mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
moved server.py into right location
This commit is contained in:
parent
7c485a1a4a
commit
ac02a775e4
@ -1,548 +1,92 @@
|
|||||||
#!/usr/bin/env python3
|
import json
|
||||||
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
import base64
|
||||||
|
import mimetypes
|
||||||
import argparse
|
|
||||||
import shlex
|
|
||||||
import os
|
import os
|
||||||
import sys
|
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
||||||
import copy
|
|
||||||
import warnings
|
|
||||||
import ldm.dream.readline
|
|
||||||
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
|
||||||
from dream_server import DreamServer, ThreadingDreamServer
|
|
||||||
|
|
||||||
def main():
|
class DreamServer(BaseHTTPRequestHandler):
|
||||||
"""Initialize command-line parsers and the diffusion model"""
|
model = None
|
||||||
arg_parser = create_argv_parser()
|
|
||||||
opt = arg_parser.parse_args()
|
|
||||||
if opt.laion400m:
|
|
||||||
# defaults suitable to the older latent diffusion weights
|
|
||||||
width = 256
|
|
||||||
height = 256
|
|
||||||
config = 'configs/latent-diffusion/txt2img-1p4B-eval.yaml'
|
|
||||||
weights = 'models/ldm/text2img-large/model.ckpt'
|
|
||||||
else:
|
|
||||||
# some defaults suitable for stable diffusion weights
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
config = 'configs/stable-diffusion/v1-inference.yaml'
|
|
||||||
weights = 'models/ldm/stable-diffusion-v1/model.ckpt'
|
|
||||||
|
|
||||||
print('* Initializing, be patient...\n')
|
def do_GET(self):
|
||||||
sys.path.append('.')
|
if self.path == "/":
|
||||||
from pytorch_lightning import logging
|
self.send_response(200)
|
||||||
from ldm.simplet2i import T2I
|
self.send_header("Content-type", "text/html")
|
||||||
|
self.end_headers()
|
||||||
# these two lines prevent a horrible warning message from appearing
|
with open("./static/dream_web/index.html", "rb") as content:
|
||||||
# when the frozen CLIP tokenizer is imported
|
self.wfile.write(content.read())
|
||||||
import transformers
|
elif os.path.exists("." + self.path):
|
||||||
|
mime_type = mimetypes.guess_type(self.path)[0]
|
||||||
transformers.logging.set_verbosity_error()
|
if mime_type is not None:
|
||||||
|
self.send_response(200)
|
||||||
# creating a simple text2image object with a handful of
|
self.send_header("Content-type", mime_type)
|
||||||
# defaults passed on the command line.
|
self.end_headers()
|
||||||
# additional parameters will be added (or overriden) during
|
with open("." + self.path, "rb") as content:
|
||||||
# the user input loop
|
self.wfile.write(content.read())
|
||||||
t2i = T2I(
|
|
||||||
width=width,
|
|
||||||
height=height,
|
|
||||||
sampler_name=opt.sampler_name,
|
|
||||||
weights=weights,
|
|
||||||
full_precision=opt.full_precision,
|
|
||||||
config=config,
|
|
||||||
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
|
||||||
embedding_path=opt.embedding_path,
|
|
||||||
device=opt.device,
|
|
||||||
)
|
|
||||||
|
|
||||||
# make sure the output directory exists
|
|
||||||
if not os.path.exists(opt.outdir):
|
|
||||||
os.makedirs(opt.outdir)
|
|
||||||
|
|
||||||
# gets rid of annoying messages about random seed
|
|
||||||
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
|
|
||||||
|
|
||||||
# load the infile as a list of lines
|
|
||||||
infile = None
|
|
||||||
if opt.infile:
|
|
||||||
try:
|
|
||||||
if os.path.isfile(opt.infile):
|
|
||||||
infile = open(opt.infile,'r')
|
|
||||||
elif opt.infile=='-': # stdin
|
|
||||||
infile = sys.stdin
|
|
||||||
else:
|
else:
|
||||||
raise FileNotFoundError(f'{opt.infile} not found.')
|
self.send_response(404)
|
||||||
except (FileNotFoundError,IOError) as e:
|
|
||||||
print(f'{e}. Aborting.')
|
|
||||||
sys.exit(-1)
|
|
||||||
|
|
||||||
# preload the model
|
|
||||||
t2i.load_model()
|
|
||||||
|
|
||||||
# load GFPGAN if requested
|
|
||||||
if opt.use_gfpgan:
|
|
||||||
print('\n* --gfpgan was specified, loading gfpgan...')
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
|
||||||
|
|
||||||
try:
|
|
||||||
model_path = os.path.join(
|
|
||||||
opt.gfpgan_dir, opt.gfpgan_model_path
|
|
||||||
)
|
|
||||||
if not os.path.isfile(model_path):
|
|
||||||
raise Exception(
|
|
||||||
'GFPGAN model not found at path ' + model_path
|
|
||||||
)
|
|
||||||
|
|
||||||
sys.path.append(os.path.abspath(opt.gfpgan_dir))
|
|
||||||
from gfpgan import GFPGANer
|
|
||||||
|
|
||||||
bg_upsampler = load_gfpgan_bg_upsampler(
|
|
||||||
opt.gfpgan_bg_upsampler, opt.gfpgan_bg_tile
|
|
||||||
)
|
|
||||||
|
|
||||||
t2i.gfpgan = GFPGANer(
|
|
||||||
model_path=model_path,
|
|
||||||
upscale=opt.gfpgan_upscale,
|
|
||||||
arch='clean',
|
|
||||||
channel_multiplier=2,
|
|
||||||
bg_upsampler=bg_upsampler,
|
|
||||||
)
|
|
||||||
except Exception:
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
print('Error loading GFPGAN:', file=sys.stderr)
|
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
|
|
||||||
log_path = os.path.join(opt.outdir, 'dream_log.txt')
|
|
||||||
with open(log_path, 'a') as log:
|
|
||||||
cmd_parser = create_cmd_parser()
|
|
||||||
if opt.web:
|
|
||||||
dream_server_loop(t2i)
|
|
||||||
else:
|
else:
|
||||||
main_loop(t2i, opt.outdir, cmd_parser, log_path, infile)
|
self.send_response(404)
|
||||||
log.close()
|
|
||||||
|
|
||||||
def main_loop(t2i, outdir, parser, log_path, infile):
|
def do_POST(self):
|
||||||
print(
|
self.send_response(200)
|
||||||
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)..."
|
self.send_header("Content-type", "application/json")
|
||||||
)
|
self.end_headers()
|
||||||
"""prompt/read/execute loop"""
|
|
||||||
done = False
|
|
||||||
last_seeds = []
|
|
||||||
|
|
||||||
while not done:
|
content_length = int(self.headers['Content-Length'])
|
||||||
try:
|
post_data = json.loads(self.rfile.read(content_length))
|
||||||
command = get_next_command(infile)
|
prompt = post_data['prompt']
|
||||||
except EOFError:
|
initimg = post_data['initimg']
|
||||||
done = True
|
iterations = int(post_data['iterations'])
|
||||||
break
|
steps = int(post_data['steps'])
|
||||||
|
width = int(post_data['width'])
|
||||||
|
height = int(post_data['height'])
|
||||||
|
cfgscale = float(post_data['cfgscale'])
|
||||||
|
gfpgan_strength = float(post_data['gfpgan_strength'])
|
||||||
|
seed = None if int(post_data['seed']) == -1 else int(post_data['seed'])
|
||||||
|
|
||||||
# skip empty lines
|
print(f"Request to generate with prompt: {prompt}")
|
||||||
if not command.strip():
|
|
||||||
continue
|
|
||||||
|
|
||||||
if command.startswith(('#', '//')):
|
outputs = []
|
||||||
continue
|
if initimg is None:
|
||||||
|
# Run txt2img
|
||||||
# before splitting, escape single quotes so as not to mess
|
outputs = self.model.txt2img(prompt,
|
||||||
# up the parser
|
iterations=iterations,
|
||||||
command = command.replace("'", "\\'")
|
cfg_scale = cfgscale,
|
||||||
|
width = width,
|
||||||
try:
|
height = height,
|
||||||
elements = shlex.split(command)
|
seed = seed,
|
||||||
except ValueError as e:
|
steps = steps,
|
||||||
print(str(e))
|
gfpgan_strength = gfpgan_strength)
|
||||||
continue
|
|
||||||
|
|
||||||
if elements[0] == 'q':
|
|
||||||
done = True
|
|
||||||
break
|
|
||||||
|
|
||||||
if elements[0].startswith(
|
|
||||||
'!dream'
|
|
||||||
): # in case a stored prompt still contains the !dream command
|
|
||||||
elements.pop(0)
|
|
||||||
|
|
||||||
# rearrange the arguments to mimic how it works in the Dream bot.
|
|
||||||
switches = ['']
|
|
||||||
switches_started = False
|
|
||||||
|
|
||||||
for el in elements:
|
|
||||||
if el[0] == '-' and not switches_started:
|
|
||||||
switches_started = True
|
|
||||||
if switches_started:
|
|
||||||
switches.append(el)
|
|
||||||
else:
|
|
||||||
switches[0] += el
|
|
||||||
switches[0] += ' '
|
|
||||||
switches[0] = switches[0][: len(switches[0]) - 1]
|
|
||||||
|
|
||||||
try:
|
|
||||||
opt = parser.parse_args(switches)
|
|
||||||
except SystemExit:
|
|
||||||
parser.print_help()
|
|
||||||
continue
|
|
||||||
if len(opt.prompt) == 0:
|
|
||||||
print('Try again with a prompt!')
|
|
||||||
continue
|
|
||||||
if opt.seed is not None and opt.seed < 0: # retrieve previous value!
|
|
||||||
try:
|
|
||||||
opt.seed = last_seeds[opt.seed]
|
|
||||||
print(f'reusing previous seed {opt.seed}')
|
|
||||||
except IndexError:
|
|
||||||
print(f'No previous seed at position {opt.seed} found')
|
|
||||||
opt.seed = None
|
|
||||||
|
|
||||||
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
|
||||||
individual_images = not opt.grid
|
|
||||||
if opt.outdir:
|
|
||||||
if not os.path.exists(opt.outdir):
|
|
||||||
os.makedirs(opt.outdir)
|
|
||||||
current_outdir = opt.outdir
|
|
||||||
else:
|
else:
|
||||||
current_outdir = outdir
|
# Decode initimg as base64 to temp file
|
||||||
|
with open("./img2img-tmp.png", "wb") as f:
|
||||||
|
initimg = initimg.split(",")[1] # Ignore mime type
|
||||||
|
f.write(base64.b64decode(initimg))
|
||||||
|
|
||||||
# Here is where the images are actually generated!
|
# Run img2img
|
||||||
try:
|
outputs = self.model.img2img(prompt,
|
||||||
file_writer = PngWriter(current_outdir, normalized_prompt, opt.batch_size)
|
init_img = "./img2img-tmp.png",
|
||||||
callback = file_writer.write_image if individual_images else None
|
iterations = iterations,
|
||||||
image_list = t2i.prompt2image(image_callback=callback, **vars(opt))
|
cfg_scale = cfgscale,
|
||||||
results = (
|
seed = seed,
|
||||||
file_writer.files_written if individual_images else image_list
|
steps = steps)
|
||||||
)
|
# Remove the temp file
|
||||||
|
os.remove("./img2img-tmp.png")
|
||||||
|
|
||||||
if opt.grid and len(results) > 0:
|
print(f"Prompt generated with output: {outputs}")
|
||||||
grid_img = file_writer.make_grid([r[0] for r in results])
|
|
||||||
filename = file_writer.unique_filename(results[0][1])
|
|
||||||
seeds = [a[1] for a in results]
|
|
||||||
results = [[filename, seeds]]
|
|
||||||
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
|
|
||||||
file_writer.save_image_and_prompt_to_png(
|
|
||||||
grid_img, metadata_prompt, filename
|
|
||||||
)
|
|
||||||
|
|
||||||
last_seeds = [r[1] for r in results]
|
post_data['initimg'] = '' # Don't send init image back
|
||||||
|
|
||||||
except AssertionError as e:
|
# Append post_data to log
|
||||||
print(e)
|
with open("./outputs/img-samples/dream_web_log.txt", "a") as log:
|
||||||
continue
|
for output in outputs:
|
||||||
|
log.write(f"{output[0]}: {json.dumps(post_data)}\n")
|
||||||
|
|
||||||
except OSError as e:
|
outputs = [x + [post_data] for x in outputs] # Append config to each output
|
||||||
print(e)
|
result = {'outputs': outputs}
|
||||||
continue
|
self.wfile.write(bytes(json.dumps(result), "utf-8"))
|
||||||
|
|
||||||
print('Outputs:')
|
|
||||||
write_log_message(t2i, normalized_prompt, results, log_path)
|
|
||||||
|
|
||||||
print('goodbye!')
|
|
||||||
|
|
||||||
def get_next_command(infile=None) -> 'command string':
|
|
||||||
if infile is None:
|
|
||||||
command = input("dream> ")
|
|
||||||
else:
|
|
||||||
command = infile.readline()
|
|
||||||
if not command:
|
|
||||||
raise EOFError
|
|
||||||
else:
|
|
||||||
command = command.strip()
|
|
||||||
print(f'#{command}')
|
|
||||||
return command
|
|
||||||
|
|
||||||
def dream_server_loop(t2i):
|
|
||||||
print('\n* --web was specified, starting web server...')
|
|
||||||
# Change working directory to the stable-diffusion directory
|
|
||||||
os.chdir(
|
|
||||||
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
|
||||||
)
|
|
||||||
|
|
||||||
# Start server
|
|
||||||
DreamServer.model = t2i
|
|
||||||
dream_server = ThreadingDreamServer(("0.0.0.0", 9090))
|
|
||||||
print("\nStarted Stable Diffusion dream server!")
|
|
||||||
print("Point your browser at http://localhost:9090 or use the host's DNS name or IP address.")
|
|
||||||
|
|
||||||
try:
|
|
||||||
dream_server.serve_forever()
|
|
||||||
except KeyboardInterrupt:
|
|
||||||
pass
|
|
||||||
|
|
||||||
dream_server.server_close()
|
|
||||||
|
|
||||||
def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
|
|
||||||
import torch
|
|
||||||
|
|
||||||
if bg_upsampler == 'realesrgan':
|
|
||||||
if not torch.cuda.is_available(): # CPU
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
warnings.warn(
|
|
||||||
'The unoptimized RealESRGAN is slow on CPU. We do not use it. '
|
|
||||||
'If you really want to use it, please modify the corresponding codes.'
|
|
||||||
)
|
|
||||||
bg_upsampler = None
|
|
||||||
else:
|
|
||||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
||||||
from realesrgan import RealESRGANer
|
|
||||||
|
|
||||||
model = RRDBNet(
|
|
||||||
num_in_ch=3,
|
|
||||||
num_out_ch=3,
|
|
||||||
num_feat=64,
|
|
||||||
num_block=23,
|
|
||||||
num_grow_ch=32,
|
|
||||||
scale=2,
|
|
||||||
)
|
|
||||||
bg_upsampler = RealESRGANer(
|
|
||||||
scale=2,
|
|
||||||
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
|
||||||
model=model,
|
|
||||||
tile=bg_tile,
|
|
||||||
tile_pad=10,
|
|
||||||
pre_pad=0,
|
|
||||||
half=True,
|
|
||||||
) # need to set False in CPU mode
|
|
||||||
else:
|
|
||||||
bg_upsampler = None
|
|
||||||
|
|
||||||
return bg_upsampler
|
|
||||||
|
|
||||||
|
|
||||||
# variant generation is going to be superseded by a generalized
|
class ThreadingDreamServer(ThreadingHTTPServer):
|
||||||
# "prompt-morph" functionality
|
def __init__(self, server_address):
|
||||||
# def generate_variants(t2i,outdir,opt,previous_gens):
|
super(ThreadingDreamServer, self).__init__(server_address, DreamServer)
|
||||||
# variants = []
|
|
||||||
# print(f"Generating {opt.variants} variant(s)...")
|
|
||||||
# newopt = copy.deepcopy(opt)
|
|
||||||
# newopt.iterations = 1
|
|
||||||
# newopt.variants = None
|
|
||||||
# for r in previous_gens:
|
|
||||||
# newopt.init_img = r[0]
|
|
||||||
# prompt = PromptFormatter(t2i,newopt).normalize_prompt()
|
|
||||||
# print(f"] generating variant for {newopt.init_img}")
|
|
||||||
# for j in range(0,opt.variants):
|
|
||||||
# try:
|
|
||||||
# file_writer = PngWriter(outdir,prompt,newopt.batch_size)
|
|
||||||
# callback = file_writer.write_image
|
|
||||||
# t2i.prompt2image(image_callback=callback,**vars(newopt))
|
|
||||||
# results = file_writer.files_written
|
|
||||||
# variants.append([prompt,results])
|
|
||||||
# except AssertionError as e:
|
|
||||||
# print(e)
|
|
||||||
# continue
|
|
||||||
# print(f'{opt.variants} variants generated')
|
|
||||||
# return variants
|
|
||||||
|
|
||||||
|
|
||||||
### the t2i variable doesn't seem to be necessary here. maybe remove it?
|
|
||||||
def write_log_message(t2i, prompt, results, log_path):
|
|
||||||
"""logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata"""
|
|
||||||
log_lines = [f"{r[0]}: {prompt} -S{r[1]}\n" for r in results]
|
|
||||||
print(*log_lines, sep="")
|
|
||||||
|
|
||||||
with open(log_path, "a") as file:
|
|
||||||
file.writelines(log_lines)
|
|
||||||
|
|
||||||
|
|
||||||
def create_argv_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Parse script's command line args"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--laion400m',
|
|
||||||
'--latent_diffusion',
|
|
||||||
'-l',
|
|
||||||
dest='laion400m',
|
|
||||||
action='store_true',
|
|
||||||
help='fallback to the latent diffusion (laion400m) weights and config',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--from_file',
|
|
||||||
dest='infile',
|
|
||||||
type=str,
|
|
||||||
help='if specified, load prompts from this file',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-n',
|
|
||||||
'--iterations',
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help='number of images to generate',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-F',
|
|
||||||
'--full_precision',
|
|
||||||
dest='full_precision',
|
|
||||||
action='store_true',
|
|
||||||
help='use slower full precision math for calculations',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--sampler',
|
|
||||||
'-m',
|
|
||||||
dest='sampler_name',
|
|
||||||
choices=[
|
|
||||||
'ddim',
|
|
||||||
'k_dpm_2_a',
|
|
||||||
'k_dpm_2',
|
|
||||||
'k_euler_a',
|
|
||||||
'k_euler',
|
|
||||||
'k_heun',
|
|
||||||
'k_lms',
|
|
||||||
'plms',
|
|
||||||
],
|
|
||||||
default='k_lms',
|
|
||||||
help='which sampler to use (k_lms) - can only be set on command line',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--outdir',
|
|
||||||
'-o',
|
|
||||||
type=str,
|
|
||||||
default='outputs/img-samples',
|
|
||||||
help='directory in which to place generated images and a log of prompts and seeds (outputs/img-samples',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--embedding_path',
|
|
||||||
type=str,
|
|
||||||
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--device',
|
|
||||||
'-d',
|
|
||||||
type=str,
|
|
||||||
default='cuda',
|
|
||||||
help='device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible',
|
|
||||||
)
|
|
||||||
# GFPGAN related args
|
|
||||||
parser.add_argument(
|
|
||||||
'--gfpgan',
|
|
||||||
dest='use_gfpgan',
|
|
||||||
action='store_true',
|
|
||||||
help='load gfpgan for use in the dreambot. Note: Enabling GFPGAN will require more GPU memory',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--gfpgan_upscale',
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help='The final upsampling scale of the image. Default: 2. Only used if --gfpgan is specified',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--gfpgan_bg_upsampler',
|
|
||||||
type=str,
|
|
||||||
default='realesrgan',
|
|
||||||
help='Background upsampler. Default: None. Options: realesrgan, none. Only used if --gfpgan is specified',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--gfpgan_bg_tile',
|
|
||||||
type=int,
|
|
||||||
default=400,
|
|
||||||
help='Tile size for background sampler, 0 for no tile during testing. Default: 400. Only used if --gfpgan is specified',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--gfpgan_model_path',
|
|
||||||
type=str,
|
|
||||||
default='experiments/pretrained_models/GFPGANv1.3.pth',
|
|
||||||
help='indicates the path to the GFPGAN model, relative to --gfpgan_dir. Only used if --gfpgan is specified',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--gfpgan_dir',
|
|
||||||
type=str,
|
|
||||||
default='../GFPGAN',
|
|
||||||
help='indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--web',
|
|
||||||
dest='web',
|
|
||||||
action='store_true',
|
|
||||||
help='start in web server mode.',
|
|
||||||
)
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def create_cmd_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12'
|
|
||||||
)
|
|
||||||
parser.add_argument('prompt')
|
|
||||||
parser.add_argument('-s', '--steps', type=int, help='number of steps')
|
|
||||||
parser.add_argument(
|
|
||||||
'-S',
|
|
||||||
'--seed',
|
|
||||||
type=int,
|
|
||||||
help='image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-n',
|
|
||||||
'--iterations',
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help='number of samplings to perform (slower, but will provide seeds for individual images)',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-b',
|
|
||||||
'--batch_size',
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help='number of images to produce per sampling (will not provide seeds for individual images!)',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-W', '--width', type=int, help='image width, multiple of 64'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-H', '--height', type=int, help='image height, multiple of 64'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-C',
|
|
||||||
'--cfg_scale',
|
|
||||||
default=7.5,
|
|
||||||
type=float,
|
|
||||||
help='prompt configuration scale',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-g', '--grid', action='store_true', help='generate a grid'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--outdir',
|
|
||||||
'-o',
|
|
||||||
type=str,
|
|
||||||
default=None,
|
|
||||||
help='directory in which to place generated images and a log of prompts and seeds (outputs/img-samples',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-i',
|
|
||||||
'--individual',
|
|
||||||
action='store_true',
|
|
||||||
help='generate individual files (default)',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-I',
|
|
||||||
'--init_img',
|
|
||||||
type=str,
|
|
||||||
help='path to input image for img2img mode (supersedes width and height)',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-f',
|
|
||||||
'--strength',
|
|
||||||
default=0.75,
|
|
||||||
type=float,
|
|
||||||
help='strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-G',
|
|
||||||
'--gfpgan_strength',
|
|
||||||
default=None,
|
|
||||||
type=float,
|
|
||||||
help='The strength at which to apply the GFPGAN model to the result, in order to improve faces.',
|
|
||||||
)
|
|
||||||
# variants is going to be superseded by a generalized "prompt-morph" function
|
|
||||||
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
|
||||||
parser.add_argument(
|
|
||||||
'-x',
|
|
||||||
'--skip_normalize',
|
|
||||||
action='store_true',
|
|
||||||
help='skip subprompt weight normalization',
|
|
||||||
)
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
|
Loading…
Reference in New Issue
Block a user