chore: cleanup DepthAnything code

This commit is contained in:
blessedcoolant 2024-03-13 14:15:29 +05:30
parent 7e4b462fca
commit af660163ca
2 changed files with 16 additions and 19 deletions

View File

@ -574,7 +574,7 @@ DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
title="Depth Anything Processor", title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"], tags=["controlnet", "depth", "depth anything"],
category="controlnet", category="controlnet",
version="1.0.0", version="1.0.1",
) )
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation): class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm""" """Generates a depth map based on the Depth Anything algorithm"""
@ -583,13 +583,12 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
default="small", description="The size of the depth model to use" default="small", description="The size of the depth model to use"
) )
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res) resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
offload: bool = InputField(default=False)
def run_processor(self, image: Image.Image): def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector() depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size) depth_anything_detector.load_model(model_size=self.model_size)
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload) processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image return processed_image

View File

@ -13,9 +13,11 @@ from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2 from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.util.util import download_with_progress_bar from invokeai.backend.util.util import download_with_progress_bar
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = { DEPTH_ANYTHING_MODELS = {
"large": { "large": {
@ -54,8 +56,9 @@ class DepthAnythingDetector:
def __init__(self) -> None: def __init__(self) -> None:
self.model = None self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None self.model_size: Union[Literal["large", "base", "small"], None] = None
self.device = choose_torch_device()
def load_model(self, model_size=Literal["large", "base", "small"]): def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
DEPTH_ANYTHING_MODEL_PATH = pathlib.Path(config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"]) DEPTH_ANYTHING_MODEL_PATH = pathlib.Path(config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"])
if not DEPTH_ANYTHING_MODEL_PATH.exists(): if not DEPTH_ANYTHING_MODEL_PATH.exists():
download_with_progress_bar(DEPTH_ANYTHING_MODELS[model_size]["url"], DEPTH_ANYTHING_MODEL_PATH) download_with_progress_bar(DEPTH_ANYTHING_MODELS[model_size]["url"], DEPTH_ANYTHING_MODEL_PATH)
@ -71,8 +74,6 @@ class DepthAnythingDetector:
self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768]) self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large": case "large":
self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024]) self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
case _:
raise TypeError("Not a supported model")
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu")) self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval() self.model.eval()
@ -80,20 +81,20 @@ class DepthAnythingDetector:
self.model.to(choose_torch_device()) self.model.to(choose_torch_device())
return self.model return self.model
def to(self, device): def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
self.model.to(device) if not self.model:
return self logger.warn("DepthAnything model was not loaded. Returning original image")
return image
def __call__(self, image, resolution=512, offload=False): np_image = np.array(image, dtype=np.uint8)
image = np.array(image, dtype=np.uint8) np_image = np_image[:, :, ::-1] / 255.0
image = image[:, :, ::-1] / 255.0
image_height, image_width = image.shape[:2] image_height, image_width = np_image.shape[:2]
image = transform({"image": image})["image"] np_image = transform({"image": image})["image"]
image = torch.from_numpy(image).unsqueeze(0).to(choose_torch_device()) tensor_image = torch.from_numpy(image).unsqueeze(0).to(choose_torch_device())
with torch.no_grad(): with torch.no_grad():
depth = self.model(image) depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0] depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
@ -103,7 +104,4 @@ class DepthAnythingDetector:
new_height = int(image_height * (resolution / image_width)) new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height)) depth_map = depth_map.resize((resolution, new_height))
if offload:
del self.model
return depth_map return depth_map