mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into lstein/bugfix/compel
This commit is contained in:
commit
af060188bd
@ -52,7 +52,7 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
|
||||
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
|
||||
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
|
||||
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="lms", description="The scheduler to use" )
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
# fmt: on
|
||||
|
||||
|
@ -33,8 +33,8 @@ class ImageOutput(BaseInvocationOutput):
|
||||
# fmt: off
|
||||
type: Literal["image"] = "image"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: Optional[int] = Field(default=None, description="The width of the image in pixels")
|
||||
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
|
@ -17,6 +17,7 @@ from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import Post
|
||||
from ...backend.image_util.seamless import configure_model_padding
|
||||
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
import numpy as np
|
||||
from ..services.image_storage import ImageType
|
||||
@ -40,41 +41,55 @@ class LatentsField(BaseModel):
|
||||
class LatentsOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output latents"""
|
||||
#fmt: off
|
||||
type: Literal["latent_output"] = "latent_output"
|
||||
latents: LatentsField = Field(default=None, description="The output latents")
|
||||
type: Literal["latents_output"] = "latents_output"
|
||||
|
||||
# Inputs
|
||||
latents: LatentsField = Field(default=None, description="The output latents")
|
||||
width: int = Field(description="The width of the latents in pixels")
|
||||
height: int = Field(description="The height of the latents in pixels")
|
||||
#fmt: on
|
||||
|
||||
|
||||
def build_latents_output(latents_name: str, latents: torch.Tensor):
|
||||
return LatentsOutput(
|
||||
latents=LatentsField(latents_name=latents_name),
|
||||
width=latents.size()[3] * 8,
|
||||
height=latents.size()[2] * 8,
|
||||
)
|
||||
|
||||
class NoiseOutput(BaseInvocationOutput):
|
||||
"""Invocation noise output"""
|
||||
#fmt: off
|
||||
type: Literal["noise_output"] = "noise_output"
|
||||
type: Literal["noise_output"] = "noise_output"
|
||||
|
||||
# Inputs
|
||||
noise: LatentsField = Field(default=None, description="The output noise")
|
||||
width: int = Field(description="The width of the noise in pixels")
|
||||
height: int = Field(description="The height of the noise in pixels")
|
||||
#fmt: on
|
||||
|
||||
|
||||
# TODO: this seems like a hack
|
||||
scheduler_map = dict(
|
||||
ddim=diffusers.DDIMScheduler,
|
||||
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
|
||||
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
|
||||
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_euler=diffusers.EulerDiscreteScheduler,
|
||||
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
|
||||
k_heun=diffusers.HeunDiscreteScheduler,
|
||||
k_lms=diffusers.LMSDiscreteScheduler,
|
||||
plms=diffusers.PNDMScheduler,
|
||||
)
|
||||
def build_noise_output(latents_name: str, latents: torch.Tensor):
|
||||
return NoiseOutput(
|
||||
noise=LatentsField(latents_name=latents_name),
|
||||
width=latents.size()[3] * 8,
|
||||
height=latents.size()[2] * 8,
|
||||
)
|
||||
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[
|
||||
tuple(list(scheduler_map.keys()))
|
||||
tuple(list(SCHEDULER_MAP.keys()))
|
||||
]
|
||||
|
||||
|
||||
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
|
||||
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
|
||||
scheduler = scheduler_class.from_config(model.scheduler.config)
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
|
||||
|
||||
scheduler_config = model.scheduler.config
|
||||
if "_backup" in scheduler_config:
|
||||
scheduler_config = scheduler_config["_backup"]
|
||||
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
|
||||
scheduler = scheduler_class.from_config(scheduler_config)
|
||||
|
||||
# hack copied over from generate.py
|
||||
if not hasattr(scheduler, 'uses_inpainting_model'):
|
||||
scheduler.uses_inpainting_model = lambda: False
|
||||
@ -130,9 +145,7 @@ class NoiseInvocation(BaseInvocation):
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.set(name, noise)
|
||||
return NoiseOutput(
|
||||
noise=LatentsField(latents_name=name)
|
||||
)
|
||||
return build_noise_output(latents_name=name, latents=noise)
|
||||
|
||||
|
||||
# Text to image
|
||||
@ -148,7 +161,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="lms", description="The scheduler to use" )
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||
@ -216,7 +229,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
h_symmetry_time_pct=None,#h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=None#v_symmetry_time_pct,
|
||||
),
|
||||
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
|
||||
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
|
||||
return conditioning_data
|
||||
|
||||
|
||||
@ -248,9 +261,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.set(name, result_latents)
|
||||
return LatentsOutput(
|
||||
latents=LatentsField(latents_name=name)
|
||||
)
|
||||
return build_latents_output(latents_name=name, latents=result_latents)
|
||||
|
||||
|
||||
class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
@ -285,7 +296,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
model = self.get_model(context.services.model_manager)
|
||||
conditioning_data = self.get_conditioning_data(model)
|
||||
conditioning_data = self.get_conditioning_data(context, model)
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
|
||||
@ -293,11 +304,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
latent, device=model.device, dtype=latent.dtype
|
||||
)
|
||||
|
||||
timesteps, _ = model.get_img2img_timesteps(
|
||||
self.steps,
|
||||
self.strength,
|
||||
device=model.device,
|
||||
)
|
||||
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
|
||||
|
||||
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
||||
latents=initial_latents,
|
||||
@ -313,9 +320,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.set(name, result_latents)
|
||||
return LatentsOutput(
|
||||
latents=LatentsField(latents_name=name)
|
||||
)
|
||||
return build_latents_output(latents_name=name, latents=result_latents)
|
||||
|
||||
|
||||
# Latent to image
|
||||
@ -379,11 +384,11 @@ class ResizeLatentsInvocation(BaseInvocation):
|
||||
type: Literal["lresize"] = "lresize"
|
||||
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to resize")
|
||||
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
|
||||
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
|
||||
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
latents: Optional[LatentsField] = Field(description="The latents to resize")
|
||||
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
|
||||
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
|
||||
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
@ -400,7 +405,7 @@ class ResizeLatentsInvocation(BaseInvocation):
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, resized_latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||
|
||||
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
@ -409,10 +414,10 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
type: Literal["lscale"] = "lscale"
|
||||
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to scale")
|
||||
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
|
||||
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
latents: Optional[LatentsField] = Field(description="The latents to scale")
|
||||
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
|
||||
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
@ -430,7 +435,7 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, resized_latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||
|
||||
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
@ -474,4 +479,4 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
return build_latents_output(latents_name=name, latents=latents)
|
||||
|
@ -3,6 +3,7 @@
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
import numpy as np
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
|
||||
@ -73,3 +74,12 @@ class DivideInvocation(BaseInvocation, MathInvocationConfig):
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntOutput:
|
||||
return IntOutput(a=int(self.a / self.b))
|
||||
|
||||
|
||||
class RandomIntInvocation(BaseInvocation):
|
||||
"""Outputs a single random integer."""
|
||||
#fmt: off
|
||||
type: Literal["rand_int"] = "rand_int"
|
||||
#fmt: on
|
||||
def invoke(self, context: InvocationContext) -> IntOutput:
|
||||
return IntOutput(a=np.random.randint(0, np.iinfo(np.int32).max))
|
||||
|
@ -108,17 +108,20 @@ APP_VERSION = invokeai.version.__version__
|
||||
|
||||
SAMPLER_CHOICES = [
|
||||
"ddim",
|
||||
"k_dpm_2_a",
|
||||
"k_dpm_2",
|
||||
"k_dpmpp_2_a",
|
||||
"k_dpmpp_2",
|
||||
"k_euler_a",
|
||||
"k_euler",
|
||||
"k_heun",
|
||||
"k_lms",
|
||||
"plms",
|
||||
# diffusers:
|
||||
"ddpm",
|
||||
"deis",
|
||||
"lms",
|
||||
"pndm",
|
||||
"heun",
|
||||
"euler",
|
||||
"euler_k",
|
||||
"euler_a",
|
||||
"kdpm_2",
|
||||
"kdpm_2_a",
|
||||
"dpmpp_2s",
|
||||
"dpmpp_2m",
|
||||
"dpmpp_2m_k",
|
||||
"unipc",
|
||||
]
|
||||
|
||||
PRECISION_CHOICES = [
|
||||
@ -631,7 +634,7 @@ class Args(object):
|
||||
choices=SAMPLER_CHOICES,
|
||||
metavar="SAMPLER_NAME",
|
||||
help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
||||
default="k_lms",
|
||||
default="lms",
|
||||
)
|
||||
render_group.add_argument(
|
||||
"--log_tokenization",
|
||||
|
@ -37,6 +37,7 @@ from .safety_checker import SafetyChecker
|
||||
from .prompting import get_uc_and_c_and_ec
|
||||
from .prompting.conditioning import log_tokenization
|
||||
from .stable_diffusion import HuggingFaceConceptsLibrary
|
||||
from .stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from .util import choose_precision, choose_torch_device
|
||||
|
||||
def fix_func(orig):
|
||||
@ -141,7 +142,7 @@ class Generate:
|
||||
model=None,
|
||||
conf="configs/models.yaml",
|
||||
embedding_path=None,
|
||||
sampler_name="k_lms",
|
||||
sampler_name="lms",
|
||||
ddim_eta=0.0, # deterministic
|
||||
full_precision=False,
|
||||
precision="auto",
|
||||
@ -1047,29 +1048,12 @@ class Generate:
|
||||
def _set_scheduler(self):
|
||||
default = self.model.scheduler
|
||||
|
||||
# See https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
|
||||
scheduler_map = dict(
|
||||
ddim=diffusers.DDIMScheduler,
|
||||
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
|
||||
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
|
||||
# DPMSolverMultistepScheduler is technically not `k_` anything, as it is neither
|
||||
# the k-diffusers implementation nor included in EDM (Karras 2022), but we can
|
||||
# provide an alias for compatibility.
|
||||
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_euler=diffusers.EulerDiscreteScheduler,
|
||||
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
|
||||
k_heun=diffusers.HeunDiscreteScheduler,
|
||||
k_lms=diffusers.LMSDiscreteScheduler,
|
||||
plms=diffusers.PNDMScheduler,
|
||||
)
|
||||
|
||||
if self.sampler_name in scheduler_map:
|
||||
sampler_class = scheduler_map[self.sampler_name]
|
||||
if self.sampler_name in SCHEDULER_MAP:
|
||||
sampler_class, sampler_extra_config = SCHEDULER_MAP[self.sampler_name]
|
||||
msg = (
|
||||
f"Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
|
||||
)
|
||||
self.sampler = sampler_class.from_config(self.model.scheduler.config)
|
||||
self.sampler = sampler_class.from_config({**self.model.scheduler.config, **sampler_extra_config})
|
||||
else:
|
||||
msg = (
|
||||
f" Unsupported Sampler: {self.sampler_name} "+
|
||||
|
@ -31,6 +31,7 @@ from ..util.util import rand_perlin_2d
|
||||
from ..safety_checker import SafetyChecker
|
||||
from ..prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
from ..stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
|
||||
downsampling = 8
|
||||
|
||||
@ -71,19 +72,6 @@ class InvokeAIGeneratorOutput:
|
||||
# we are interposing a wrapper around the original Generator classes so that
|
||||
# old code that calls Generate will continue to work.
|
||||
class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
scheduler_map = dict(
|
||||
ddim=diffusers.DDIMScheduler,
|
||||
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
|
||||
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
|
||||
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_euler=diffusers.EulerDiscreteScheduler,
|
||||
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
|
||||
k_heun=diffusers.HeunDiscreteScheduler,
|
||||
k_lms=diffusers.LMSDiscreteScheduler,
|
||||
plms=diffusers.PNDMScheduler,
|
||||
)
|
||||
|
||||
def __init__(self,
|
||||
model_info: dict,
|
||||
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
|
||||
@ -175,14 +163,20 @@ class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
'''
|
||||
Return list of all the schedulers that we currently handle.
|
||||
'''
|
||||
return list(self.scheduler_map.keys())
|
||||
return list(SCHEDULER_MAP.keys())
|
||||
|
||||
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
|
||||
return generator_class(model, self.params.precision)
|
||||
|
||||
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
|
||||
scheduler_class = self.scheduler_map.get(scheduler_name,'ddim')
|
||||
scheduler = scheduler_class.from_config(model.scheduler.config)
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
|
||||
|
||||
scheduler_config = model.scheduler.config
|
||||
if "_backup" in scheduler_config:
|
||||
scheduler_config = scheduler_config["_backup"]
|
||||
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
|
||||
scheduler = scheduler_class.from_config(scheduler_config)
|
||||
|
||||
# hack copied over from generate.py
|
||||
if not hasattr(scheduler, 'uses_inpainting_model'):
|
||||
scheduler.uses_inpainting_model = lambda: False
|
||||
|
@ -47,6 +47,7 @@ from diffusers import (
|
||||
LDMTextToImagePipeline,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
StableDiffusionPipeline,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
@ -1209,6 +1210,8 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
||||
elif scheduler_type == "dpm":
|
||||
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
||||
elif scheduler_type == 'unipc':
|
||||
scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
|
||||
elif scheduler_type == "ddim":
|
||||
scheduler = scheduler
|
||||
else:
|
||||
|
@ -30,7 +30,7 @@ from diffusers import (
|
||||
UNet2DConditionModel,
|
||||
SchedulerMixin,
|
||||
logging as dlogging,
|
||||
)
|
||||
)
|
||||
from huggingface_hub import scan_cache_dir
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
@ -68,7 +68,7 @@ class SDModelComponent(Enum):
|
||||
scheduler="scheduler"
|
||||
safety_checker="safety_checker"
|
||||
feature_extractor="feature_extractor"
|
||||
|
||||
|
||||
DEFAULT_MAX_MODELS = 2
|
||||
|
||||
class ModelManager(object):
|
||||
@ -182,7 +182,7 @@ class ModelManager(object):
|
||||
vae from the model currently in the GPU.
|
||||
"""
|
||||
return self._get_sub_model(model_name, SDModelComponent.vae)
|
||||
|
||||
|
||||
def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer:
|
||||
"""Given a model name identified in models.yaml, load the model into
|
||||
GPU if necessary and return its assigned CLIPTokenizer. If no
|
||||
@ -190,12 +190,12 @@ class ModelManager(object):
|
||||
currently in the GPU.
|
||||
"""
|
||||
return self._get_sub_model(model_name, SDModelComponent.tokenizer)
|
||||
|
||||
|
||||
def get_model_unet(self, model_name: str=None)->UNet2DConditionModel:
|
||||
"""Given a model name identified in models.yaml, load the model into
|
||||
GPU if necessary and return its assigned UNet2DConditionModel. If no model
|
||||
name is provided, return the UNet from the model
|
||||
currently in the GPU.
|
||||
currently in the GPU.
|
||||
"""
|
||||
return self._get_sub_model(model_name, SDModelComponent.unet)
|
||||
|
||||
@ -222,7 +222,7 @@ class ModelManager(object):
|
||||
currently in the GPU.
|
||||
"""
|
||||
return self._get_sub_model(model_name, SDModelComponent.scheduler)
|
||||
|
||||
|
||||
def _get_sub_model(
|
||||
self,
|
||||
model_name: str=None,
|
||||
@ -1228,7 +1228,7 @@ class ModelManager(object):
|
||||
sha.update(chunk)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
self.logger.debug(f"sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
|
||||
self.logger.debug(f"sha256 = {hash} ({count} files hashed in {toc - tic:4.2f}s)")
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
|
@ -509,10 +509,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
run_id=None,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
|
||||
if self.scheduler.config.get("cpu_only", False):
|
||||
scheduler_device = torch.device('cpu')
|
||||
else:
|
||||
scheduler_device = self._model_group.device_for(self.unet)
|
||||
|
||||
if timesteps is None:
|
||||
self.scheduler.set_timesteps(
|
||||
num_inference_steps, device=self._model_group.device_for(self.unet)
|
||||
)
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=scheduler_device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
infer_latents_from_embeddings = GeneratorToCallbackinator(
|
||||
self.generate_latents_from_embeddings, PipelineIntermediateState
|
||||
@ -726,12 +729,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
noise: torch.Tensor,
|
||||
run_id=None,
|
||||
callback=None,
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
timesteps, _ = self.get_img2img_timesteps(
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device=self._model_group.device_for(self.unet),
|
||||
)
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength)
|
||||
result_latents, result_attention_maps = self.latents_from_embeddings(
|
||||
latents=initial_latents if strength < 1.0 else torch.zeros_like(
|
||||
initial_latents, device=initial_latents.device, dtype=initial_latents.dtype
|
||||
@ -757,13 +756,19 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
return self.check_for_safety(output, dtype=conditioning_data.dtype)
|
||||
|
||||
def get_img2img_timesteps(
|
||||
self, num_inference_steps: int, strength: float, device
|
||||
self, num_inference_steps: int, strength: float, device=None
|
||||
) -> (torch.Tensor, int):
|
||||
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
|
||||
assert img2img_pipeline.scheduler is self.scheduler
|
||||
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
|
||||
if self.scheduler.config.get("cpu_only", False):
|
||||
scheduler_device = torch.device('cpu')
|
||||
else:
|
||||
scheduler_device = self._model_group.device_for(self.unet)
|
||||
|
||||
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=scheduler_device)
|
||||
timesteps, adjusted_steps = img2img_pipeline.get_timesteps(
|
||||
num_inference_steps, strength, device=device
|
||||
num_inference_steps, strength, device=scheduler_device
|
||||
)
|
||||
# Workaround for low strength resulting in zero timesteps.
|
||||
# TODO: submit upstream fix for zero-step img2img
|
||||
@ -797,9 +802,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
if init_image.dim() == 3:
|
||||
init_image = init_image.unsqueeze(0)
|
||||
|
||||
timesteps, _ = self.get_img2img_timesteps(
|
||||
num_inference_steps, strength, device=device
|
||||
)
|
||||
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength)
|
||||
|
||||
# 6. Prepare latent variables
|
||||
# can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents
|
||||
|
1
invokeai/backend/stable_diffusion/schedulers/__init__.py
Normal file
1
invokeai/backend/stable_diffusion/schedulers/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .schedulers import SCHEDULER_MAP
|
22
invokeai/backend/stable_diffusion/schedulers/schedulers.py
Normal file
22
invokeai/backend/stable_diffusion/schedulers/schedulers.py
Normal file
@ -0,0 +1,22 @@
|
||||
from diffusers import DDIMScheduler, DPMSolverMultistepScheduler, KDPM2DiscreteScheduler, \
|
||||
KDPM2AncestralDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, \
|
||||
HeunDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, UniPCMultistepScheduler, \
|
||||
DPMSolverSinglestepScheduler, DEISMultistepScheduler, DDPMScheduler
|
||||
|
||||
SCHEDULER_MAP = dict(
|
||||
ddim=(DDIMScheduler, dict()),
|
||||
ddpm=(DDPMScheduler, dict()),
|
||||
deis=(DEISMultistepScheduler, dict()),
|
||||
lms=(LMSDiscreteScheduler, dict()),
|
||||
pndm=(PNDMScheduler, dict()),
|
||||
heun=(HeunDiscreteScheduler, dict()),
|
||||
euler=(EulerDiscreteScheduler, dict(use_karras_sigmas=False)),
|
||||
euler_k=(EulerDiscreteScheduler, dict(use_karras_sigmas=True)),
|
||||
euler_a=(EulerAncestralDiscreteScheduler, dict()),
|
||||
kdpm_2=(KDPM2DiscreteScheduler, dict()),
|
||||
kdpm_2_a=(KDPM2AncestralDiscreteScheduler, dict()),
|
||||
dpmpp_2s=(DPMSolverSinglestepScheduler, dict()),
|
||||
dpmpp_2m=(DPMSolverMultistepScheduler, dict(use_karras_sigmas=False)),
|
||||
dpmpp_2m_k=(DPMSolverMultistepScheduler, dict(use_karras_sigmas=True)),
|
||||
unipc=(UniPCMultistepScheduler, dict(cpu_only=True))
|
||||
)
|
@ -4,17 +4,20 @@ from .parse_seed_weights import parse_seed_weights
|
||||
|
||||
SAMPLER_CHOICES = [
|
||||
"ddim",
|
||||
"k_dpm_2_a",
|
||||
"k_dpm_2",
|
||||
"k_dpmpp_2_a",
|
||||
"k_dpmpp_2",
|
||||
"k_euler_a",
|
||||
"k_euler",
|
||||
"k_heun",
|
||||
"k_lms",
|
||||
"plms",
|
||||
# diffusers:
|
||||
"ddpm",
|
||||
"deis",
|
||||
"lms",
|
||||
"pndm",
|
||||
"heun",
|
||||
"euler",
|
||||
"euler_k",
|
||||
"euler_a",
|
||||
"kdpm_2",
|
||||
"kdpm_2_a",
|
||||
"dpmpp_2s",
|
||||
"dpmpp_2m",
|
||||
"dpmpp_2m_k",
|
||||
"unipc",
|
||||
]
|
||||
|
||||
|
||||
|
@ -5,6 +5,7 @@ import { PluginOption, UserConfig } from 'vite';
|
||||
import dts from 'vite-plugin-dts';
|
||||
import eslint from 'vite-plugin-eslint';
|
||||
import tsconfigPaths from 'vite-tsconfig-paths';
|
||||
import cssInjectedByJsPlugin from 'vite-plugin-css-injected-by-js';
|
||||
|
||||
export const packageConfig: UserConfig = {
|
||||
base: './',
|
||||
@ -16,9 +17,10 @@ export const packageConfig: UserConfig = {
|
||||
dts({
|
||||
insertTypesEntry: true,
|
||||
}),
|
||||
cssInjectedByJsPlugin(),
|
||||
],
|
||||
build: {
|
||||
chunkSizeWarningLimit: 1500,
|
||||
cssCodeSplit: true,
|
||||
lib: {
|
||||
entry: path.resolve(__dirname, '../src/index.ts'),
|
||||
name: 'InvokeAIUI',
|
||||
@ -30,6 +32,7 @@ export const packageConfig: UserConfig = {
|
||||
globals: {
|
||||
react: 'React',
|
||||
'react-dom': 'ReactDOM',
|
||||
'@emotion/react': 'EmotionReact',
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -37,7 +37,7 @@ From `invokeai/frontend/web/` run `yarn install` to get everything set up.
|
||||
Start everything in dev mode:
|
||||
|
||||
1. Start the dev server: `yarn dev`
|
||||
2. Start the InvokeAI UI per usual: `invokeai --web`
|
||||
2. Start the InvokeAI Nodes backend: `python scripts/invokeai-new.py --web # run from the repo root`
|
||||
3. Point your browser to the dev server address e.g. <http://localhost:5173/>
|
||||
|
||||
### Production builds
|
||||
|
@ -145,6 +145,7 @@
|
||||
"terser": "^5.17.1",
|
||||
"ts-toolbelt": "^9.6.0",
|
||||
"vite": "^4.3.3",
|
||||
"vite-plugin-css-injected-by-js": "^3.1.1",
|
||||
"vite-plugin-dts": "^2.3.0",
|
||||
"vite-plugin-eslint": "^1.8.1",
|
||||
"vite-tsconfig-paths": "^4.2.0",
|
||||
|
@ -25,7 +25,7 @@
|
||||
"common": {
|
||||
"hotkeysLabel": "Hotkeys",
|
||||
"themeLabel": "Theme",
|
||||
"languagePickerLabel": "Language Picker",
|
||||
"languagePickerLabel": "Language",
|
||||
"reportBugLabel": "Report Bug",
|
||||
"githubLabel": "Github",
|
||||
"discordLabel": "Discord",
|
||||
|
@ -7,18 +7,12 @@ import useToastWatcher from 'features/system/hooks/useToastWatcher';
|
||||
|
||||
import FloatingGalleryButton from 'features/ui/components/FloatingGalleryButton';
|
||||
import FloatingParametersPanelButtons from 'features/ui/components/FloatingParametersPanelButtons';
|
||||
import { Box, Flex, Grid, Portal, useColorMode } from '@chakra-ui/react';
|
||||
import { Box, Flex, Grid, Portal } from '@chakra-ui/react';
|
||||
import { APP_HEIGHT, APP_WIDTH } from 'theme/util/constants';
|
||||
import GalleryDrawer from 'features/gallery/components/ImageGalleryPanel';
|
||||
import Lightbox from 'features/lightbox/components/Lightbox';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
memo,
|
||||
PropsWithChildren,
|
||||
useCallback,
|
||||
useEffect,
|
||||
useState,
|
||||
} from 'react';
|
||||
import { memo, ReactNode, useCallback, useEffect, useState } from 'react';
|
||||
import { motion, AnimatePresence } from 'framer-motion';
|
||||
import Loading from 'common/components/Loading/Loading';
|
||||
import { useIsApplicationReady } from 'features/system/hooks/useIsApplicationReady';
|
||||
@ -27,21 +21,24 @@ import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { useLogger } from 'app/logging/useLogger';
|
||||
import ProgressImagePreview from 'features/parameters/components/_ProgressImagePreview';
|
||||
import ParametersDrawer from 'features/ui/components/ParametersDrawer';
|
||||
import { languageSelector } from 'features/system/store/systemSelectors';
|
||||
import i18n from 'i18n';
|
||||
|
||||
const DEFAULT_CONFIG = {};
|
||||
|
||||
interface Props extends PropsWithChildren {
|
||||
interface Props {
|
||||
config?: PartialAppConfig;
|
||||
headerComponent?: ReactNode;
|
||||
}
|
||||
|
||||
const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
|
||||
useToastWatcher();
|
||||
useGlobalHotkeys();
|
||||
const log = useLogger();
|
||||
|
||||
const currentTheme = useAppSelector((state) => state.ui.currentTheme);
|
||||
const language = useAppSelector(languageSelector);
|
||||
|
||||
const log = useLogger();
|
||||
|
||||
const isLightboxEnabled = useFeatureStatus('lightbox').isFeatureEnabled;
|
||||
|
||||
@ -49,18 +46,17 @@ const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
|
||||
const [loadingOverridden, setLoadingOverridden] = useState(false);
|
||||
|
||||
const { setColorMode } = useColorMode();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
useEffect(() => {
|
||||
i18n.changeLanguage(language);
|
||||
}, [language]);
|
||||
|
||||
useEffect(() => {
|
||||
log.info({ namespace: 'App', data: config }, 'Received config');
|
||||
dispatch(configChanged(config));
|
||||
}, [dispatch, config, log]);
|
||||
|
||||
useEffect(() => {
|
||||
setColorMode(['light'].includes(currentTheme) ? 'light' : 'dark');
|
||||
}, [setColorMode, currentTheme]);
|
||||
|
||||
const handleOverrideClicked = useCallback(() => {
|
||||
setLoadingOverridden(true);
|
||||
}, []);
|
||||
@ -77,7 +73,7 @@ const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
w={APP_WIDTH}
|
||||
h={APP_HEIGHT}
|
||||
>
|
||||
{children || <SiteHeader />}
|
||||
{headerComponent || <SiteHeader />}
|
||||
<Flex
|
||||
gap={4}
|
||||
w={{ base: '100vw', xl: 'full' }}
|
||||
|
@ -1,16 +1,13 @@
|
||||
import React, { lazy, memo, PropsWithChildren, useEffect } from 'react';
|
||||
import React, {
|
||||
lazy,
|
||||
memo,
|
||||
PropsWithChildren,
|
||||
ReactNode,
|
||||
useEffect,
|
||||
} from 'react';
|
||||
import { Provider } from 'react-redux';
|
||||
import { store } from 'app/store/store';
|
||||
import { OpenAPI } from 'services/api';
|
||||
import '@fontsource/inter/100.css';
|
||||
import '@fontsource/inter/200.css';
|
||||
import '@fontsource/inter/300.css';
|
||||
import '@fontsource/inter/400.css';
|
||||
import '@fontsource/inter/500.css';
|
||||
import '@fontsource/inter/600.css';
|
||||
import '@fontsource/inter/700.css';
|
||||
import '@fontsource/inter/800.css';
|
||||
import '@fontsource/inter/900.css';
|
||||
|
||||
import Loading from '../../common/components/Loading/Loading';
|
||||
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
|
||||
@ -26,9 +23,10 @@ interface Props extends PropsWithChildren {
|
||||
apiUrl?: string;
|
||||
token?: string;
|
||||
config?: PartialAppConfig;
|
||||
headerComponent?: ReactNode;
|
||||
}
|
||||
|
||||
const InvokeAIUI = ({ apiUrl, token, config, children }: Props) => {
|
||||
const InvokeAIUI = ({ apiUrl, token, config, headerComponent }: Props) => {
|
||||
useEffect(() => {
|
||||
// configure API client token
|
||||
if (token) {
|
||||
@ -57,7 +55,7 @@ const InvokeAIUI = ({ apiUrl, token, config, children }: Props) => {
|
||||
<Provider store={store}>
|
||||
<React.Suspense fallback={<Loading />}>
|
||||
<ThemeLocaleProvider>
|
||||
<App config={config}>{children}</App>
|
||||
<App config={config} headerComponent={headerComponent} />
|
||||
</ThemeLocaleProvider>
|
||||
</React.Suspense>
|
||||
</Provider>
|
||||
|
@ -1,4 +1,8 @@
|
||||
import { ChakraProvider, extendTheme } from '@chakra-ui/react';
|
||||
import {
|
||||
ChakraProvider,
|
||||
createLocalStorageManager,
|
||||
extendTheme,
|
||||
} from '@chakra-ui/react';
|
||||
import { ReactNode, useEffect } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { theme as invokeAITheme } from 'theme/theme';
|
||||
@ -9,15 +13,8 @@ import { greenTeaThemeColors } from 'theme/colors/greenTea';
|
||||
import { invokeAIThemeColors } from 'theme/colors/invokeAI';
|
||||
import { lightThemeColors } from 'theme/colors/lightTheme';
|
||||
import { oceanBlueColors } from 'theme/colors/oceanBlue';
|
||||
import '@fontsource/inter/100.css';
|
||||
import '@fontsource/inter/200.css';
|
||||
import '@fontsource/inter/300.css';
|
||||
import '@fontsource/inter/400.css';
|
||||
import '@fontsource/inter/500.css';
|
||||
import '@fontsource/inter/600.css';
|
||||
import '@fontsource/inter/700.css';
|
||||
import '@fontsource/inter/800.css';
|
||||
import '@fontsource/inter/900.css';
|
||||
|
||||
import '@fontsource/inter/variable.css';
|
||||
import 'overlayscrollbars/overlayscrollbars.css';
|
||||
import 'theme/css/overlayscrollbars.css';
|
||||
|
||||
@ -32,6 +29,8 @@ const THEMES = {
|
||||
ocean: oceanBlueColors,
|
||||
};
|
||||
|
||||
const manager = createLocalStorageManager('@@invokeai-color-mode');
|
||||
|
||||
function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
|
||||
const { i18n } = useTranslation();
|
||||
|
||||
@ -51,7 +50,11 @@ function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
|
||||
document.body.dir = direction;
|
||||
}, [direction]);
|
||||
|
||||
return <ChakraProvider theme={theme}>{children}</ChakraProvider>;
|
||||
return (
|
||||
<ChakraProvider theme={theme} colorModeManager={manager}>
|
||||
{children}
|
||||
</ChakraProvider>
|
||||
);
|
||||
}
|
||||
|
||||
export default ThemeLocaleProvider;
|
||||
|
@ -2,17 +2,28 @@
|
||||
|
||||
export const DIFFUSERS_SCHEDULERS: Array<string> = [
|
||||
'ddim',
|
||||
'plms',
|
||||
'k_lms',
|
||||
'dpmpp_2',
|
||||
'k_dpm_2',
|
||||
'k_dpm_2_a',
|
||||
'k_dpmpp_2',
|
||||
'k_euler',
|
||||
'k_euler_a',
|
||||
'k_heun',
|
||||
'ddpm',
|
||||
'deis',
|
||||
'lms',
|
||||
'pndm',
|
||||
'heun',
|
||||
'euler',
|
||||
'euler_k',
|
||||
'euler_a',
|
||||
'kdpm_2',
|
||||
'kdpm_2_a',
|
||||
'dpmpp_2s',
|
||||
'dpmpp_2m',
|
||||
'dpmpp_2m_k',
|
||||
'unipc',
|
||||
];
|
||||
|
||||
export const IMG2IMG_DIFFUSERS_SCHEDULERS = DIFFUSERS_SCHEDULERS.filter(
|
||||
(scheduler) => {
|
||||
return scheduler !== 'dpmpp_2s';
|
||||
}
|
||||
);
|
||||
|
||||
// Valid image widths
|
||||
export const WIDTHS: Array<number> = Array.from(Array(64)).map(
|
||||
(_x, i) => (i + 1) * 64
|
||||
|
@ -6,9 +6,12 @@ import { imageUploaded } from 'services/thunks/image';
|
||||
|
||||
export const addImageUploadedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: imageUploaded.fulfilled,
|
||||
predicate: (action): action is ReturnType<typeof imageUploaded.fulfilled> =>
|
||||
imageUploaded.fulfilled.match(action) &&
|
||||
action.payload.response.image_type !== 'intermediates',
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { response } = action.payload;
|
||||
|
||||
const state = getState();
|
||||
const image = deserializeImageResponse(response);
|
||||
|
||||
|
@ -47,15 +47,20 @@ export type CommonGeneratedImageMetadata = {
|
||||
postprocessing: null | Array<ESRGANMetadata | FacetoolMetadata>;
|
||||
sampler:
|
||||
| 'ddim'
|
||||
| 'k_dpm_2_a'
|
||||
| 'k_dpm_2'
|
||||
| 'k_dpmpp_2_a'
|
||||
| 'k_dpmpp_2'
|
||||
| 'k_euler_a'
|
||||
| 'k_euler'
|
||||
| 'k_heun'
|
||||
| 'k_lms'
|
||||
| 'plms';
|
||||
| 'ddpm'
|
||||
| 'deis'
|
||||
| 'lms'
|
||||
| 'pndm'
|
||||
| 'heun'
|
||||
| 'euler'
|
||||
| 'euler_k'
|
||||
| 'euler_a'
|
||||
| 'kdpm_2'
|
||||
| 'kdpm_2_a'
|
||||
| 'dpmpp_2s'
|
||||
| 'dpmpp_2m'
|
||||
| 'dpmpp_2m_k'
|
||||
| 'unipc';
|
||||
prompt: Prompt;
|
||||
seed: number;
|
||||
variations: SeedWeights;
|
||||
@ -321,11 +326,11 @@ export type AppFeature =
|
||||
/**
|
||||
* A disable-able Stable Diffusion feature
|
||||
*/
|
||||
export type StableDiffusionFeature =
|
||||
| 'noiseConfig'
|
||||
| 'variations'
|
||||
export type SDFeature =
|
||||
| 'noise'
|
||||
| 'variation'
|
||||
| 'symmetry'
|
||||
| 'tiling'
|
||||
| 'seamless'
|
||||
| 'hires';
|
||||
|
||||
/**
|
||||
@ -343,6 +348,7 @@ export type AppConfig = {
|
||||
shouldFetchImages: boolean;
|
||||
disabledTabs: InvokeTabName[];
|
||||
disabledFeatures: AppFeature[];
|
||||
disabledSDFeatures: SDFeature[];
|
||||
canRestoreDeletedImagesFromBin: boolean;
|
||||
sd: {
|
||||
iterations: {
|
||||
|
@ -0,0 +1,54 @@
|
||||
import { Badge, Flex } from '@chakra-ui/react';
|
||||
import { Image } from 'app/types/invokeai';
|
||||
import { isNumber, isString } from 'lodash-es';
|
||||
import { useMemo } from 'react';
|
||||
|
||||
type ImageMetadataOverlayProps = {
|
||||
image: Image;
|
||||
};
|
||||
|
||||
const ImageMetadataOverlay = ({ image }: ImageMetadataOverlayProps) => {
|
||||
const dimensions = useMemo(() => {
|
||||
if (!isNumber(image.metadata?.width) || isNumber(!image.metadata?.height)) {
|
||||
return;
|
||||
}
|
||||
|
||||
return `${image.metadata?.width} × ${image.metadata?.height}`;
|
||||
}, [image.metadata]);
|
||||
|
||||
const model = useMemo(() => {
|
||||
if (!isString(image.metadata?.invokeai?.node?.model)) {
|
||||
return;
|
||||
}
|
||||
|
||||
return image.metadata?.invokeai?.node?.model;
|
||||
}, [image.metadata]);
|
||||
|
||||
return (
|
||||
<Flex
|
||||
sx={{
|
||||
pointerEvents: 'none',
|
||||
flexDirection: 'column',
|
||||
position: 'absolute',
|
||||
top: 0,
|
||||
right: 0,
|
||||
p: 2,
|
||||
alignItems: 'flex-end',
|
||||
gap: 2,
|
||||
}}
|
||||
>
|
||||
{dimensions && (
|
||||
<Badge variant="solid" colorScheme="base">
|
||||
{dimensions}
|
||||
</Badge>
|
||||
)}
|
||||
{model && (
|
||||
<Badge variant="solid" colorScheme="base">
|
||||
{model}
|
||||
</Badge>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default ImageMetadataOverlay;
|
@ -1,37 +0,0 @@
|
||||
import { Badge, Box, Flex } from '@chakra-ui/react';
|
||||
import { Image } from 'app/types/invokeai';
|
||||
|
||||
type ImageToImageOverlayProps = {
|
||||
image: Image;
|
||||
};
|
||||
|
||||
const ImageToImageOverlay = ({ image }: ImageToImageOverlayProps) => {
|
||||
return (
|
||||
<Box
|
||||
sx={{
|
||||
top: 0,
|
||||
left: 0,
|
||||
w: 'full',
|
||||
h: 'full',
|
||||
position: 'absolute',
|
||||
pointerEvents: 'none',
|
||||
}}
|
||||
>
|
||||
<Flex
|
||||
sx={{
|
||||
position: 'absolute',
|
||||
top: 0,
|
||||
right: 0,
|
||||
p: 2,
|
||||
alignItems: 'flex-start',
|
||||
}}
|
||||
>
|
||||
<Badge variant="solid" colorScheme="base">
|
||||
{image.metadata?.width} × {image.metadata?.height}
|
||||
</Badge>
|
||||
</Flex>
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default ImageToImageOverlay;
|
@ -152,6 +152,7 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
} = useAppSelector(currentImageButtonsSelector);
|
||||
|
||||
const isLightboxEnabled = useFeatureStatus('lightbox').isFeatureEnabled;
|
||||
const isCanvasEnabled = useFeatureStatus('unifiedCanvas').isFeatureEnabled;
|
||||
const isUpscalingEnabled = useFeatureStatus('upscaling').isFeatureEnabled;
|
||||
const isFaceRestoreEnabled = useFeatureStatus('faceRestore').isFeatureEnabled;
|
||||
|
||||
@ -429,13 +430,15 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
>
|
||||
{t('parameters.sendToImg2Img')}
|
||||
</IAIButton>
|
||||
<IAIButton
|
||||
size="sm"
|
||||
onClick={handleSendToCanvas}
|
||||
leftIcon={<FaShare />}
|
||||
>
|
||||
{t('parameters.sendToUnifiedCanvas')}
|
||||
</IAIButton>
|
||||
{isCanvasEnabled && (
|
||||
<IAIButton
|
||||
size="sm"
|
||||
onClick={handleSendToCanvas}
|
||||
leftIcon={<FaShare />}
|
||||
>
|
||||
{t('parameters.sendToUnifiedCanvas')}
|
||||
</IAIButton>
|
||||
)}
|
||||
|
||||
{/* <IAIButton
|
||||
size="sm"
|
||||
|
@ -1,4 +1,4 @@
|
||||
import { Box, Flex, Image, Skeleton, useBoolean } from '@chakra-ui/react';
|
||||
import { Box, Flex, Image } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGetUrl } from 'common/util/getUrl';
|
||||
@ -11,7 +11,8 @@ import NextPrevImageButtons from './NextPrevImageButtons';
|
||||
import CurrentImageHidden from './CurrentImageHidden';
|
||||
import { DragEvent, memo, useCallback } from 'react';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import CurrentImageFallback from './CurrentImageFallback';
|
||||
import ImageFallbackSpinner from './ImageFallbackSpinner';
|
||||
import ImageMetadataOverlay from 'common/components/ImageMetadataOverlay';
|
||||
|
||||
export const imagesSelector = createSelector(
|
||||
[uiSelector, gallerySelector, systemSelector],
|
||||
@ -50,8 +51,6 @@ const CurrentImagePreview = () => {
|
||||
} = useAppSelector(imagesSelector);
|
||||
const { getUrl } = useGetUrl();
|
||||
|
||||
const [isLoaded, { on, off }] = useBoolean();
|
||||
|
||||
const handleDragStart = useCallback(
|
||||
(e: DragEvent<HTMLDivElement>) => {
|
||||
if (!image) {
|
||||
@ -67,11 +66,11 @@ const CurrentImagePreview = () => {
|
||||
return (
|
||||
<Flex
|
||||
sx={{
|
||||
position: 'relative',
|
||||
justifyContent: 'center',
|
||||
alignItems: 'center',
|
||||
width: '100%',
|
||||
height: '100%',
|
||||
position: 'relative',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'center',
|
||||
}}
|
||||
>
|
||||
{progressImage && shouldShowProgressInViewer ? (
|
||||
@ -91,28 +90,23 @@ const CurrentImagePreview = () => {
|
||||
/>
|
||||
) : (
|
||||
image && (
|
||||
<Image
|
||||
onDragStart={handleDragStart}
|
||||
fallbackStrategy="beforeLoadOrError"
|
||||
src={shouldHidePreview ? undefined : getUrl(image.url)}
|
||||
width={image.metadata.width || 'auto'}
|
||||
height={image.metadata.height || 'auto'}
|
||||
fallback={
|
||||
shouldHidePreview ? (
|
||||
<CurrentImageHidden />
|
||||
) : (
|
||||
<CurrentImageFallback />
|
||||
)
|
||||
}
|
||||
sx={{
|
||||
objectFit: 'contain',
|
||||
maxWidth: '100%',
|
||||
maxHeight: '100%',
|
||||
height: 'auto',
|
||||
position: 'absolute',
|
||||
borderRadius: 'base',
|
||||
}}
|
||||
/>
|
||||
<>
|
||||
<Image
|
||||
src={getUrl(image.url)}
|
||||
fallbackStrategy="beforeLoadOrError"
|
||||
fallback={<ImageFallbackSpinner />}
|
||||
onDragStart={handleDragStart}
|
||||
sx={{
|
||||
objectFit: 'contain',
|
||||
maxWidth: '100%',
|
||||
maxHeight: '100%',
|
||||
height: 'auto',
|
||||
position: 'absolute',
|
||||
borderRadius: 'base',
|
||||
}}
|
||||
/>
|
||||
<ImageMetadataOverlay image={image} />
|
||||
</>
|
||||
)
|
||||
)}
|
||||
{shouldShowImageDetails && image && 'metadata' in image && (
|
||||
|
@ -1,4 +1,4 @@
|
||||
import { Box, Flex, Image } from '@chakra-ui/react';
|
||||
import { Flex, Image, Spinner } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
@ -42,6 +42,7 @@ const GalleryProgressImage = () => {
|
||||
alignItems: 'center',
|
||||
justifyContent: 'center',
|
||||
aspectRatio: '1/1',
|
||||
position: 'relative',
|
||||
}}
|
||||
>
|
||||
<Image
|
||||
@ -61,6 +62,7 @@ const GalleryProgressImage = () => {
|
||||
imageRendering: shouldAntialiasProgressImage ? 'auto' : 'pixelated',
|
||||
}}
|
||||
/>
|
||||
<Spinner sx={{ position: 'absolute', top: 1, right: 1, opacity: 0.7 }} />
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -104,7 +104,10 @@ const HoverableImage = memo((props: HoverableImageProps) => {
|
||||
const toast = useToast();
|
||||
|
||||
const { t } = useTranslation();
|
||||
const { isFeatureEnabled: isLightboxEnabled } = useFeatureStatus('lightbox');
|
||||
|
||||
const isLightboxEnabled = useFeatureStatus('lightbox').isFeatureEnabled;
|
||||
const isCanvasEnabled = useFeatureStatus('unifiedCanvas').isFeatureEnabled;
|
||||
|
||||
const { recallSeed, recallPrompt, recallInitialImage, recallAllParameters } =
|
||||
useParameters();
|
||||
|
||||
@ -250,9 +253,11 @@ const HoverableImage = memo((props: HoverableImageProps) => {
|
||||
>
|
||||
{t('parameters.sendToImg2Img')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<FaShare />} onClickCapture={handleSendToCanvas}>
|
||||
{t('parameters.sendToUnifiedCanvas')}
|
||||
</MenuItem>
|
||||
{isCanvasEnabled && (
|
||||
<MenuItem icon={<FaShare />} onClickCapture={handleSendToCanvas}>
|
||||
{t('parameters.sendToUnifiedCanvas')}
|
||||
</MenuItem>
|
||||
)}
|
||||
<MenuItem icon={<FaTrash />} onClickCapture={onDeleteDialogOpen}>
|
||||
{t('gallery.deleteImage')}
|
||||
</MenuItem>
|
||||
@ -278,6 +283,7 @@ const HoverableImage = memo((props: HoverableImageProps) => {
|
||||
h: 'full',
|
||||
transition: 'transform 0.2s ease-out',
|
||||
aspectRatio: '1/1',
|
||||
cursor: 'pointer',
|
||||
}}
|
||||
>
|
||||
<Image
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { Flex, Spinner, SpinnerProps } from '@chakra-ui/react';
|
||||
|
||||
type CurrentImageFallbackProps = SpinnerProps;
|
||||
type ImageFallbackSpinnerProps = SpinnerProps;
|
||||
|
||||
const CurrentImageFallback = (props: CurrentImageFallbackProps) => {
|
||||
const ImageFallbackSpinner = (props: ImageFallbackSpinnerProps) => {
|
||||
const { size = 'xl', ...rest } = props;
|
||||
|
||||
return (
|
||||
@ -21,4 +21,4 @@ const CurrentImageFallback = (props: CurrentImageFallbackProps) => {
|
||||
);
|
||||
};
|
||||
|
||||
export default CurrentImageFallback;
|
||||
export default ImageFallbackSpinner;
|
@ -54,11 +54,7 @@ import { uploadsAdapter } from '../store/uploadsSlice';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { Virtuoso, VirtuosoGrid } from 'react-virtuoso';
|
||||
import ProgressImagePreview from 'features/parameters/components/_ProgressImagePreview';
|
||||
import ProgressImage from 'features/parameters/components/ProgressImage';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { Image as ImageType } from 'app/types/invokeai';
|
||||
import { ProgressImage as ProgressImageType } from 'services/events/types';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import GalleryProgressImage from './GalleryProgressImage';
|
||||
|
||||
@ -71,13 +67,13 @@ const selector = createSelector(
|
||||
const { results, uploads, system, gallery } = state;
|
||||
const { currentCategory } = gallery;
|
||||
|
||||
const tempImages: (ImageType | typeof PROGRESS_IMAGE_PLACEHOLDER)[] = [];
|
||||
|
||||
if (system.progressImage) {
|
||||
tempImages.push(PROGRESS_IMAGE_PLACEHOLDER);
|
||||
}
|
||||
|
||||
if (currentCategory === 'results') {
|
||||
const tempImages: (ImageType | typeof PROGRESS_IMAGE_PLACEHOLDER)[] = [];
|
||||
|
||||
if (system.progressImage) {
|
||||
tempImages.push(PROGRESS_IMAGE_PLACEHOLDER);
|
||||
}
|
||||
|
||||
return {
|
||||
images: tempImages.concat(
|
||||
resultsAdapter.getSelectors().selectAll(results)
|
||||
@ -88,9 +84,7 @@ const selector = createSelector(
|
||||
}
|
||||
|
||||
return {
|
||||
images: tempImages.concat(
|
||||
uploadsAdapter.getSelectors().selectAll(uploads)
|
||||
),
|
||||
images: uploadsAdapter.getSelectors().selectAll(uploads),
|
||||
isLoading: uploads.isLoading,
|
||||
areMoreImagesAvailable: uploads.page < uploads.pages - 1,
|
||||
};
|
||||
|
@ -1,6 +1,7 @@
|
||||
import type { PayloadAction } from '@reduxjs/toolkit';
|
||||
import { createSlice } from '@reduxjs/toolkit';
|
||||
import { Image } from 'app/types/invokeai';
|
||||
import { imageReceived, thumbnailReceived } from 'services/thunks/image';
|
||||
|
||||
type GalleryImageObjectFitType = 'contain' | 'cover';
|
||||
|
||||
@ -63,6 +64,29 @@ export const gallerySlice = createSlice({
|
||||
state.shouldUseSingleGalleryColumn = action.payload;
|
||||
},
|
||||
},
|
||||
extraReducers(builder) {
|
||||
builder.addCase(imageReceived.fulfilled, (state, action) => {
|
||||
// When we get an updated URL for an image, we need to update the selectedImage in gallery,
|
||||
// which is currently its own object (instead of a reference to an image in results/uploads)
|
||||
const { imagePath } = action.payload;
|
||||
const { imageName } = action.meta.arg;
|
||||
|
||||
if (state.selectedImage?.name === imageName) {
|
||||
state.selectedImage.url = imagePath;
|
||||
}
|
||||
});
|
||||
|
||||
builder.addCase(thumbnailReceived.fulfilled, (state, action) => {
|
||||
// When we get an updated URL for an image, we need to update the selectedImage in gallery,
|
||||
// which is currently its own object (instead of a reference to an image in results/uploads)
|
||||
const { thumbnailPath } = action.payload;
|
||||
const { thumbnailName } = action.meta.arg;
|
||||
|
||||
if (state.selectedImage?.name === thumbnailName) {
|
||||
state.selectedImage.thumbnail = thumbnailPath;
|
||||
}
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
export const {
|
||||
|
@ -20,7 +20,7 @@ export const iterationGraph = {
|
||||
model: '',
|
||||
progress_images: false,
|
||||
prompt: 'dog',
|
||||
sampler_name: 'k_lms',
|
||||
sampler_name: 'lms',
|
||||
seamless: false,
|
||||
steps: 11,
|
||||
type: 'txt2img',
|
||||
|
@ -1,8 +1,12 @@
|
||||
import { DIFFUSERS_SCHEDULERS } from 'app/constants';
|
||||
import {
|
||||
DIFFUSERS_SCHEDULERS,
|
||||
IMG2IMG_DIFFUSERS_SCHEDULERS,
|
||||
} from 'app/constants';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import { setSampler } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { ChangeEvent, memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@ -10,6 +14,9 @@ const ParamSampler = () => {
|
||||
const sampler = useAppSelector(
|
||||
(state: RootState) => state.generation.sampler
|
||||
);
|
||||
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
@ -23,7 +30,11 @@ const ParamSampler = () => {
|
||||
label={t('parameters.sampler')}
|
||||
value={sampler}
|
||||
onChange={handleChange}
|
||||
validValues={DIFFUSERS_SCHEDULERS}
|
||||
validValues={
|
||||
activeTabName === 'img2img' || activeTabName == 'unifiedCanvas'
|
||||
? IMG2IMG_DIFFUSERS_SCHEDULERS
|
||||
: DIFFUSERS_SCHEDULERS
|
||||
}
|
||||
minWidth={36}
|
||||
/>
|
||||
);
|
||||
|
@ -6,6 +6,7 @@ import IAICollapse from 'common/components/IAICollapse';
|
||||
import { memo } from 'react';
|
||||
import { ParamHiresStrength } from './ParamHiresStrength';
|
||||
import { setHiresFix } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
|
||||
const ParamHiresCollapse = () => {
|
||||
const { t } = useTranslation();
|
||||
@ -13,10 +14,16 @@ const ParamHiresCollapse = () => {
|
||||
(state: RootState) => state.postprocessing.hiresFix
|
||||
);
|
||||
|
||||
const isHiresEnabled = useFeatureStatus('hires').isFeatureEnabled;
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleToggle = () => dispatch(setHiresFix(!hiresFix));
|
||||
|
||||
if (!isHiresEnabled) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<IAICollapse
|
||||
label={t('parameters.hiresOptim')}
|
||||
|
@ -47,7 +47,7 @@ const ImageToImageStrength = () => {
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={`${t('parameters.strength')}`}
|
||||
label={`${t('parameters.denoisingStrength')}`}
|
||||
step={step}
|
||||
min={min}
|
||||
max={sliderMax}
|
||||
|
@ -1,17 +1,18 @@
|
||||
import { Flex, Image, Spinner } from '@chakra-ui/react';
|
||||
import { Flex, Image } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import SelectImagePlaceholder from 'common/components/SelectImagePlaceholder';
|
||||
import { useGetUrl } from 'common/util/getUrl';
|
||||
import { clearInitialImage } from 'features/parameters/store/generationSlice';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { DragEvent, useCallback, useState } from 'react';
|
||||
import { DragEvent, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { ImageType } from 'services/api';
|
||||
import ImageToImageOverlay from 'common/components/ImageToImageOverlay';
|
||||
import ImageMetadataOverlay from 'common/components/ImageMetadataOverlay';
|
||||
import { generationSelector } from 'features/parameters/store/generationSelectors';
|
||||
import { initialImageSelected } from 'features/parameters/store/actions';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import ImageFallbackSpinner from 'features/gallery/components/ImageFallbackSpinner';
|
||||
|
||||
const selector = createSelector(
|
||||
[generationSelector],
|
||||
@ -30,8 +31,6 @@ const InitialImagePreview = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const [isLoaded, setIsLoaded] = useState(false);
|
||||
|
||||
const onError = () => {
|
||||
dispatch(
|
||||
addToast({
|
||||
@ -42,13 +41,10 @@ const InitialImagePreview = () => {
|
||||
})
|
||||
);
|
||||
dispatch(clearInitialImage());
|
||||
setIsLoaded(false);
|
||||
};
|
||||
|
||||
const handleDrop = useCallback(
|
||||
(e: DragEvent<HTMLDivElement>) => {
|
||||
setIsLoaded(false);
|
||||
|
||||
const name = e.dataTransfer.getData('invokeai/imageName');
|
||||
const type = e.dataTransfer.getData('invokeai/imageType') as ImageType;
|
||||
|
||||
@ -62,48 +58,32 @@ const InitialImagePreview = () => {
|
||||
sx={{
|
||||
width: 'full',
|
||||
height: 'full',
|
||||
position: 'relative',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'center',
|
||||
position: 'relative',
|
||||
}}
|
||||
onDrop={handleDrop}
|
||||
>
|
||||
<Flex
|
||||
sx={{
|
||||
height: 'full',
|
||||
width: 'full',
|
||||
blur: '5px',
|
||||
position: 'relative',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'center',
|
||||
}}
|
||||
>
|
||||
{initialImage?.url && (
|
||||
<>
|
||||
<Image
|
||||
sx={{
|
||||
objectFit: 'contain',
|
||||
borderRadius: 'base',
|
||||
maxHeight: 'full',
|
||||
}}
|
||||
src={getUrl(initialImage?.url)}
|
||||
onError={onError}
|
||||
onLoad={() => {
|
||||
setIsLoaded(true);
|
||||
}}
|
||||
fallback={
|
||||
<Flex
|
||||
sx={{ h: 36, alignItems: 'center', justifyContent: 'center' }}
|
||||
>
|
||||
<Spinner color="grey" w="5rem" h="5rem" />
|
||||
</Flex>
|
||||
}
|
||||
/>
|
||||
{isLoaded && <ImageToImageOverlay image={initialImage} />}
|
||||
</>
|
||||
)}
|
||||
{!initialImage?.url && <SelectImagePlaceholder />}
|
||||
</Flex>
|
||||
{initialImage?.url && (
|
||||
<>
|
||||
<Image
|
||||
src={getUrl(initialImage?.url)}
|
||||
fallbackStrategy="beforeLoadOrError"
|
||||
fallback={<ImageFallbackSpinner />}
|
||||
onError={onError}
|
||||
sx={{
|
||||
objectFit: 'contain',
|
||||
maxWidth: '100%',
|
||||
maxHeight: '100%',
|
||||
height: 'auto',
|
||||
position: 'absolute',
|
||||
borderRadius: 'base',
|
||||
}}
|
||||
/>
|
||||
<ImageMetadataOverlay image={initialImage} />
|
||||
</>
|
||||
)}
|
||||
{!initialImage?.url && <SelectImagePlaceholder />}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -7,9 +7,13 @@ import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { setShouldUseNoiseSettings } from 'features/parameters/store/generationSlice';
|
||||
import { memo } from 'react';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
|
||||
const ParamNoiseCollapse = () => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const isNoiseEnabled = useFeatureStatus('noise').isFeatureEnabled;
|
||||
|
||||
const shouldUseNoiseSettings = useAppSelector(
|
||||
(state: RootState) => state.generation.shouldUseNoiseSettings
|
||||
);
|
||||
@ -19,6 +23,10 @@ const ParamNoiseCollapse = () => {
|
||||
const handleToggle = () =>
|
||||
dispatch(setShouldUseNoiseSettings(!shouldUseNoiseSettings));
|
||||
|
||||
if (!isNoiseEnabled) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<IAICollapse
|
||||
label={t('parameters.noiseSettings')}
|
||||
|
@ -9,6 +9,7 @@ import { generationSelector } from 'features/parameters/store/generationSelector
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import ParamSeamlessXAxis from './ParamSeamlessXAxis';
|
||||
import ParamSeamlessYAxis from './ParamSeamlessYAxis';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
|
||||
const selector = createSelector(
|
||||
generationSelector,
|
||||
@ -24,10 +25,16 @@ const ParamSeamlessCollapse = () => {
|
||||
const { t } = useTranslation();
|
||||
const { shouldUseSeamless } = useAppSelector(selector);
|
||||
|
||||
const isSeamlessEnabled = useFeatureStatus('seamless').isFeatureEnabled;
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleToggle = () => dispatch(setSeamless(!shouldUseSeamless));
|
||||
|
||||
if (!isSeamlessEnabled) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<IAICollapse
|
||||
label={t('parameters.seamlessTiling')}
|
||||
|
@ -8,6 +8,7 @@ import IAICollapse from 'common/components/IAICollapse';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { setShouldUseSymmetry } from 'features/parameters/store/generationSlice';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
|
||||
const ParamSymmetryCollapse = () => {
|
||||
const { t } = useTranslation();
|
||||
@ -15,10 +16,16 @@ const ParamSymmetryCollapse = () => {
|
||||
(state: RootState) => state.generation.shouldUseSymmetry
|
||||
);
|
||||
|
||||
const isSymmetryEnabled = useFeatureStatus('symmetry').isFeatureEnabled;
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleToggle = () => dispatch(setShouldUseSymmetry(!shouldUseSymmetry));
|
||||
|
||||
if (!isSymmetryEnabled) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<IAICollapse
|
||||
label={t('parameters.symmetry')}
|
||||
|
@ -7,6 +7,7 @@ import { setShouldGenerateVariations } from 'features/parameters/store/generatio
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import IAICollapse from 'common/components/IAICollapse';
|
||||
import { memo } from 'react';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
|
||||
const ParamVariationCollapse = () => {
|
||||
const { t } = useTranslation();
|
||||
@ -14,11 +15,17 @@ const ParamVariationCollapse = () => {
|
||||
(state: RootState) => state.generation.shouldGenerateVariations
|
||||
);
|
||||
|
||||
const isVariationEnabled = useFeatureStatus('variation').isFeatureEnabled;
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleToggle = () =>
|
||||
dispatch(setShouldGenerateVariations(!shouldGenerateVariations));
|
||||
|
||||
if (!isVariationEnabled) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<IAICollapse
|
||||
label={t('parameters.variations')}
|
||||
|
@ -51,7 +51,7 @@ export const initialGenerationState: GenerationState = {
|
||||
perlin: 0,
|
||||
prompt: '',
|
||||
negativePrompt: '',
|
||||
sampler: 'k_lms',
|
||||
sampler: 'lms',
|
||||
seamBlur: 16,
|
||||
seamSize: 96,
|
||||
seamSteps: 30,
|
||||
|
@ -1,73 +1,69 @@
|
||||
import type { ReactNode } from 'react';
|
||||
|
||||
import { VStack } from '@chakra-ui/react';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAIPopover from 'common/components/IAIPopover';
|
||||
import {
|
||||
IconButton,
|
||||
Menu,
|
||||
MenuButton,
|
||||
MenuItemOption,
|
||||
MenuList,
|
||||
MenuOptionGroup,
|
||||
Tooltip,
|
||||
} from '@chakra-ui/react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { FaCheck, FaLanguage } from 'react-icons/fa';
|
||||
import i18n from 'i18n';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { languageSelector } from '../store/systemSelectors';
|
||||
import { languageChanged } from '../store/systemSlice';
|
||||
import { map } from 'lodash-es';
|
||||
import { IoLanguage } from 'react-icons/io5';
|
||||
|
||||
export const LANGUAGES = {
|
||||
ar: i18n.t('common.langArabic', { lng: 'ar' }),
|
||||
nl: i18n.t('common.langDutch', { lng: 'nl' }),
|
||||
en: i18n.t('common.langEnglish', { lng: 'en' }),
|
||||
fr: i18n.t('common.langFrench', { lng: 'fr' }),
|
||||
de: i18n.t('common.langGerman', { lng: 'de' }),
|
||||
he: i18n.t('common.langHebrew', { lng: 'he' }),
|
||||
it: i18n.t('common.langItalian', { lng: 'it' }),
|
||||
ja: i18n.t('common.langJapanese', { lng: 'ja' }),
|
||||
ko: i18n.t('common.langKorean', { lng: 'ko' }),
|
||||
pl: i18n.t('common.langPolish', { lng: 'pl' }),
|
||||
pt_BR: i18n.t('common.langBrPortuguese', { lng: 'pt_BR' }),
|
||||
pt: i18n.t('common.langPortuguese', { lng: 'pt' }),
|
||||
ru: i18n.t('common.langRussian', { lng: 'ru' }),
|
||||
zh_CN: i18n.t('common.langSimplifiedChinese', { lng: 'zh_CN' }),
|
||||
es: i18n.t('common.langSpanish', { lng: 'es' }),
|
||||
uk: i18n.t('common.langUkranian', { lng: 'ua' }),
|
||||
};
|
||||
|
||||
export default function LanguagePicker() {
|
||||
const { t, i18n } = useTranslation();
|
||||
const LANGUAGES = {
|
||||
ar: t('common.langArabic', { lng: 'ar' }),
|
||||
nl: t('common.langDutch', { lng: 'nl' }),
|
||||
en: t('common.langEnglish', { lng: 'en' }),
|
||||
fr: t('common.langFrench', { lng: 'fr' }),
|
||||
de: t('common.langGerman', { lng: 'de' }),
|
||||
he: t('common.langHebrew', { lng: 'he' }),
|
||||
it: t('common.langItalian', { lng: 'it' }),
|
||||
ja: t('common.langJapanese', { lng: 'ja' }),
|
||||
ko: t('common.langKorean', { lng: 'ko' }),
|
||||
pl: t('common.langPolish', { lng: 'pl' }),
|
||||
pt_BR: t('common.langBrPortuguese', { lng: 'pt_BR' }),
|
||||
pt: t('common.langPortuguese', { lng: 'pt' }),
|
||||
ru: t('common.langRussian', { lng: 'ru' }),
|
||||
zh_CN: t('common.langSimplifiedChinese', { lng: 'zh_CN' }),
|
||||
es: t('common.langSpanish', { lng: 'es' }),
|
||||
uk: t('common.langUkranian', { lng: 'ua' }),
|
||||
};
|
||||
|
||||
const renderLanguagePicker = () => {
|
||||
const languagesToRender: ReactNode[] = [];
|
||||
Object.keys(LANGUAGES).forEach((lang) => {
|
||||
languagesToRender.push(
|
||||
<IAIButton
|
||||
key={lang}
|
||||
isChecked={localStorage.getItem('i18nextLng') === lang}
|
||||
leftIcon={
|
||||
localStorage.getItem('i18nextLng') === lang ? (
|
||||
<FaCheck />
|
||||
) : undefined
|
||||
}
|
||||
onClick={() => i18n.changeLanguage(lang)}
|
||||
aria-label={LANGUAGES[lang as keyof typeof LANGUAGES]}
|
||||
size="sm"
|
||||
minWidth="200px"
|
||||
>
|
||||
{LANGUAGES[lang as keyof typeof LANGUAGES]}
|
||||
</IAIButton>
|
||||
);
|
||||
});
|
||||
|
||||
return languagesToRender;
|
||||
};
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const language = useAppSelector(languageSelector);
|
||||
|
||||
return (
|
||||
<IAIPopover
|
||||
triggerComponent={
|
||||
<IAIIconButton
|
||||
aria-label={t('common.languagePickerLabel')}
|
||||
tooltip={t('common.languagePickerLabel')}
|
||||
icon={<FaLanguage />}
|
||||
size="sm"
|
||||
<Menu closeOnSelect={false}>
|
||||
<Tooltip label={t('common.languagePickerLabel')} hasArrow>
|
||||
<MenuButton
|
||||
as={IconButton}
|
||||
icon={<IoLanguage />}
|
||||
variant="link"
|
||||
data-variant="link"
|
||||
fontSize={26}
|
||||
aria-label={t('common.languagePickerLabel')}
|
||||
fontSize={22}
|
||||
minWidth={8}
|
||||
/>
|
||||
}
|
||||
>
|
||||
<VStack>{renderLanguagePicker()}</VStack>
|
||||
</IAIPopover>
|
||||
</Tooltip>
|
||||
<MenuList>
|
||||
<MenuOptionGroup value={language}>
|
||||
{map(LANGUAGES, (languageName, l: keyof typeof LANGUAGES) => (
|
||||
<MenuItemOption
|
||||
key={l}
|
||||
value={l}
|
||||
onClick={() => dispatch(languageChanged(l))}
|
||||
>
|
||||
{languageName}
|
||||
</MenuItemOption>
|
||||
))}
|
||||
</MenuOptionGroup>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
);
|
||||
}
|
||||
|
@ -36,7 +36,6 @@ const ProgressBar = () => {
|
||||
aria-label={t('accessibility.invokeProgressBar')}
|
||||
isIndeterminate={isProcessing && !currentStatusHasSteps}
|
||||
height={PROGRESS_BAR_THICKNESS}
|
||||
zIndex={99}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
@ -1,13 +1,26 @@
|
||||
import { VStack } from '@chakra-ui/react';
|
||||
import {
|
||||
IconButton,
|
||||
Menu,
|
||||
MenuButton,
|
||||
MenuItemOption,
|
||||
MenuList,
|
||||
MenuOptionGroup,
|
||||
Tooltip,
|
||||
} from '@chakra-ui/react';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAIPopover from 'common/components/IAIPopover';
|
||||
import { setCurrentTheme } from 'features/ui/store/uiSlice';
|
||||
import type { ReactNode } from 'react';
|
||||
import i18n from 'i18n';
|
||||
import { map } from 'lodash-es';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { FaCheck, FaPalette } from 'react-icons/fa';
|
||||
import { FaPalette } from 'react-icons/fa';
|
||||
|
||||
export const THEMES = {
|
||||
dark: i18n.t('common.darkTheme'),
|
||||
light: i18n.t('common.lightTheme'),
|
||||
green: i18n.t('common.greenTheme'),
|
||||
ocean: i18n.t('common.oceanTheme'),
|
||||
};
|
||||
|
||||
export default function ThemeChanger() {
|
||||
const { t } = useTranslation();
|
||||
@ -17,51 +30,31 @@ export default function ThemeChanger() {
|
||||
(state: RootState) => state.ui.currentTheme
|
||||
);
|
||||
|
||||
const THEMES = {
|
||||
dark: t('common.darkTheme'),
|
||||
light: t('common.lightTheme'),
|
||||
green: t('common.greenTheme'),
|
||||
ocean: t('common.oceanTheme'),
|
||||
};
|
||||
|
||||
const handleChangeTheme = (theme: string) => {
|
||||
dispatch(setCurrentTheme(theme));
|
||||
};
|
||||
|
||||
const renderThemeOptions = () => {
|
||||
const themesToRender: ReactNode[] = [];
|
||||
|
||||
Object.keys(THEMES).forEach((theme) => {
|
||||
themesToRender.push(
|
||||
<IAIButton
|
||||
isChecked={currentTheme === theme}
|
||||
leftIcon={currentTheme === theme ? <FaCheck /> : undefined}
|
||||
size="sm"
|
||||
onClick={() => handleChangeTheme(theme)}
|
||||
key={theme}
|
||||
>
|
||||
{THEMES[theme as keyof typeof THEMES]}
|
||||
</IAIButton>
|
||||
);
|
||||
});
|
||||
|
||||
return themesToRender;
|
||||
};
|
||||
|
||||
return (
|
||||
<IAIPopover
|
||||
triggerComponent={
|
||||
<IAIIconButton
|
||||
aria-label={t('common.themeLabel')}
|
||||
size="sm"
|
||||
variant="link"
|
||||
data-variant="link"
|
||||
fontSize={20}
|
||||
<Menu closeOnSelect={false}>
|
||||
<Tooltip label={t('common.themeLabel')} hasArrow>
|
||||
<MenuButton
|
||||
as={IconButton}
|
||||
icon={<FaPalette />}
|
||||
variant="link"
|
||||
aria-label={t('common.themeLabel')}
|
||||
fontSize={20}
|
||||
minWidth={8}
|
||||
/>
|
||||
}
|
||||
>
|
||||
<VStack align="stretch">{renderThemeOptions()}</VStack>
|
||||
</IAIPopover>
|
||||
</Tooltip>
|
||||
<MenuList>
|
||||
<MenuOptionGroup value={currentTheme}>
|
||||
{map(THEMES, (themeName, themeKey: keyof typeof THEMES) => (
|
||||
<MenuItemOption
|
||||
key={themeKey}
|
||||
value={themeKey}
|
||||
onClick={() => dispatch(setCurrentTheme(themeKey))}
|
||||
>
|
||||
{themeName}
|
||||
</MenuItemOption>
|
||||
))}
|
||||
</MenuOptionGroup>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
);
|
||||
}
|
||||
|
@ -1,21 +1,40 @@
|
||||
import { AppFeature } from 'app/types/invokeai';
|
||||
import { AppFeature, SDFeature } from 'app/types/invokeai';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useMemo } from 'react';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
|
||||
export const useFeatureStatus = (
|
||||
feature: AppFeature | SDFeature | InvokeTabName
|
||||
) => {
|
||||
const disabledTabs = useAppSelector(
|
||||
(state: RootState) => state.config.disabledTabs
|
||||
);
|
||||
|
||||
export const useFeatureStatus = (feature: AppFeature) => {
|
||||
const disabledFeatures = useAppSelector(
|
||||
(state: RootState) => state.config.disabledFeatures
|
||||
);
|
||||
|
||||
const disabledSDFeatures = useAppSelector(
|
||||
(state: RootState) => state.config.disabledSDFeatures
|
||||
);
|
||||
|
||||
const isFeatureDisabled = useMemo(
|
||||
() => disabledFeatures.includes(feature),
|
||||
[disabledFeatures, feature]
|
||||
() =>
|
||||
disabledFeatures.includes(feature as AppFeature) ||
|
||||
disabledSDFeatures.includes(feature as SDFeature) ||
|
||||
disabledTabs.includes(feature as InvokeTabName),
|
||||
[disabledFeatures, disabledSDFeatures, disabledTabs, feature]
|
||||
);
|
||||
|
||||
const isFeatureEnabled = useMemo(
|
||||
() => !disabledFeatures.includes(feature),
|
||||
[disabledFeatures, feature]
|
||||
() =>
|
||||
!(
|
||||
disabledFeatures.includes(feature as AppFeature) ||
|
||||
disabledSDFeatures.includes(feature as SDFeature) ||
|
||||
disabledTabs.includes(feature as InvokeTabName)
|
||||
),
|
||||
[disabledFeatures, disabledSDFeatures, disabledTabs, feature]
|
||||
);
|
||||
|
||||
return { isFeatureDisabled, isFeatureEnabled };
|
||||
|
@ -8,6 +8,7 @@ export const initialConfigState: AppConfig = {
|
||||
shouldFetchImages: false,
|
||||
disabledTabs: [],
|
||||
disabledFeatures: [],
|
||||
disabledSDFeatures: [],
|
||||
canRestoreDeletedImagesFromBin: true,
|
||||
sd: {
|
||||
iterations: {
|
||||
|
@ -1,6 +1,7 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { isEqual, reduce, pickBy } from 'lodash-es';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { reduce, pickBy } from 'lodash-es';
|
||||
|
||||
export const systemSelector = (state: RootState) => state.system;
|
||||
|
||||
@ -22,11 +23,7 @@ export const activeModelSelector = createSelector(
|
||||
);
|
||||
return { ...model_list[activeModel], name: activeModel };
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
export const diffusersModelsSelector = createSelector(
|
||||
@ -42,9 +39,11 @@ export const diffusersModelsSelector = createSelector(
|
||||
|
||||
return diffusersModels;
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
export const languageSelector = createSelector(
|
||||
systemSelector,
|
||||
(system) => system.language,
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
@ -24,6 +24,7 @@ import { InvokeLogLevel } from 'app/logging/useLogger';
|
||||
import { TFuncKey } from 'i18next';
|
||||
import { t } from 'i18next';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
import { LANGUAGES } from '../components/LanguagePicker';
|
||||
|
||||
export type CancelStrategy = 'immediate' | 'scheduled';
|
||||
|
||||
@ -91,6 +92,7 @@ export interface SystemState {
|
||||
infillMethods: InfillMethod[];
|
||||
isPersisted: boolean;
|
||||
shouldAntialiasProgressImage: boolean;
|
||||
language: keyof typeof LANGUAGES;
|
||||
}
|
||||
|
||||
export const initialSystemState: SystemState = {
|
||||
@ -125,6 +127,7 @@ export const initialSystemState: SystemState = {
|
||||
canceledSession: '',
|
||||
infillMethods: ['tile', 'patchmatch'],
|
||||
isPersisted: false,
|
||||
language: 'en',
|
||||
};
|
||||
|
||||
export const systemSlice = createSlice({
|
||||
@ -272,6 +275,9 @@ export const systemSlice = createSlice({
|
||||
isPersistedChanged: (state, action: PayloadAction<boolean>) => {
|
||||
state.isPersisted = action.payload;
|
||||
},
|
||||
languageChanged: (state, action: PayloadAction<keyof typeof LANGUAGES>) => {
|
||||
state.language = action.payload;
|
||||
},
|
||||
},
|
||||
extraReducers(builder) {
|
||||
/**
|
||||
@ -418,6 +424,7 @@ export const systemSlice = createSlice({
|
||||
state.currentStep = 0;
|
||||
state.totalSteps = 0;
|
||||
state.statusTranslationKey = 'common.statusConnected';
|
||||
state.progressImage = null;
|
||||
|
||||
state.toastQueue.push(
|
||||
makeToast({ title: t('toast.canceled'), status: 'warning' })
|
||||
@ -480,6 +487,7 @@ export const {
|
||||
shouldLogToConsoleChanged,
|
||||
isPersistedChanged,
|
||||
shouldAntialiasProgressImageChanged,
|
||||
languageChanged,
|
||||
} = systemSlice.actions;
|
||||
|
||||
export default systemSlice.reducer;
|
||||
|
@ -44,7 +44,6 @@ const FloatingGalleryButton = () => {
|
||||
pos: 'absolute',
|
||||
top: '50%',
|
||||
transform: 'translate(0, -50%)',
|
||||
zIndex: 31,
|
||||
p: 0,
|
||||
insetInlineEnd: 0,
|
||||
px: 3,
|
||||
|
@ -73,7 +73,6 @@ const FloatingParametersPanelButtons = () => {
|
||||
<Flex
|
||||
pos="absolute"
|
||||
transform="translate(0, -50%)"
|
||||
zIndex={20}
|
||||
minW={8}
|
||||
top="50%"
|
||||
insetInlineStart="4.5rem"
|
||||
|
@ -45,12 +45,12 @@ export interface InvokeTabInfo {
|
||||
const tabs: InvokeTabInfo[] = [
|
||||
{
|
||||
id: 'txt2img',
|
||||
icon: <Icon as={GoTextSize} sx={{ boxSize: 5 }} />,
|
||||
icon: <Icon as={GoTextSize} sx={{ boxSize: 6 }} />,
|
||||
content: <TextToImageTab />,
|
||||
},
|
||||
{
|
||||
id: 'img2img',
|
||||
icon: <Icon as={FaImage} sx={{ boxSize: 5 }} />,
|
||||
icon: <Icon as={FaImage} sx={{ boxSize: 6 }} />,
|
||||
content: <ImageTab />,
|
||||
},
|
||||
{
|
||||
|
@ -142,7 +142,7 @@ const ResizableDrawer = ({
|
||||
direction={slideDirection}
|
||||
in={isOpen}
|
||||
motionProps={{ initial: false }}
|
||||
style={{ zIndex: 99, width: 'full' }}
|
||||
style={{ width: 'full' }}
|
||||
>
|
||||
<Box
|
||||
ref={outsideClickRef}
|
||||
|
@ -64,8 +64,6 @@ const ImageToImageTabCoreParameters = () => {
|
||||
<ParamSteps />
|
||||
<ParamCFGScale />
|
||||
</Flex>
|
||||
<ParamWidth isDisabled={!shouldFitToWidthHeight} />
|
||||
<ParamHeight isDisabled={!shouldFitToWidthHeight} />
|
||||
<Flex gap={3} w="full">
|
||||
<Box flexGrow={2}>
|
||||
<ParamSampler />
|
||||
@ -74,6 +72,8 @@ const ImageToImageTabCoreParameters = () => {
|
||||
<ModelSelect />
|
||||
</Box>
|
||||
</Flex>
|
||||
<ParamWidth isDisabled={!shouldFitToWidthHeight} />
|
||||
<ParamHeight isDisabled={!shouldFitToWidthHeight} />
|
||||
<ImageToImageStrength />
|
||||
<ImageToImageFit />
|
||||
</Flex>
|
||||
|
@ -62,8 +62,6 @@ const UnifiedCanvasCoreParameters = () => {
|
||||
<ParamSteps />
|
||||
<ParamCFGScale />
|
||||
</Flex>
|
||||
<ParamWidth />
|
||||
<ParamHeight />
|
||||
<Flex gap={3} w="full">
|
||||
<Box flexGrow={2}>
|
||||
<ParamSampler />
|
||||
@ -72,8 +70,9 @@ const UnifiedCanvasCoreParameters = () => {
|
||||
<ModelSelect />
|
||||
</Box>
|
||||
</Flex>
|
||||
<ParamWidth />
|
||||
<ParamHeight />
|
||||
<ImageToImageStrength />
|
||||
<ImageToImageFit />
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
|
@ -3,7 +3,7 @@ import LanguageDetector from 'i18next-browser-languagedetector';
|
||||
import Backend from 'i18next-http-backend';
|
||||
import { initReactI18next } from 'react-i18next';
|
||||
|
||||
import translationEN from '../dist/locales/en.json';
|
||||
import translationEN from '../public/locales/en.json';
|
||||
import { LOCALSTORAGE_PREFIX } from 'app/store/constants';
|
||||
|
||||
if (import.meta.env.MODE === 'package') {
|
||||
@ -21,11 +21,11 @@ if (import.meta.env.MODE === 'package') {
|
||||
} else {
|
||||
i18n
|
||||
.use(Backend)
|
||||
.use(
|
||||
new LanguageDetector(null, {
|
||||
lookupLocalStorage: `${LOCALSTORAGE_PREFIX}lng`,
|
||||
})
|
||||
)
|
||||
// .use(
|
||||
// new LanguageDetector(null, {
|
||||
// lookupLocalStorage: `${LOCALSTORAGE_PREFIX}lng`,
|
||||
// })
|
||||
// )
|
||||
.use(initReactI18next)
|
||||
.init({
|
||||
fallbackLng: 'en',
|
||||
|
@ -19,7 +19,6 @@ export type { ConditioningField } from './models/ConditioningField';
|
||||
export type { CreateModelRequest } from './models/CreateModelRequest';
|
||||
export type { CropImageInvocation } from './models/CropImageInvocation';
|
||||
export type { CvInpaintInvocation } from './models/CvInpaintInvocation';
|
||||
export type { DataURLToImageInvocation } from './models/DataURLToImageInvocation';
|
||||
export type { DiffusersModelInfo } from './models/DiffusersModelInfo';
|
||||
export type { DivideInvocation } from './models/DivideInvocation';
|
||||
export type { Edge } from './models/Edge';
|
||||
@ -92,7 +91,6 @@ export { $ConditioningField } from './schemas/$ConditioningField';
|
||||
export { $CreateModelRequest } from './schemas/$CreateModelRequest';
|
||||
export { $CropImageInvocation } from './schemas/$CropImageInvocation';
|
||||
export { $CvInpaintInvocation } from './schemas/$CvInpaintInvocation';
|
||||
export { $DataURLToImageInvocation } from './schemas/$DataURLToImageInvocation';
|
||||
export { $DiffusersModelInfo } from './schemas/$DiffusersModelInfo';
|
||||
export { $DivideInvocation } from './schemas/$DivideInvocation';
|
||||
export { $Edge } from './schemas/$Edge';
|
||||
|
@ -1,19 +0,0 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* Outputs an image from a data URL.
|
||||
*/
|
||||
export type DataURLToImageInvocation = {
|
||||
/**
|
||||
* The id of this node. Must be unique among all nodes.
|
||||
*/
|
||||
id: string;
|
||||
type?: 'dataURL_image';
|
||||
/**
|
||||
* The b64 data URL
|
||||
*/
|
||||
dataURL: string;
|
||||
};
|
||||
|
@ -8,7 +8,6 @@ import type { CollectInvocation } from './CollectInvocation';
|
||||
import type { CompelInvocation } from './CompelInvocation';
|
||||
import type { CropImageInvocation } from './CropImageInvocation';
|
||||
import type { CvInpaintInvocation } from './CvInpaintInvocation';
|
||||
import type { DataURLToImageInvocation } from './DataURLToImageInvocation';
|
||||
import type { DivideInvocation } from './DivideInvocation';
|
||||
import type { Edge } from './Edge';
|
||||
import type { GraphInvocation } from './GraphInvocation';
|
||||
@ -48,7 +47,7 @@ export type Graph = {
|
||||
/**
|
||||
* The nodes in this graph
|
||||
*/
|
||||
nodes?: Record<string, (LoadImageInvocation | ShowImageInvocation | DataURLToImageInvocation | CropImageInvocation | PasteImageInvocation | MaskFromAlphaInvocation | BlurInvocation | LerpInvocation | InverseLerpInvocation | CompelInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | ParamIntInvocation | CvInpaintInvocation | RangeInvocation | RandomRangeInvocation | UpscaleInvocation | RestoreFaceInvocation | TextToImageInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | LatentsToLatentsInvocation | ImageToImageInvocation | InpaintInvocation)>;
|
||||
nodes?: Record<string, (LoadImageInvocation | ShowImageInvocation | CropImageInvocation | PasteImageInvocation | MaskFromAlphaInvocation | BlurInvocation | LerpInvocation | InverseLerpInvocation | CompelInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | ParamIntInvocation | CvInpaintInvocation | RangeInvocation | RandomRangeInvocation | UpscaleInvocation | RestoreFaceInvocation | TextToImageInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | LatentsToLatentsInvocation | ImageToImageInvocation | InpaintInvocation)>;
|
||||
/**
|
||||
* The connections between nodes and their fields in this graph
|
||||
*/
|
||||
|
@ -40,7 +40,7 @@ export type ImageToImageInvocation = {
|
||||
/**
|
||||
* The scheduler to use
|
||||
*/
|
||||
scheduler?: 'ddim' | 'dpmpp_2' | 'k_dpm_2' | 'k_dpm_2_a' | 'k_dpmpp_2' | 'k_euler' | 'k_euler_a' | 'k_heun' | 'k_lms' | 'plms';
|
||||
scheduler?: 'ddim' | 'ddpm' | 'deis' | 'lms' | 'pndm' | 'heun' | 'euler' | 'euler_k' | 'euler_a' | 'kdpm_2' | 'kdpm_2_a' | 'dpmpp_2s' | 'dpmpp_2m' | 'dpmpp_2m_k' | 'unipc';
|
||||
/**
|
||||
* The model to use (currently ignored)
|
||||
*/
|
||||
|
@ -6,7 +6,7 @@ import type { ColorField } from './ColorField';
|
||||
import type { ImageField } from './ImageField';
|
||||
|
||||
/**
|
||||
* Infills transparent areas of an image with a color
|
||||
* Infills transparent areas of an image with a solid color
|
||||
*/
|
||||
export type InfillColorInvocation = {
|
||||
/**
|
||||
|
@ -5,7 +5,7 @@
|
||||
import type { ImageField } from './ImageField';
|
||||
|
||||
/**
|
||||
* Infills transparent areas of an image with tiles of the image
|
||||
* Infills transparent areas of an image using the PatchMatch algorithm
|
||||
*/
|
||||
export type InfillPatchMatchInvocation = {
|
||||
/**
|
||||
|
@ -41,7 +41,7 @@ export type InpaintInvocation = {
|
||||
/**
|
||||
* The scheduler to use
|
||||
*/
|
||||
scheduler?: 'ddim' | 'dpmpp_2' | 'k_dpm_2' | 'k_dpm_2_a' | 'k_dpmpp_2' | 'k_euler' | 'k_euler_a' | 'k_heun' | 'k_lms' | 'plms';
|
||||
scheduler?: 'ddim' | 'ddpm' | 'deis' | 'lms' | 'pndm' | 'heun' | 'euler' | 'euler_k' | 'euler_a' | 'kdpm_2' | 'kdpm_2_a' | 'dpmpp_2s' | 'dpmpp_2m' | 'dpmpp_2m_k' | 'unipc';
|
||||
/**
|
||||
* The model to use (currently ignored)
|
||||
*/
|
||||
|
@ -37,11 +37,19 @@ export type LatentsToLatentsInvocation = {
|
||||
/**
|
||||
* The scheduler to use
|
||||
*/
|
||||
scheduler?: 'ddim' | 'dpmpp_2' | 'k_dpm_2' | 'k_dpm_2_a' | 'k_dpmpp_2' | 'k_euler' | 'k_euler_a' | 'k_heun' | 'k_lms' | 'plms';
|
||||
scheduler?: 'ddim' | 'ddpm' | 'deis' | 'lms' | 'pndm' | 'heun' | 'euler' | 'euler_k' | 'euler_a' | 'kdpm_2' | 'kdpm_2_a' | 'dpmpp_2s' | 'dpmpp_2m' | 'dpmpp_2m_k' | 'unipc';
|
||||
/**
|
||||
* The model to use (currently ignored)
|
||||
*/
|
||||
model?: string;
|
||||
/**
|
||||
* Whether or not to generate an image that can tile without seams
|
||||
*/
|
||||
seamless?: boolean;
|
||||
/**
|
||||
* The axes to tile the image on, 'x' and/or 'y'
|
||||
*/
|
||||
seamless_axes?: string;
|
||||
/**
|
||||
* The latents to use as a base image
|
||||
*/
|
||||
|
@ -38,7 +38,7 @@ export type TextToImageInvocation = {
|
||||
/**
|
||||
* The scheduler to use
|
||||
*/
|
||||
scheduler?: 'ddim' | 'dpmpp_2' | 'k_dpm_2' | 'k_dpm_2_a' | 'k_dpmpp_2' | 'k_euler' | 'k_euler_a' | 'k_heun' | 'k_lms' | 'plms';
|
||||
scheduler?: 'ddim' | 'ddpm' | 'deis' | 'lms' | 'pndm' | 'heun' | 'euler' | 'euler_k' | 'euler_a' | 'kdpm_2' | 'kdpm_2_a' | 'dpmpp_2s' | 'dpmpp_2m' | 'dpmpp_2m_k' | 'unipc';
|
||||
/**
|
||||
* The model to use (currently ignored)
|
||||
*/
|
||||
|
@ -37,10 +37,18 @@ export type TextToLatentsInvocation = {
|
||||
/**
|
||||
* The scheduler to use
|
||||
*/
|
||||
scheduler?: 'ddim' | 'dpmpp_2' | 'k_dpm_2' | 'k_dpm_2_a' | 'k_dpmpp_2' | 'k_euler' | 'k_euler_a' | 'k_heun' | 'k_lms' | 'plms';
|
||||
scheduler?: 'ddim' | 'ddpm' | 'deis' | 'lms' | 'pndm' | 'heun' | 'euler' | 'euler_k' | 'euler_a' | 'kdpm_2' | 'kdpm_2_a' | 'dpmpp_2s' | 'dpmpp_2m' | 'dpmpp_2m_k' | 'unipc';
|
||||
/**
|
||||
* The model to use (currently ignored)
|
||||
*/
|
||||
model?: string;
|
||||
/**
|
||||
* Whether or not to generate an image that can tile without seams
|
||||
*/
|
||||
seamless?: boolean;
|
||||
/**
|
||||
* The axes to tile the image on, 'x' and/or 'y'
|
||||
*/
|
||||
seamless_axes?: string;
|
||||
};
|
||||
|
||||
|
@ -1,21 +0,0 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
export const $DataURLToImageInvocation = {
|
||||
description: `Outputs an image from a data URL.`,
|
||||
properties: {
|
||||
id: {
|
||||
type: 'string',
|
||||
description: `The id of this node. Must be unique among all nodes.`,
|
||||
isRequired: true,
|
||||
},
|
||||
type: {
|
||||
type: 'Enum',
|
||||
},
|
||||
dataURL: {
|
||||
type: 'string',
|
||||
description: `The b64 data URL`,
|
||||
isRequired: true,
|
||||
},
|
||||
},
|
||||
} as const;
|
@ -15,8 +15,6 @@ export const $Graph = {
|
||||
type: 'LoadImageInvocation',
|
||||
}, {
|
||||
type: 'ShowImageInvocation',
|
||||
}, {
|
||||
type: 'DataURLToImageInvocation',
|
||||
}, {
|
||||
type: 'CropImageInvocation',
|
||||
}, {
|
||||
|
@ -2,7 +2,7 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
export const $InfillColorInvocation = {
|
||||
description: `Infills transparent areas of an image with a color`,
|
||||
description: `Infills transparent areas of an image with a solid color`,
|
||||
properties: {
|
||||
id: {
|
||||
type: 'string',
|
||||
|
@ -2,7 +2,7 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
export const $InfillPatchMatchInvocation = {
|
||||
description: `Infills transparent areas of an image with tiles of the image`,
|
||||
description: `Infills transparent areas of an image using the PatchMatch algorithm`,
|
||||
properties: {
|
||||
id: {
|
||||
type: 'string',
|
||||
|
@ -48,6 +48,14 @@ export const $LatentsToLatentsInvocation = {
|
||||
type: 'string',
|
||||
description: `The model to use (currently ignored)`,
|
||||
},
|
||||
seamless: {
|
||||
type: 'boolean',
|
||||
description: `Whether or not to generate an image that can tile without seams`,
|
||||
},
|
||||
seamless_axes: {
|
||||
type: 'string',
|
||||
description: `The axes to tile the image on, 'x' and/or 'y'`,
|
||||
},
|
||||
latents: {
|
||||
type: 'all-of',
|
||||
description: `The latents to use as a base image`,
|
||||
|
@ -48,5 +48,13 @@ export const $TextToLatentsInvocation = {
|
||||
type: 'string',
|
||||
description: `The model to use (currently ignored)`,
|
||||
},
|
||||
seamless: {
|
||||
type: 'boolean',
|
||||
description: `Whether or not to generate an image that can tile without seams`,
|
||||
},
|
||||
seamless_axes: {
|
||||
type: 'string',
|
||||
description: `The axes to tile the image on, 'x' and/or 'y'`,
|
||||
},
|
||||
},
|
||||
} as const;
|
||||
|
@ -7,7 +7,6 @@ import type { CollectInvocation } from '../models/CollectInvocation';
|
||||
import type { CompelInvocation } from '../models/CompelInvocation';
|
||||
import type { CropImageInvocation } from '../models/CropImageInvocation';
|
||||
import type { CvInpaintInvocation } from '../models/CvInpaintInvocation';
|
||||
import type { DataURLToImageInvocation } from '../models/DataURLToImageInvocation';
|
||||
import type { DivideInvocation } from '../models/DivideInvocation';
|
||||
import type { Edge } from '../models/Edge';
|
||||
import type { Graph } from '../models/Graph';
|
||||
@ -150,7 +149,7 @@ export class SessionsService {
|
||||
* The id of the session
|
||||
*/
|
||||
sessionId: string,
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | DataURLToImageInvocation | CropImageInvocation | PasteImageInvocation | MaskFromAlphaInvocation | BlurInvocation | LerpInvocation | InverseLerpInvocation | CompelInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | ParamIntInvocation | CvInpaintInvocation | RangeInvocation | RandomRangeInvocation | UpscaleInvocation | RestoreFaceInvocation | TextToImageInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | LatentsToLatentsInvocation | ImageToImageInvocation | InpaintInvocation),
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | CropImageInvocation | PasteImageInvocation | MaskFromAlphaInvocation | BlurInvocation | LerpInvocation | InverseLerpInvocation | CompelInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | ParamIntInvocation | CvInpaintInvocation | RangeInvocation | RandomRangeInvocation | UpscaleInvocation | RestoreFaceInvocation | TextToImageInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | LatentsToLatentsInvocation | ImageToImageInvocation | InpaintInvocation),
|
||||
}): CancelablePromise<string> {
|
||||
return __request(OpenAPI, {
|
||||
method: 'POST',
|
||||
@ -187,7 +186,7 @@ export class SessionsService {
|
||||
* The path to the node in the graph
|
||||
*/
|
||||
nodePath: string,
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | DataURLToImageInvocation | CropImageInvocation | PasteImageInvocation | MaskFromAlphaInvocation | BlurInvocation | LerpInvocation | InverseLerpInvocation | CompelInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | ParamIntInvocation | CvInpaintInvocation | RangeInvocation | RandomRangeInvocation | UpscaleInvocation | RestoreFaceInvocation | TextToImageInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | LatentsToLatentsInvocation | ImageToImageInvocation | InpaintInvocation),
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | CropImageInvocation | PasteImageInvocation | MaskFromAlphaInvocation | BlurInvocation | LerpInvocation | InverseLerpInvocation | CompelInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | ParamIntInvocation | CvInpaintInvocation | RangeInvocation | RandomRangeInvocation | UpscaleInvocation | RestoreFaceInvocation | TextToImageInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | LatentsToLatentsInvocation | ImageToImageInvocation | InpaintInvocation),
|
||||
}): CancelablePromise<GraphExecutionState> {
|
||||
return __request(OpenAPI, {
|
||||
method: 'PUT',
|
||||
|
@ -23,6 +23,8 @@ import { textareaTheme } from './components/textarea';
|
||||
export const theme: ThemeOverride = {
|
||||
config: {
|
||||
cssVarPrefix: 'invokeai',
|
||||
initialColorMode: 'dark',
|
||||
useSystemColorMode: false,
|
||||
},
|
||||
styles: {
|
||||
global: (_props: StyleFunctionProps) => ({
|
||||
@ -39,7 +41,7 @@ export const theme: ThemeOverride = {
|
||||
},
|
||||
direction: 'ltr',
|
||||
fonts: {
|
||||
body: `'Inter', sans-serif`,
|
||||
body: `'InterVariable', sans-serif`,
|
||||
},
|
||||
breakpoints: {
|
||||
base: '0em', // 0px and onwards
|
||||
|
@ -20,13 +20,7 @@
|
||||
"*": ["./src/*"]
|
||||
}
|
||||
},
|
||||
"include": [
|
||||
"src/**/*.ts",
|
||||
"src/**/*.tsx",
|
||||
"*.d.ts",
|
||||
"src/app/store/middleware/listenerMiddleware",
|
||||
"src/features/nodes/util/edgeBuilders"
|
||||
],
|
||||
"include": ["src/**/*.ts", "src/**/*.tsx", "*.d.ts"],
|
||||
"exclude": ["src/services/fixtures/*", "node_modules", "dist"],
|
||||
"references": [{ "path": "./tsconfig.node.json" }]
|
||||
}
|
||||
|
@ -6673,6 +6673,11 @@ validator@^13.7.0:
|
||||
resolved "https://registry.yarnpkg.com/validator/-/validator-13.9.0.tgz#33e7b85b604f3bbce9bb1a05d5c3e22e1c2ff855"
|
||||
integrity sha512-B+dGG8U3fdtM0/aNK4/X8CXq/EcxU2WPrPEkJGslb47qyHsxmbggTWK0yEA4qnYVNF+nxNlN88o14hIcPmSIEA==
|
||||
|
||||
vite-plugin-css-injected-by-js@^3.1.1:
|
||||
version "3.1.1"
|
||||
resolved "https://registry.yarnpkg.com/vite-plugin-css-injected-by-js/-/vite-plugin-css-injected-by-js-3.1.1.tgz#8324412636cf6fdada1a86f595aa2e78458e5ddb"
|
||||
integrity sha512-mwrFvEEy0TuH8Ul0cb2HgjmNboQ/JnEFy+kHCWqAJph3ikMOiIuyYVdx0JO4nEIWJyzSnc4TTdmoTulsikvJEg==
|
||||
|
||||
vite-plugin-dts@^2.3.0:
|
||||
version "2.3.0"
|
||||
resolved "https://registry.yarnpkg.com/vite-plugin-dts/-/vite-plugin-dts-2.3.0.tgz#6ab2edf56f48261bfede03958704bfaee2fca3e4"
|
||||
|
@ -23,7 +23,7 @@
|
||||
],
|
||||
"threshold": 0,
|
||||
"postprocessing": null,
|
||||
"sampler": "k_lms",
|
||||
"sampler": "lms",
|
||||
"variations": [],
|
||||
"type": "txt2img"
|
||||
}
|
||||
|
@ -17,7 +17,7 @@ valid_metadata = {
|
||||
"width": 512,
|
||||
"height": 512,
|
||||
"cfg_scale": 7.5,
|
||||
"scheduler": "k_lms",
|
||||
"scheduler": "lms",
|
||||
"model": "stable-diffusion-1.5",
|
||||
},
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user