Add tiling support to the SpoandrelImageToImage node.

This commit is contained in:
Ryan Dick 2024-07-09 17:52:28 -04:00
parent 650902dc29
commit ab775726b7
2 changed files with 77 additions and 7 deletions

View File

@ -1,4 +1,7 @@
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
@ -13,9 +16,11 @@ from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap, merge_tiles_with_linear_blending
from invokeai.backend.tiles.utils import TBLR, Tile
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.0.0")
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.1.0")
class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel)."""
@ -25,25 +30,85 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.spandrel_image_to_image_model,
ui_type=UIType.SpandrelImageToImageModel,
)
tile_size: int = InputField(
default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling."
)
def _scale_tile(self, tile: Tile, scale: int) -> Tile:
return Tile(
coords=TBLR(
top=tile.coords.top * scale,
bottom=tile.coords.bottom * scale,
left=tile.coords.left * scale,
right=tile.coords.right * scale,
),
overlap=TBLR(
top=tile.overlap.top * scale,
bottom=tile.overlap.bottom * scale,
left=tile.overlap.left * scale,
right=tile.overlap.right * scale,
),
)
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Compute the image tiles.
if self.tile_size > 0:
min_overlap = 20
tiles = calc_tiles_min_overlap(
image_height=image.height,
image_width=image.width,
tile_height=self.tile_size,
tile_width=self.tile_size,
min_overlap=min_overlap,
)
else:
# No tiling. Generate a single tile that covers the entire image.
min_overlap = 0
tiles = [
Tile(
coords=TBLR(top=0, bottom=image.height, left=0, right=image.width),
overlap=TBLR(top=0, bottom=0, left=0, right=0),
)
]
# Prepare input image for inference.
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# Run the model on each tile.
output_tiles: list[torch.Tensor] = []
scale: int = 1
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# Prepare input image for inference.
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
# Scale the tiles for re-assembling the final image.
scale = spandrel_model.scale
scaled_tiles = [self._scale_tile(tile, scale=scale) for tile in tiles]
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Run inference.
image_tensor = spandrel_model.run(image_tensor)
for tile in tqdm(tiles, desc="Upscaling Tiles"):
output_tile = spandrel_model.run(
image_tensor[:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
)
output_tiles.append(output_tile)
# Merge tiles into output image.
np_output_tiles = [np.array(SpandrelImageToImageModel.tensor_to_pil(tile)) for tile in output_tiles]
_, channels, height, width = image_tensor.shape
np_out_image = np.zeros((height * scale, width * scale, channels), dtype=np.uint8)
merge_tiles_with_linear_blending(
dst_image=np_out_image, tiles=scaled_tiles, tile_images=np_output_tiles, blend_amount=min_overlap // 2
)
# Convert the output tensor to a PIL image.
pil_image = SpandrelImageToImageModel.tensor_to_pil(image_tensor)
pil_image = Image.fromarray(np_out_image)
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)

View File

@ -126,6 +126,11 @@ class SpandrelImageToImageModel(RawModel):
"""The dtype of the underlying model."""
return self._spandrel_model.dtype
@property
def scale(self) -> int:
"""The scale of the model (e.g. 1x, 2x, 4x, etc.)."""
return self._spandrel_model.scale
def calc_size(self) -> int:
"""Get size of the model in memory in bytes."""
# HACK(ryand): Fix this issue with circular imports.