diff --git a/installer/lib/messages.py b/installer/lib/messages.py index cc7c579216..e6362b75d0 100644 --- a/installer/lib/messages.py +++ b/installer/lib/messages.py @@ -168,7 +168,7 @@ def graphical_accelerator(): "cuda", ) nvidia_with_dml = ( - "an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX)", + "an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA", "cuda_and_dml", ) amd = ( diff --git a/invokeai/backend/install/model_install_backend.py b/invokeai/backend/install/model_install_backend.py index 58a8f3d91a..a9e1c2e1fa 100644 --- a/invokeai/backend/install/model_install_backend.py +++ b/invokeai/backend/install/model_install_backend.py @@ -438,7 +438,11 @@ class ModelInstall(object): for filename in files: filePath = Path(filename) p = hf_download_with_resume( - repo_id, model_dir=location / filePath.parent, model_name=filePath.name, access_token=self.access_token, subfolder=filePath.parent + repo_id, + model_dir=location / filePath.parent, + model_name=filePath.name, + access_token=self.access_token, + subfolder=filePath.parent, ) if p: paths.append(p) diff --git a/invokeai/backend/model_management/model_probe.py b/invokeai/backend/model_management/model_probe.py index 7da722df77..c3964d760c 100644 --- a/invokeai/backend/model_management/model_probe.py +++ b/invokeai/backend/model_management/model_probe.py @@ -54,7 +54,9 @@ class ModelProbe(object): } @classmethod - def register_probe(cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: ProbeBase): + def register_probe( + cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: ProbeBase + ): cls.PROBES[format][model_type] = probe_class @classmethod @@ -96,7 +98,7 @@ class ModelProbe(object): if format_type == "diffusers" else cls.get_model_type_from_checkpoint(model_path, model) ) - format_type = 'onnx' if model_type == ModelType.ONNX else format_type + format_type = "onnx" if model_type == ModelType.ONNX else format_type probe_class = cls.PROBES[format_type].get(model_type) if not probe_class: return None @@ -170,7 +172,7 @@ class ModelProbe(object): if model: class_name = model.__class__.__name__ else: - if (folder_path / 'unet/model.onnx').exists(): + if (folder_path / "unet/model.onnx").exists(): return ModelType.ONNX if (folder_path / "learned_embeds.bin").exists(): return ModelType.TextualInversion @@ -474,6 +476,7 @@ class ONNXFolderProbe(FolderProbeBase): def get_variant_type(self) -> ModelVariantType: return ModelVariantType.Normal + class ControlNetFolderProbe(FolderProbeBase): def get_base_type(self) -> BaseModelType: config_file = self.folder_path / "config.json"