mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
remove startup dependency on legacy models.yaml file
This commit is contained in:
committed by
psychedelicious
parent
a6e1ac6096
commit
ae14df97d6
@ -455,7 +455,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
selections = self.parentApp.install_selections
|
||||
all_models = self.all_models
|
||||
|
||||
# Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove
|
||||
# Defined models (in INITIAL_CONFIG.yaml or invokeai.db) to add/remove
|
||||
ui_sections = [
|
||||
self.starter_pipelines,
|
||||
self.pipeline_models,
|
||||
|
@ -435,7 +435,7 @@ def main():
|
||||
run_cli(args)
|
||||
except widget.NotEnoughSpaceForWidget as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
logger.error("You need to have at least two diffusers models defined in models.yaml in order to merge")
|
||||
logger.error("You need to have at least two diffusers models in order to merge")
|
||||
else:
|
||||
logger.error("Not enough room for the user interface. Try making this window larger.")
|
||||
sys.exit(-1)
|
||||
|
4
invokeai/frontend/training/textual_inversion.py
Executable file → Normal file
4
invokeai/frontend/training/textual_inversion.py
Executable file → Normal file
@ -261,7 +261,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
def validate_field_values(self) -> bool:
|
||||
bad_fields = []
|
||||
if self.model.value is None:
|
||||
bad_fields.append("Model Name must correspond to a known model in models.yaml")
|
||||
bad_fields.append("Model Name must correspond to a known model in invokeai.db")
|
||||
if not re.match("^[a-zA-Z0-9.-]+$", self.placeholder_token.value):
|
||||
bad_fields.append("Trigger term must only contain alphanumeric characters, the dot and hyphen")
|
||||
if self.train_data_dir.value is None:
|
||||
@ -442,7 +442,7 @@ def main() -> None:
|
||||
pass
|
||||
except (widget.NotEnoughSpaceForWidget, Exception) as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
logger.error("You need to have at least one diffusers models defined in models.yaml in order to train")
|
||||
logger.error("You need to have at least one diffusers models defined in invokeai.db in order to train")
|
||||
elif str(e).startswith("addwstr"):
|
||||
logger.error("Not enough window space for the interface. Please make your window larger and try again.")
|
||||
else:
|
||||
|
@ -1,454 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
"""
|
||||
This is the frontend to "textual_inversion_training.py".
|
||||
|
||||
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
|
||||
"""
|
||||
|
||||
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import traceback
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import npyscreen
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.install.install_helper import initialize_installer
|
||||
from invokeai.backend.model_manager import ModelType
|
||||
from invokeai.backend.training import do_textual_inversion_training, parse_args
|
||||
|
||||
TRAINING_DATA = "text-inversion-training-data"
|
||||
TRAINING_DIR = "text-inversion-output"
|
||||
CONF_FILE = "preferences.conf"
|
||||
config = None
|
||||
|
||||
|
||||
class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
resolutions = [512, 768, 1024]
|
||||
lr_schedulers = [
|
||||
"linear",
|
||||
"cosine",
|
||||
"cosine_with_restarts",
|
||||
"polynomial",
|
||||
"constant",
|
||||
"constant_with_warmup",
|
||||
]
|
||||
precisions = ["no", "fp16", "bf16"]
|
||||
learnable_properties = ["object", "style"]
|
||||
|
||||
def __init__(self, parentApp: npyscreen.NPSAppManaged, name: str, saved_args: Optional[Dict[str, str]] = None):
|
||||
self.saved_args = saved_args or {}
|
||||
super().__init__(parentApp, name)
|
||||
|
||||
def afterEditing(self) -> None:
|
||||
self.parentApp.setNextForm(None)
|
||||
|
||||
def create(self) -> None:
|
||||
self.model_names, default = self.get_model_names()
|
||||
default_initializer_token = "★"
|
||||
default_placeholder_token = ""
|
||||
saved_args = self.saved_args
|
||||
|
||||
assert config is not None
|
||||
|
||||
try:
|
||||
default = self.model_names.index(saved_args["model"])
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields, cursor arrows to make a selection, and space to toggle checkboxes.",
|
||||
editable=False,
|
||||
)
|
||||
|
||||
self.model = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Model Name:",
|
||||
values=sorted(self.model_names),
|
||||
value=default,
|
||||
max_height=len(self.model_names) + 1,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.placeholder_token = self.add_widget_intelligent(
|
||||
npyscreen.TitleText,
|
||||
name="Trigger Term:",
|
||||
value="", # saved_args.get('placeholder_token',''), # to restore previous term
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.placeholder_token.when_value_edited = self.initializer_changed
|
||||
self.nextrely -= 1
|
||||
self.nextrelx += 30
|
||||
self.prompt_token = self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
name="Trigger term for use in prompt",
|
||||
value="",
|
||||
editable=False,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.nextrelx -= 30
|
||||
self.initializer_token = self.add_widget_intelligent(
|
||||
npyscreen.TitleText,
|
||||
name="Initializer:",
|
||||
value=saved_args.get("initializer_token", default_initializer_token),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.resume_from_checkpoint = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Resume from last saved checkpoint",
|
||||
value=False,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.learnable_property = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Learnable property:",
|
||||
values=self.learnable_properties,
|
||||
value=self.learnable_properties.index(saved_args.get("learnable_property", "object")),
|
||||
max_height=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.train_data_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name="Data Training Directory:",
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
value=str(
|
||||
saved_args.get(
|
||||
"train_data_dir",
|
||||
config.root_dir / TRAINING_DATA / default_placeholder_token,
|
||||
)
|
||||
),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.output_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name="Output Destination Directory:",
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
value=str(
|
||||
saved_args.get(
|
||||
"output_dir",
|
||||
config.root_dir / TRAINING_DIR / default_placeholder_token,
|
||||
)
|
||||
),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.resolution = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Image resolution (pixels):",
|
||||
values=self.resolutions,
|
||||
value=self.resolutions.index(saved_args.get("resolution", 512)),
|
||||
max_height=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.center_crop = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Center crop images before resizing to resolution",
|
||||
value=saved_args.get("center_crop", False),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.mixed_precision = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Mixed Precision:",
|
||||
values=self.precisions,
|
||||
value=self.precisions.index(saved_args.get("mixed_precision", "fp16")),
|
||||
max_height=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.num_train_epochs = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Number of training epochs:",
|
||||
out_of=1000,
|
||||
step=50,
|
||||
lowest=1,
|
||||
value=saved_args.get("num_train_epochs", 100),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.max_train_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Max Training Steps:",
|
||||
out_of=10000,
|
||||
step=500,
|
||||
lowest=1,
|
||||
value=saved_args.get("max_train_steps", 3000),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.train_batch_size = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Batch Size (reduce if you run out of memory):",
|
||||
out_of=50,
|
||||
step=1,
|
||||
lowest=1,
|
||||
value=saved_args.get("train_batch_size", 8),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.gradient_accumulation_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):",
|
||||
out_of=10,
|
||||
step=1,
|
||||
lowest=1,
|
||||
value=saved_args.get("gradient_accumulation_steps", 4),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.lr_warmup_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Warmup Steps:",
|
||||
out_of=100,
|
||||
step=1,
|
||||
lowest=0,
|
||||
value=saved_args.get("lr_warmup_steps", 0),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.learning_rate = self.add_widget_intelligent(
|
||||
npyscreen.TitleText,
|
||||
name="Learning Rate:",
|
||||
value=str(
|
||||
saved_args.get("learning_rate", "5.0e-04"),
|
||||
),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.scale_lr = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Scale learning rate by number GPUs, steps and batch size",
|
||||
value=saved_args.get("scale_lr", True),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.enable_xformers_memory_efficient_attention = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Use xformers acceleration",
|
||||
value=saved_args.get("enable_xformers_memory_efficient_attention", False),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.lr_scheduler = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Learning rate scheduler:",
|
||||
values=self.lr_schedulers,
|
||||
max_height=7,
|
||||
value=self.lr_schedulers.index(saved_args.get("lr_scheduler", "constant")),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.model.editing = True
|
||||
|
||||
def initializer_changed(self) -> None:
|
||||
placeholder = self.placeholder_token.value
|
||||
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
|
||||
self.train_data_dir.value = str(config.root_dir / TRAINING_DATA / placeholder)
|
||||
self.output_dir.value = str(config.root_dir / TRAINING_DIR / placeholder)
|
||||
self.resume_from_checkpoint.value = Path(self.output_dir.value).exists()
|
||||
|
||||
def on_ok(self):
|
||||
if self.validate_field_values():
|
||||
self.parentApp.setNextForm(None)
|
||||
self.editing = False
|
||||
self.parentApp.ti_arguments = self.marshall_arguments()
|
||||
npyscreen.notify("Launching textual inversion training. This will take a while...")
|
||||
else:
|
||||
self.editing = True
|
||||
|
||||
def ok_cancel(self):
|
||||
sys.exit(0)
|
||||
|
||||
def validate_field_values(self) -> bool:
|
||||
bad_fields = []
|
||||
if self.model.value is None:
|
||||
bad_fields.append("Model Name must correspond to a known model in models.yaml")
|
||||
if not re.match("^[a-zA-Z0-9.-]+$", self.placeholder_token.value):
|
||||
bad_fields.append("Trigger term must only contain alphanumeric characters, the dot and hyphen")
|
||||
if self.train_data_dir.value is None:
|
||||
bad_fields.append("Data Training Directory cannot be empty")
|
||||
if self.output_dir.value is None:
|
||||
bad_fields.append("The Output Destination Directory cannot be empty")
|
||||
if len(bad_fields) > 0:
|
||||
message = "The following problems were detected and must be corrected:"
|
||||
for problem in bad_fields:
|
||||
message += f"\n* {problem}"
|
||||
npyscreen.notify_confirm(message)
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def get_model_names(self) -> Tuple[List[str], int]:
|
||||
global config
|
||||
assert config is not None
|
||||
installer = initialize_installer(config)
|
||||
store = installer.record_store
|
||||
main_models = store.search_by_attr(model_type=ModelType.Main)
|
||||
model_names = [f"{x.base.value}/{x.type.value}/{x.name}" for x in main_models if x.format == "diffusers"]
|
||||
default = 0
|
||||
return (model_names, default)
|
||||
|
||||
def marshall_arguments(self) -> dict:
|
||||
args = {}
|
||||
|
||||
# the choices
|
||||
args.update(
|
||||
model=self.model_names[self.model.value[0]],
|
||||
resolution=self.resolutions[self.resolution.value[0]],
|
||||
lr_scheduler=self.lr_schedulers[self.lr_scheduler.value[0]],
|
||||
mixed_precision=self.precisions[self.mixed_precision.value[0]],
|
||||
learnable_property=self.learnable_properties[self.learnable_property.value[0]],
|
||||
)
|
||||
|
||||
# all the strings and booleans
|
||||
for attr in (
|
||||
"initializer_token",
|
||||
"placeholder_token",
|
||||
"train_data_dir",
|
||||
"output_dir",
|
||||
"scale_lr",
|
||||
"center_crop",
|
||||
"enable_xformers_memory_efficient_attention",
|
||||
):
|
||||
args[attr] = getattr(self, attr).value
|
||||
|
||||
# all the integers
|
||||
for attr in (
|
||||
"train_batch_size",
|
||||
"gradient_accumulation_steps",
|
||||
"num_train_epochs",
|
||||
"max_train_steps",
|
||||
"lr_warmup_steps",
|
||||
):
|
||||
args[attr] = int(getattr(self, attr).value)
|
||||
|
||||
# the floats (just one)
|
||||
args.update(learning_rate=float(self.learning_rate.value))
|
||||
|
||||
# a special case
|
||||
if self.resume_from_checkpoint.value and Path(self.output_dir.value).exists():
|
||||
args["resume_from_checkpoint"] = "latest"
|
||||
|
||||
return args
|
||||
|
||||
|
||||
class MyApplication(npyscreen.NPSAppManaged):
|
||||
def __init__(self, saved_args: Optional[Dict[str, str]] = None):
|
||||
super().__init__()
|
||||
self.ti_arguments = None
|
||||
self.saved_args = saved_args
|
||||
|
||||
def onStart(self):
|
||||
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
||||
self.main = self.addForm(
|
||||
"MAIN",
|
||||
textualInversionForm,
|
||||
name="Textual Inversion Settings",
|
||||
saved_args=self.saved_args,
|
||||
)
|
||||
|
||||
|
||||
def copy_to_embeddings_folder(args: Dict[str, str]) -> None:
|
||||
"""
|
||||
Copy learned_embeds.bin into the embeddings folder, and offer to
|
||||
delete the full model and checkpoints.
|
||||
"""
|
||||
assert config is not None
|
||||
source = Path(args["output_dir"], "learned_embeds.bin")
|
||||
dest_dir_name = args["placeholder_token"].strip("<>")
|
||||
destination = config.root_dir / "embeddings" / dest_dir_name
|
||||
os.makedirs(destination, exist_ok=True)
|
||||
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
|
||||
shutil.copy(source, destination)
|
||||
if (input("Delete training logs and intermediate checkpoints? [y] ") or "y").startswith(("y", "Y")):
|
||||
shutil.rmtree(Path(args["output_dir"]))
|
||||
else:
|
||||
logger.info(f'Keeping {args["output_dir"]}')
|
||||
|
||||
|
||||
def save_args(args: dict) -> None:
|
||||
"""
|
||||
Save the current argument values to an omegaconf file
|
||||
"""
|
||||
assert config is not None
|
||||
dest_dir = config.root_dir / TRAINING_DIR
|
||||
os.makedirs(dest_dir, exist_ok=True)
|
||||
conf_file = dest_dir / CONF_FILE
|
||||
conf = OmegaConf.create(args)
|
||||
OmegaConf.save(config=conf, f=conf_file)
|
||||
|
||||
|
||||
def previous_args() -> dict:
|
||||
"""
|
||||
Get the previous arguments used.
|
||||
"""
|
||||
assert config is not None
|
||||
conf_file = config.root_dir / TRAINING_DIR / CONF_FILE
|
||||
try:
|
||||
conf = OmegaConf.load(conf_file)
|
||||
conf["placeholder_token"] = conf["placeholder_token"].strip("<>")
|
||||
except Exception:
|
||||
conf = None
|
||||
|
||||
return conf
|
||||
|
||||
|
||||
def do_front_end() -> None:
|
||||
global config
|
||||
saved_args = previous_args()
|
||||
myapplication = MyApplication(saved_args=saved_args)
|
||||
myapplication.run()
|
||||
|
||||
if my_args := myapplication.ti_arguments:
|
||||
os.makedirs(my_args["output_dir"], exist_ok=True)
|
||||
|
||||
# Automatically add angle brackets around the trigger
|
||||
if not re.match("^<.+>$", my_args["placeholder_token"]):
|
||||
my_args["placeholder_token"] = f"<{my_args['placeholder_token']}>"
|
||||
|
||||
my_args["only_save_embeds"] = True
|
||||
save_args(my_args)
|
||||
|
||||
try:
|
||||
print(my_args)
|
||||
do_textual_inversion_training(config, **my_args)
|
||||
copy_to_embeddings_folder(my_args)
|
||||
except Exception as e:
|
||||
logger.error("An exception occurred during training. The exception was:")
|
||||
logger.error(str(e))
|
||||
logger.error("DETAILS:")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
|
||||
def main() -> None:
|
||||
global config
|
||||
|
||||
args: Namespace = parse_args()
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args([])
|
||||
|
||||
# change root if needed
|
||||
if args.root_dir:
|
||||
config.root = args.root_dir
|
||||
|
||||
try:
|
||||
if args.front_end:
|
||||
do_front_end()
|
||||
else:
|
||||
do_textual_inversion_training(config, **vars(args))
|
||||
except AssertionError as e:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
except (widget.NotEnoughSpaceForWidget, Exception) as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
logger.error("You need to have at least one diffusers models defined in models.yaml in order to train")
|
||||
elif str(e).startswith("addwstr"):
|
||||
logger.error("Not enough window space for the interface. Please make your window larger and try again.")
|
||||
else:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -814,7 +814,7 @@
|
||||
"simpleModelDesc": "Provide a path to a local Diffusers model, local checkpoint / safetensors model a HuggingFace Repo ID, or a checkpoint/diffusers model URL.",
|
||||
"statusConverting": "Converting",
|
||||
"syncModels": "Sync Models",
|
||||
"syncModelsDesc": "If your models are out of sync with the backend, you can refresh them up using this option. This is generally handy in cases where you manually update your models.yaml file or add models to the InvokeAI root folder after the application has booted.",
|
||||
"syncModelsDesc": "If your models are out of sync with the backend, you can refresh them up using this option. This is generally handy in cases where you add models to the InvokeAI root folder or autoimport directory after the application has booted.",
|
||||
"updateModel": "Update Model",
|
||||
"useCustomConfig": "Use Custom Config",
|
||||
"v1": "v1",
|
||||
|
Reference in New Issue
Block a user