', id: 'none' },
|
||||||
{ type: 'BoardAssetsTotal', id: 'none' },
|
{ type: 'BoardAssetsTotal', id: 'none' },
|
||||||
],
|
];
|
||||||
|
},
|
||||||
async onQueryStarted(
|
async onQueryStarted(
|
||||||
{ board_id, imageDTOs },
|
{ board_id: new_board_id, imageDTOs },
|
||||||
{ dispatch, queryFulfilled, getState }
|
{ dispatch, queryFulfilled, getState }
|
||||||
) {
|
) {
|
||||||
try {
|
try {
|
||||||
@ -920,7 +935,7 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
'getImageDTO',
|
'getImageDTO',
|
||||||
image_name,
|
image_name,
|
||||||
(draft) => {
|
(draft) => {
|
||||||
draft.board_id = board_id;
|
draft.board_id = new_board_id;
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
);
|
);
|
||||||
@ -946,7 +961,7 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
);
|
);
|
||||||
|
|
||||||
const queryArgs = {
|
const queryArgs = {
|
||||||
board_id,
|
board_id: new_board_id,
|
||||||
categories,
|
categories,
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -954,23 +969,24 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
queryArgs
|
queryArgs
|
||||||
)(getState());
|
)(getState());
|
||||||
|
|
||||||
const { data: total } = IMAGE_CATEGORIES.includes(
|
const { data: previousTotal } = IMAGE_CATEGORIES.includes(
|
||||||
imageDTO.image_category
|
imageDTO.image_category
|
||||||
)
|
)
|
||||||
? boardsApi.endpoints.getBoardImagesTotal.select(
|
? boardsApi.endpoints.getBoardImagesTotal.select(
|
||||||
imageDTO.board_id ?? 'none'
|
new_board_id ?? 'none'
|
||||||
)(getState())
|
)(getState())
|
||||||
: boardsApi.endpoints.getBoardAssetsTotal.select(
|
: boardsApi.endpoints.getBoardAssetsTotal.select(
|
||||||
imageDTO.board_id ?? 'none'
|
new_board_id ?? 'none'
|
||||||
)(getState());
|
)(getState());
|
||||||
|
|
||||||
const isCacheFullyPopulated =
|
const isCacheFullyPopulated =
|
||||||
currentCache.data && currentCache.data.ids.length >= (total ?? 0);
|
currentCache.data &&
|
||||||
|
currentCache.data.ids.length >= (previousTotal ?? 0);
|
||||||
|
|
||||||
const isInDateRange = getIsImageInDateRange(
|
const isInDateRange =
|
||||||
currentCache.data,
|
(previousTotal || 0) >= IMAGE_LIMIT
|
||||||
imageDTO
|
? getIsImageInDateRange(currentCache.data, imageDTO)
|
||||||
);
|
: true;
|
||||||
|
|
||||||
if (isCacheFullyPopulated || isInDateRange) {
|
if (isCacheFullyPopulated || isInDateRange) {
|
||||||
// *upsert* to $cache
|
// *upsert* to $cache
|
||||||
@ -981,7 +997,7 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
(draft) => {
|
(draft) => {
|
||||||
imagesAdapter.upsertOne(draft, {
|
imagesAdapter.upsertOne(draft, {
|
||||||
...imageDTO,
|
...imageDTO,
|
||||||
board_id,
|
board_id: new_board_id,
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
@ -1097,10 +1113,10 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
const isCacheFullyPopulated =
|
const isCacheFullyPopulated =
|
||||||
currentCache.data && currentCache.data.ids.length >= (total ?? 0);
|
currentCache.data && currentCache.data.ids.length >= (total ?? 0);
|
||||||
|
|
||||||
const isInDateRange = getIsImageInDateRange(
|
const isInDateRange =
|
||||||
currentCache.data,
|
(total || 0) >= IMAGE_LIMIT
|
||||||
imageDTO
|
? getIsImageInDateRange(currentCache.data, imageDTO)
|
||||||
);
|
: true;
|
||||||
|
|
||||||
if (isCacheFullyPopulated || isInDateRange) {
|
if (isCacheFullyPopulated || isInDateRange) {
|
||||||
// *upsert* to $cache
|
// *upsert* to $cache
|
||||||
@ -1111,7 +1127,7 @@ export const imagesApi = api.injectEndpoints({
|
|||||||
(draft) => {
|
(draft) => {
|
||||||
imagesAdapter.upsertOne(draft, {
|
imagesAdapter.upsertOne(draft, {
|
||||||
...imageDTO,
|
...imageDTO,
|
||||||
board_id: undefined,
|
board_id: 'none',
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
222
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
222
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
@ -1443,7 +1443,7 @@ export type components = {
|
|||||||
* @description The nodes in this graph
|
* @description The nodes in this graph
|
||||||
*/
|
*/
|
||||||
nodes?: {
|
nodes?: {
|
||||||
[key: string]: (components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
|
[key: string]: (components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
|
||||||
};
|
};
|
||||||
/**
|
/**
|
||||||
* Edges
|
* Edges
|
||||||
@ -1486,7 +1486,7 @@ export type components = {
|
|||||||
* @description The results of node executions
|
* @description The results of node executions
|
||||||
*/
|
*/
|
||||||
results: {
|
results: {
|
||||||
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["ONNXModelLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["StringOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
|
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["SDXLLoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["ONNXModelLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["StringOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
|
||||||
};
|
};
|
||||||
/**
|
/**
|
||||||
* Errors
|
* Errors
|
||||||
@ -1904,6 +1904,40 @@ export type components = {
|
|||||||
*/
|
*/
|
||||||
image_name: string;
|
image_name: string;
|
||||||
};
|
};
|
||||||
|
/**
|
||||||
|
* ImageHueAdjustmentInvocation
|
||||||
|
* @description Adjusts the Hue of an image.
|
||||||
|
*/
|
||||||
|
ImageHueAdjustmentInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default img_hue_adjust
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "img_hue_adjust";
|
||||||
|
/**
|
||||||
|
* Image
|
||||||
|
* @description The image to adjust
|
||||||
|
*/
|
||||||
|
image?: components["schemas"]["ImageField"];
|
||||||
|
/**
|
||||||
|
* Hue
|
||||||
|
* @description The degrees by which to rotate the hue, 0-360
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
hue?: number;
|
||||||
|
};
|
||||||
/**
|
/**
|
||||||
* ImageInverseLerpInvocation
|
* ImageInverseLerpInvocation
|
||||||
* @description Inverse linear interpolation of all pixels of an image
|
* @description Inverse linear interpolation of all pixels of an image
|
||||||
@ -1984,6 +2018,40 @@ export type components = {
|
|||||||
*/
|
*/
|
||||||
max?: number;
|
max?: number;
|
||||||
};
|
};
|
||||||
|
/**
|
||||||
|
* ImageLuminosityAdjustmentInvocation
|
||||||
|
* @description Adjusts the Luminosity (Value) of an image.
|
||||||
|
*/
|
||||||
|
ImageLuminosityAdjustmentInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default img_luminosity_adjust
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "img_luminosity_adjust";
|
||||||
|
/**
|
||||||
|
* Image
|
||||||
|
* @description The image to adjust
|
||||||
|
*/
|
||||||
|
image?: components["schemas"]["ImageField"];
|
||||||
|
/**
|
||||||
|
* Luminosity
|
||||||
|
* @description The factor by which to adjust the luminosity (value)
|
||||||
|
* @default 1
|
||||||
|
*/
|
||||||
|
luminosity?: number;
|
||||||
|
};
|
||||||
/**
|
/**
|
||||||
* ImageMetadata
|
* ImageMetadata
|
||||||
* @description An image's generation metadata
|
* @description An image's generation metadata
|
||||||
@ -2239,6 +2307,40 @@ export type components = {
|
|||||||
*/
|
*/
|
||||||
resample_mode?: "nearest" | "box" | "bilinear" | "hamming" | "bicubic" | "lanczos";
|
resample_mode?: "nearest" | "box" | "bilinear" | "hamming" | "bicubic" | "lanczos";
|
||||||
};
|
};
|
||||||
|
/**
|
||||||
|
* ImageSaturationAdjustmentInvocation
|
||||||
|
* @description Adjusts the Saturation of an image.
|
||||||
|
*/
|
||||||
|
ImageSaturationAdjustmentInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default img_saturation_adjust
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "img_saturation_adjust";
|
||||||
|
/**
|
||||||
|
* Image
|
||||||
|
* @description The image to adjust
|
||||||
|
*/
|
||||||
|
image?: components["schemas"]["ImageField"];
|
||||||
|
/**
|
||||||
|
* Saturation
|
||||||
|
* @description The factor by which to adjust the saturation
|
||||||
|
* @default 1
|
||||||
|
*/
|
||||||
|
saturation?: number;
|
||||||
|
};
|
||||||
/**
|
/**
|
||||||
* ImageScaleInvocation
|
* ImageScaleInvocation
|
||||||
* @description Scales an image by a factor
|
* @description Scales an image by a factor
|
||||||
@ -4912,6 +5014,82 @@ export type components = {
|
|||||||
*/
|
*/
|
||||||
denoising_end?: number;
|
denoising_end?: number;
|
||||||
};
|
};
|
||||||
|
/**
|
||||||
|
* SDXLLoraLoaderInvocation
|
||||||
|
* @description Apply selected lora to unet and text_encoder.
|
||||||
|
*/
|
||||||
|
SDXLLoraLoaderInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_lora_loader
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_lora_loader";
|
||||||
|
/**
|
||||||
|
* Lora
|
||||||
|
* @description Lora model name
|
||||||
|
*/
|
||||||
|
lora?: components["schemas"]["LoRAModelField"];
|
||||||
|
/**
|
||||||
|
* Weight
|
||||||
|
* @description With what weight to apply lora
|
||||||
|
* @default 0.75
|
||||||
|
*/
|
||||||
|
weight?: number;
|
||||||
|
/**
|
||||||
|
* Unet
|
||||||
|
* @description UNet model for applying lora
|
||||||
|
*/
|
||||||
|
unet?: components["schemas"]["UNetField"];
|
||||||
|
/**
|
||||||
|
* Clip
|
||||||
|
* @description Clip model for applying lora
|
||||||
|
*/
|
||||||
|
clip?: components["schemas"]["ClipField"];
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Clip2 model for applying lora
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLLoraLoaderOutput
|
||||||
|
* @description Model loader output
|
||||||
|
*/
|
||||||
|
SDXLLoraLoaderOutput: {
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_lora_loader_output
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_lora_loader_output";
|
||||||
|
/**
|
||||||
|
* Unet
|
||||||
|
* @description UNet submodel
|
||||||
|
*/
|
||||||
|
unet?: components["schemas"]["UNetField"];
|
||||||
|
/**
|
||||||
|
* Clip
|
||||||
|
* @description Tokenizer and text_encoder submodels
|
||||||
|
*/
|
||||||
|
clip?: components["schemas"]["ClipField"];
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Tokenizer2 and text_encoder2 submodels
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
};
|
||||||
/**
|
/**
|
||||||
* SDXLModelLoaderInvocation
|
* SDXLModelLoaderInvocation
|
||||||
* @description Loads an sdxl base model, outputting its submodels.
|
* @description Loads an sdxl base model, outputting its submodels.
|
||||||
@ -5961,6 +6139,24 @@ export type components = {
|
|||||||
*/
|
*/
|
||||||
image?: components["schemas"]["ImageField"];
|
image?: components["schemas"]["ImageField"];
|
||||||
};
|
};
|
||||||
|
/**
|
||||||
|
* ControlNetModelFormat
|
||||||
|
* @description An enumeration.
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
ControlNetModelFormat: "checkpoint" | "diffusers";
|
||||||
|
/**
|
||||||
|
* StableDiffusionXLModelFormat
|
||||||
|
* @description An enumeration.
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
StableDiffusionXLModelFormat: "checkpoint" | "diffusers";
|
||||||
|
/**
|
||||||
|
* StableDiffusion1ModelFormat
|
||||||
|
* @description An enumeration.
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
|
||||||
/**
|
/**
|
||||||
* StableDiffusionOnnxModelFormat
|
* StableDiffusionOnnxModelFormat
|
||||||
* @description An enumeration.
|
* @description An enumeration.
|
||||||
@ -5973,24 +6169,6 @@ export type components = {
|
|||||||
* @enum {string}
|
* @enum {string}
|
||||||
*/
|
*/
|
||||||
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
|
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
|
||||||
/**
|
|
||||||
* StableDiffusion1ModelFormat
|
|
||||||
* @description An enumeration.
|
|
||||||
* @enum {string}
|
|
||||||
*/
|
|
||||||
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
|
|
||||||
/**
|
|
||||||
* StableDiffusionXLModelFormat
|
|
||||||
* @description An enumeration.
|
|
||||||
* @enum {string}
|
|
||||||
*/
|
|
||||||
StableDiffusionXLModelFormat: "checkpoint" | "diffusers";
|
|
||||||
/**
|
|
||||||
* ControlNetModelFormat
|
|
||||||
* @description An enumeration.
|
|
||||||
* @enum {string}
|
|
||||||
*/
|
|
||||||
ControlNetModelFormat: "checkpoint" | "diffusers";
|
|
||||||
};
|
};
|
||||||
responses: never;
|
responses: never;
|
||||||
parameters: never;
|
parameters: never;
|
||||||
@ -6101,7 +6279,7 @@ export type operations = {
|
|||||||
};
|
};
|
||||||
requestBody: {
|
requestBody: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
responses: {
|
responses: {
|
||||||
@ -6138,7 +6316,7 @@ export type operations = {
|
|||||||
};
|
};
|
||||||
requestBody: {
|
requestBody: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
responses: {
|
responses: {
|
||||||
|
@ -166,6 +166,9 @@ export type OnnxModelLoaderInvocation = TypeReq<
|
|||||||
export type LoraLoaderInvocation = TypeReq<
|
export type LoraLoaderInvocation = TypeReq<
|
||||||
components['schemas']['LoraLoaderInvocation']
|
components['schemas']['LoraLoaderInvocation']
|
||||||
>;
|
>;
|
||||||
|
export type SDXLLoraLoaderInvocation = TypeReq<
|
||||||
|
components['schemas']['SDXLLoraLoaderInvocation']
|
||||||
|
>;
|
||||||
export type MetadataAccumulatorInvocation = TypeReq<
|
export type MetadataAccumulatorInvocation = TypeReq<
|
||||||
components['schemas']['MetadataAccumulatorInvocation']
|
components['schemas']['MetadataAccumulatorInvocation']
|
||||||
>;
|
>;
|
||||||
|
@ -100,7 +100,7 @@ dependencies = [
|
|||||||
"dev" = [
|
"dev" = [
|
||||||
"pudb",
|
"pudb",
|
||||||
]
|
]
|
||||||
"test" = ["pytest>6.0.0", "pytest-cov", "black"]
|
"test" = ["pytest>6.0.0", "pytest-cov", "pytest-datadir", "black"]
|
||||||
"xformers" = [
|
"xformers" = [
|
||||||
"xformers~=0.0.19; sys_platform!='darwin'",
|
"xformers~=0.0.19; sys_platform!='darwin'",
|
||||||
"triton; sys_platform=='linux'",
|
"triton; sys_platform=='linux'",
|
||||||
|
38
tests/test_model_manager.py
Normal file
38
tests/test_model_manager.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
|
from invokeai.backend import ModelManager, BaseModelType, ModelType, SubModelType
|
||||||
|
|
||||||
|
BASIC_MODEL_NAME = ("SDXL base", BaseModelType.StableDiffusionXL, ModelType.Main)
|
||||||
|
VAE_OVERRIDE_MODEL_NAME = ("SDXL with VAE", BaseModelType.StableDiffusionXL, ModelType.Main)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def model_manager(datadir) -> ModelManager:
|
||||||
|
InvokeAIAppConfig.get_config(root=datadir)
|
||||||
|
return ModelManager(datadir / "configs" / "relative_sub.models.yaml")
|
||||||
|
|
||||||
|
|
||||||
|
def test_get_model_names(model_manager: ModelManager):
|
||||||
|
names = model_manager.model_names()
|
||||||
|
assert names[:2] == [BASIC_MODEL_NAME, VAE_OVERRIDE_MODEL_NAME]
|
||||||
|
|
||||||
|
|
||||||
|
def test_get_model_path_for_diffusers(model_manager: ModelManager, datadir: Path):
|
||||||
|
model_config = model_manager._get_model_config(BASIC_MODEL_NAME[1], BASIC_MODEL_NAME[0], BASIC_MODEL_NAME[2])
|
||||||
|
top_model_path, is_override = model_manager._get_model_path(model_config)
|
||||||
|
expected_model_path = datadir / "models" / "sdxl" / "main" / "SDXL base 1_0"
|
||||||
|
assert top_model_path == expected_model_path
|
||||||
|
assert not is_override
|
||||||
|
|
||||||
|
|
||||||
|
def test_get_model_path_for_overridden_vae(model_manager: ModelManager, datadir: Path):
|
||||||
|
model_config = model_manager._get_model_config(
|
||||||
|
VAE_OVERRIDE_MODEL_NAME[1], VAE_OVERRIDE_MODEL_NAME[0], VAE_OVERRIDE_MODEL_NAME[2]
|
||||||
|
)
|
||||||
|
vae_model_path, is_override = model_manager._get_model_path(model_config, SubModelType.Vae)
|
||||||
|
expected_vae_path = datadir / "models" / "sdxl" / "vae" / "sdxl-vae-fp16-fix"
|
||||||
|
assert vae_model_path == expected_vae_path
|
||||||
|
assert is_override
|
15
tests/test_model_manager/configs/relative_sub.models.yaml
Normal file
15
tests/test_model_manager/configs/relative_sub.models.yaml
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
__metadata__:
|
||||||
|
version: 3.0.0
|
||||||
|
|
||||||
|
sdxl/main/SDXL base:
|
||||||
|
path: sdxl/main/SDXL base 1_0
|
||||||
|
description: SDXL base v1.0
|
||||||
|
variant: normal
|
||||||
|
format: diffusers
|
||||||
|
|
||||||
|
sdxl/main/SDXL with VAE:
|
||||||
|
path: sdxl/main/SDXL base 1_0
|
||||||
|
description: SDXL with customized VAE
|
||||||
|
vae: sdxl/vae/sdxl-vae-fp16-fix/
|
||||||
|
variant: normal
|
||||||
|
format: diffusers
|
Loading…
Reference in New Issue
Block a user