mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
chore(nodes): "SAMPLER_NAME_VALUES" -> "SCHEDULER_NAME_VALUES"
This was named inaccurately.
This commit is contained in:
parent
54d92cb246
commit
acc50d9bd2
@ -1,3 +1,7 @@
|
|||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||||
|
|
||||||
LATENT_SCALE_FACTOR = 8
|
LATENT_SCALE_FACTOR = 8
|
||||||
"""
|
"""
|
||||||
HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
|
HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
|
||||||
@ -5,3 +9,6 @@ be addressed if future models use a different latent scale factor. Also, note th
|
|||||||
factor is hard-coded to a literal '8' rather than using this constant.
|
factor is hard-coded to a literal '8' rather than using this constant.
|
||||||
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
|
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
||||||
|
"""A literal type representing the valid scheduler names."""
|
||||||
|
@ -23,7 +23,7 @@ from diffusers.schedulers import SchedulerMixin as Scheduler
|
|||||||
from pydantic import field_validator
|
from pydantic import field_validator
|
||||||
from torchvision.transforms.functional import resize as tv_resize
|
from torchvision.transforms.functional import resize as tv_resize
|
||||||
|
|
||||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||||
from invokeai.app.invocations.fields import (
|
from invokeai.app.invocations.fields import (
|
||||||
ConditioningField,
|
ConditioningField,
|
||||||
DenoiseMaskField,
|
DenoiseMaskField,
|
||||||
@ -78,12 +78,10 @@ if choose_torch_device() == torch.device("mps"):
|
|||||||
|
|
||||||
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
||||||
|
|
||||||
SAMPLER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("scheduler_output")
|
@invocation_output("scheduler_output")
|
||||||
class SchedulerOutput(BaseInvocationOutput):
|
class SchedulerOutput(BaseInvocationOutput):
|
||||||
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
|
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
@ -96,7 +94,7 @@ class SchedulerOutput(BaseInvocationOutput):
|
|||||||
class SchedulerInvocation(BaseInvocation):
|
class SchedulerInvocation(BaseInvocation):
|
||||||
"""Selects a scheduler."""
|
"""Selects a scheduler."""
|
||||||
|
|
||||||
scheduler: SAMPLER_NAME_VALUES = InputField(
|
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||||
default="euler",
|
default="euler",
|
||||||
description=FieldDescriptions.scheduler,
|
description=FieldDescriptions.scheduler,
|
||||||
ui_type=UIType.Scheduler,
|
ui_type=UIType.Scheduler,
|
||||||
@ -234,7 +232,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
description=FieldDescriptions.denoising_start,
|
description=FieldDescriptions.denoising_start,
|
||||||
)
|
)
|
||||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||||
scheduler: SAMPLER_NAME_VALUES = InputField(
|
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||||
default="euler",
|
default="euler",
|
||||||
description=FieldDescriptions.scheduler,
|
description=FieldDescriptions.scheduler,
|
||||||
ui_type=UIType.Scheduler,
|
ui_type=UIType.Scheduler,
|
||||||
|
Loading…
Reference in New Issue
Block a user