Merge branch 'main' into fix/ui/fix-invoke-button-validation

This commit is contained in:
blessedcoolant 2023-09-05 15:00:39 +12:00 committed by GitHub
commit b008fd4a5f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 967 additions and 215 deletions

View File

@ -1,19 +1,19 @@
import typing
from enum import Enum
from pathlib import Path
from fastapi import Body
from fastapi.routing import APIRouter
from pathlib import Path
from pydantic import BaseModel, Field
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.backend.util.logging import logging
from invokeai.version import __version__
from ..dependencies import ApiDependencies
from invokeai.backend.util.logging import logging
class LogLevel(int, Enum):
@ -55,7 +55,7 @@ async def get_version() -> AppVersion:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig:
infill_methods = ["tile", "lama"]
infill_methods = ["tile", "lama", "cv2"]
if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch")

View File

@ -563,7 +563,7 @@ class MaskEdgeInvocation(BaseInvocation):
)
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.services.images.get_pil_image(self.image.image_name)
mask = context.services.images.get_pil_image(self.image.image_name).convert("L")
npimg = numpy.asarray(mask, dtype=numpy.uint8)
npgradient = numpy.uint8(255 * (1.0 - numpy.floor(numpy.abs(0.5 - numpy.float32(npimg) / 255.0) * 2.0)))
@ -700,8 +700,13 @@ class ColorCorrectInvocation(BaseInvocation):
# Blur the mask out (into init image) by specified amount
if self.mask_blur_radius > 0:
nm = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
inverted_nm = 255 - nm
dilation_size = int(round(self.mask_blur_radius) + 20)
dilating_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (dilation_size, dilation_size))
inverted_dilated_nm = cv2.dilate(inverted_nm, dilating_kernel)
dilated_nm = 255 - inverted_dilated_nm
nmd = cv2.erode(
nm,
dilated_nm,
kernel=numpy.ones((3, 3), dtype=numpy.uint8),
iterations=int(self.mask_blur_radius / 2),
)

View File

@ -8,19 +8,17 @@ from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
"lama",
]
methods = ["tile", "solid", "lama", "cv2"]
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
return methods
@ -49,6 +47,10 @@ def infill_patchmatch(im: Image.Image) -> Image.Image:
return im_patched
def infill_cv2(im: Image.Image) -> Image.Image:
return cv2_inpaint(im)
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
@ -194,15 +196,35 @@ class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill")
downscale: float = InputField(default=2.0, gt=0, description="Run patchmatch on downscaled image to speedup infill")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.services.images.get_pil_image(self.image.image_name).convert("RGBA")
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
infill_image = image.copy()
width = int(image.width / self.downscale)
height = int(image.height / self.downscale)
infill_image = infill_image.resize(
(width, height),
resample=resample_mode,
)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(image.copy())
infilled = infill_patchmatch(infill_image)
else:
raise ValueError("PatchMatch is not available on this system")
infilled = infilled.resize(
(image.width, image.height),
resample=resample_mode,
)
infilled.paste(image, (0, 0), mask=image.split()[-1])
# image.paste(infilled, (0, 0), mask=image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
@ -245,3 +267,30 @@ class LaMaInfillInvocation(BaseInvocation):
width=image_dto.width,
height=image_dto.height,
)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint")
class CV2InfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using OpenCV Inpainting"""
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
infilled = infill_cv2(image.copy())
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -0,0 +1,20 @@
import cv2
import numpy as np
from PIL import Image
def cv2_inpaint(image: Image.Image) -> Image.Image:
# Prepare Image
image_array = np.array(image.convert("RGB"))
image_cv = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
# Prepare Mask From Alpha Channel
mask = image.split()[3].convert("RGB")
mask_array = np.array(mask)
mask_cv = cv2.cvtColor(mask_array, cv2.COLOR_BGR2GRAY)
mask_inv = cv2.bitwise_not(mask_cv)
# Inpaint Image
inpainted_result = cv2.inpaint(image_cv, mask_inv, 3, cv2.INPAINT_TELEA)
inpainted_image = Image.fromarray(cv2.cvtColor(inpainted_result, cv2.COLOR_BGR2RGB))
return inpainted_image

View File

@ -5,6 +5,7 @@ import numpy as np
import torch
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from invokeai.backend.util.devices import choose_torch_device
@ -19,7 +20,7 @@ def norm_img(np_img):
def load_jit_model(url_or_path, device):
model_path = url_or_path
print(f"Loading model from: {model_path}")
logger.info(f"Loading model from: {model_path}")
model = torch.jit.load(model_path, map_location="cpu").to(device)
model.eval()
return model
@ -52,5 +53,6 @@ class LaMA:
del model
gc.collect()
torch.cuda.empty_cache()
return infilled_image

View File

@ -290,9 +290,20 @@ def download_realesrgan():
download_with_progress_bar(model["url"], config.models_path / model["dest"], model["description"])
# ---------------------------------------------
def download_lama():
logger.info("Installing lama infill model")
download_with_progress_bar(
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
config.models_path / "core/misc/lama/lama.pt",
"lama infill model",
)
# ---------------------------------------------
def download_support_models():
download_realesrgan()
download_lama()
download_conversion_models()

View File

@ -511,6 +511,7 @@
"maskBlur": "Blur",
"maskBlurMethod": "Blur Method",
"coherencePassHeader": "Coherence Pass",
"coherenceMode": "Mode",
"coherenceSteps": "Steps",
"coherenceStrength": "Strength",
"seamLowThreshold": "Low",
@ -520,6 +521,7 @@
"scaledHeight": "Scaled H",
"infillMethod": "Infill Method",
"tileSize": "Tile Size",
"patchmatchDownScaleSize": "Downscale",
"boundingBoxHeader": "Bounding Box",
"seamCorrectionHeader": "Seam Correction",
"infillScalingHeader": "Infill and Scaling",

View File

@ -118,7 +118,11 @@ const IAICanvasToolChooserOptions = () => {
useHotkeys(
['BracketLeft'],
() => {
dispatch(setBrushSize(Math.max(brushSize - 5, 5)));
if (brushSize - 5 <= 5) {
dispatch(setBrushSize(Math.max(brushSize - 1, 1)));
} else {
dispatch(setBrushSize(Math.max(brushSize - 5, 1)));
}
},
{
enabled: () => !isStaging,

View File

@ -10,7 +10,8 @@ import {
CANVAS_OUTPUT,
INPAINT_IMAGE_RESIZE_UP,
LATENTS_TO_IMAGE,
MASK_BLUR,
MASK_COMBINE,
MASK_RESIZE_UP,
METADATA_ACCUMULATOR,
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
SDXL_CANVAS_INPAINT_GRAPH,
@ -46,6 +47,8 @@ export const addSDXLRefinerToGraph = (
const { seamlessXAxis, seamlessYAxis, vaePrecision } = state.generation;
const { boundingBoxScaleMethod } = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
@ -231,7 +234,7 @@ export const addSDXLRefinerToGraph = (
type: 'create_denoise_mask',
id: SDXL_REFINER_INPAINT_CREATE_MASK,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
if (isUsingScaledDimensions) {
@ -257,7 +260,7 @@ export const addSDXLRefinerToGraph = (
graph.edges.push(
{
source: {
node_id: MASK_BLUR,
node_id: isUsingScaledDimensions ? MASK_RESIZE_UP : MASK_COMBINE,
field: 'image',
},
destination: {

View File

@ -2,6 +2,7 @@ import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { MetadataAccumulatorInvocation } from 'services/api/types';
import {
CANVAS_COHERENCE_INPAINT_CREATE_MASK,
CANVAS_IMAGE_TO_IMAGE_GRAPH,
CANVAS_INPAINT_GRAPH,
CANVAS_OUTPAINT_GRAPH,
@ -31,7 +32,7 @@ export const addVAEToGraph = (
graph: NonNullableGraph,
modelLoaderNodeId: string = MAIN_MODEL_LOADER
): void => {
const { vae } = state.generation;
const { vae, canvasCoherenceMode } = state.generation;
const { boundingBoxScaleMethod } = state.canvas;
const { shouldUseSDXLRefiner } = state.sdxl;
@ -146,6 +147,20 @@ export const addVAEToGraph = (
},
}
);
// Handle Coherence Mode
if (canvasCoherenceMode !== 'unmasked') {
graph.edges.push({
source: {
node_id: isAutoVae ? modelLoaderNodeId : VAE_LOADER,
field: isAutoVae && isOnnxModel ? 'vae_decoder' : 'vae',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'vae',
},
});
}
}
if (shouldUseSDXLRefiner) {

View File

@ -59,6 +59,8 @@ export const buildCanvasImageToImageGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
@ -245,7 +247,7 @@ export const buildCanvasImageToImageGraph = (
id: LATENTS_TO_IMAGE,
type: 'l2i',
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
graph.nodes[CANVAS_OUTPUT] = {
id: CANVAS_OUTPUT,
@ -292,7 +294,7 @@ export const buildCanvasImageToImageGraph = (
type: 'l2i',
id: CANVAS_OUTPUT,
is_intermediate: !shouldAutoSave,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
(graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image =

View File

@ -6,6 +6,7 @@ import {
ImageBlurInvocation,
ImageDTO,
ImageToLatentsInvocation,
MaskEdgeInvocation,
NoiseInvocation,
RandomIntInvocation,
RangeOfSizeInvocation,
@ -18,6 +19,8 @@ import { addVAEToGraph } from './addVAEToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
CANVAS_COHERENCE_INPAINT_CREATE_MASK,
CANVAS_COHERENCE_MASK_EDGE,
CANVAS_COHERENCE_NOISE,
CANVAS_COHERENCE_NOISE_INCREMENT,
CANVAS_INPAINT_GRAPH,
@ -67,6 +70,7 @@ export const buildCanvasInpaintGraph = (
shouldUseCpuNoise,
maskBlur,
maskBlurMethod,
canvasCoherenceMode,
canvasCoherenceSteps,
canvasCoherenceStrength,
clipSkip,
@ -89,6 +93,12 @@ export const buildCanvasInpaintGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
let modelLoaderNodeId = MAIN_MODEL_LOADER;
const use_cpu = shouldUseNoiseSettings
@ -133,13 +143,7 @@ export const buildCanvasInpaintGraph = (
type: 'i2l',
id: INPAINT_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
},
[INPAINT_CREATE_MASK]: {
type: 'create_denoise_mask',
id: INPAINT_CREATE_MASK,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[NOISE]: {
type: 'noise',
@ -147,6 +151,12 @@ export const buildCanvasInpaintGraph = (
use_cpu,
is_intermediate: true,
},
[INPAINT_CREATE_MASK]: {
type: 'create_denoise_mask',
id: INPAINT_CREATE_MASK,
is_intermediate: true,
fp32,
},
[DENOISE_LATENTS]: {
type: 'denoise_latents',
id: DENOISE_LATENTS,
@ -171,7 +181,7 @@ export const buildCanvasInpaintGraph = (
},
[CANVAS_COHERENCE_DENOISE_LATENTS]: {
type: 'denoise_latents',
id: DENOISE_LATENTS,
id: CANVAS_COHERENCE_DENOISE_LATENTS,
is_intermediate: true,
steps: canvasCoherenceSteps,
cfg_scale: cfg_scale,
@ -183,7 +193,7 @@ export const buildCanvasInpaintGraph = (
type: 'l2i',
id: LATENTS_TO_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[CANVAS_OUTPUT]: {
type: 'color_correct',
@ -418,7 +428,7 @@ export const buildCanvasInpaintGraph = (
};
// Handle Scale Before Processing
if (['auto', 'manual'].includes(boundingBoxScaleMethod)) {
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;
const scaledHeight: number = scaledBoundingBoxDimensions.height;
@ -581,6 +591,116 @@ export const buildCanvasInpaintGraph = (
);
}
// Handle Coherence Mode
if (canvasCoherenceMode !== 'unmasked') {
// Create Mask If Coherence Mode Is Not Full
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
type: 'create_denoise_mask',
id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
is_intermediate: true,
fp32,
};
// Handle Image Input For Mask Creation
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: INPAINT_IMAGE_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'image',
},
});
} else {
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
...(graph.nodes[
CANVAS_COHERENCE_INPAINT_CREATE_MASK
] as CreateDenoiseMaskInvocation),
image: canvasInitImage,
};
}
// Create Mask If Coherence Mode Is Mask
if (canvasCoherenceMode === 'mask') {
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
} else {
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
...(graph.nodes[
CANVAS_COHERENCE_INPAINT_CREATE_MASK
] as CreateDenoiseMaskInvocation),
mask: canvasMaskImage,
};
}
}
// Create Mask Edge If Coherence Mode Is Edge
if (canvasCoherenceMode === 'edge') {
graph.nodes[CANVAS_COHERENCE_MASK_EDGE] = {
type: 'mask_edge',
id: CANVAS_COHERENCE_MASK_EDGE,
is_intermediate: true,
edge_blur: maskBlur,
edge_size: maskBlur * 2,
low_threshold: 100,
high_threshold: 200,
};
// Handle Scaled Dimensions For Mask Edge
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
});
} else {
graph.nodes[CANVAS_COHERENCE_MASK_EDGE] = {
...(graph.nodes[CANVAS_COHERENCE_MASK_EDGE] as MaskEdgeInvocation),
image: canvasMaskImage,
};
}
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
}
// Plug Denoise Mask To Coherence Denoise Latents
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'denoise_mask',
},
destination: {
node_id: CANVAS_COHERENCE_DENOISE_LATENTS,
field: 'denoise_mask',
},
});
}
// Handle Seed
if (shouldRandomizeSeed) {
// Random int node to generate the starting seed

View File

@ -2,7 +2,6 @@ import { logger } from 'app/logging/logger';
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import {
ImageBlurInvocation,
ImageDTO,
ImageToLatentsInvocation,
InfillPatchMatchInvocation,
@ -19,6 +18,8 @@ import { addVAEToGraph } from './addVAEToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
CANVAS_COHERENCE_INPAINT_CREATE_MASK,
CANVAS_COHERENCE_MASK_EDGE,
CANVAS_COHERENCE_NOISE,
CANVAS_COHERENCE_NOISE_INCREMENT,
CANVAS_OUTPAINT_GRAPH,
@ -34,7 +35,6 @@ import {
ITERATE,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
MASK_BLUR,
MASK_COMBINE,
MASK_FROM_ALPHA,
MASK_RESIZE_DOWN,
@ -71,10 +71,11 @@ export const buildCanvasOutpaintGraph = (
shouldUseNoiseSettings,
shouldUseCpuNoise,
maskBlur,
maskBlurMethod,
canvasCoherenceMode,
canvasCoherenceSteps,
canvasCoherenceStrength,
tileSize,
infillTileSize,
infillPatchmatchDownscaleSize,
infillMethod,
clipSkip,
seamlessXAxis,
@ -96,6 +97,12 @@ export const buildCanvasOutpaintGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
let modelLoaderNodeId = MAIN_MODEL_LOADER;
const use_cpu = shouldUseNoiseSettings
@ -141,18 +148,11 @@ export const buildCanvasOutpaintGraph = (
is_intermediate: true,
mask2: canvasMaskImage,
},
[MASK_BLUR]: {
type: 'img_blur',
id: MASK_BLUR,
is_intermediate: true,
radius: maskBlur,
blur_type: maskBlurMethod,
},
[INPAINT_IMAGE]: {
type: 'i2l',
id: INPAINT_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[NOISE]: {
type: 'noise',
@ -164,7 +164,7 @@ export const buildCanvasOutpaintGraph = (
type: 'create_denoise_mask',
id: INPAINT_CREATE_MASK,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -202,7 +202,7 @@ export const buildCanvasOutpaintGraph = (
type: 'l2i',
id: LATENTS_TO_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[CANVAS_OUTPUT]: {
type: 'color_correct',
@ -333,7 +333,7 @@ export const buildCanvasOutpaintGraph = (
// Create Inpaint Mask
{
source: {
node_id: MASK_BLUR,
node_id: isUsingScaledDimensions ? MASK_RESIZE_UP : MASK_COMBINE,
field: 'image',
},
destination: {
@ -443,6 +443,16 @@ export const buildCanvasOutpaintGraph = (
field: 'latents',
},
},
{
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Decode the result from Inpaint
{
source: {
@ -463,6 +473,7 @@ export const buildCanvasOutpaintGraph = (
type: 'infill_patchmatch',
id: INPAINT_INFILL,
is_intermediate: true,
downscale: infillPatchmatchDownscaleSize,
};
}
@ -474,17 +485,25 @@ export const buildCanvasOutpaintGraph = (
};
}
if (infillMethod === 'cv2') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_cv2',
id: INPAINT_INFILL,
is_intermediate: true,
};
}
if (infillMethod === 'tile') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_tile',
id: INPAINT_INFILL,
is_intermediate: true,
tile_size: tileSize,
tile_size: infillTileSize,
};
}
// Handle Scale Before Processing
if (['auto', 'manual'].includes(boundingBoxScaleMethod)) {
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;
const scaledHeight: number = scaledBoundingBoxDimensions.height;
@ -546,16 +565,6 @@ export const buildCanvasOutpaintGraph = (
field: 'image',
},
},
{
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Take combined mask and resize and then blur
{
source: {
@ -567,16 +576,7 @@ export const buildCanvasOutpaintGraph = (
field: 'image',
},
},
{
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: MASK_BLUR,
field: 'image',
},
},
// Resize Results Down
{
source: {
@ -658,32 +658,8 @@ export const buildCanvasOutpaintGraph = (
...(graph.nodes[INPAINT_IMAGE] as ImageToLatentsInvocation),
image: canvasInitImage,
};
graph.nodes[MASK_BLUR] = {
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
};
graph.edges.push(
// Take combined mask and plug it to blur
{
source: {
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
node_id: MASK_BLUR,
field: 'image',
},
},
{
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Color Correct The Inpainted Result
{
source: {
@ -707,7 +683,7 @@ export const buildCanvasOutpaintGraph = (
},
{
source: {
node_id: MASK_BLUR,
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
@ -718,6 +694,115 @@ export const buildCanvasOutpaintGraph = (
);
}
// Handle Coherence Mode
if (canvasCoherenceMode !== 'unmasked') {
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
type: 'create_denoise_mask',
id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
is_intermediate: true,
fp32,
};
// Handle Image Input For Mask Creation
graph.edges.push({
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'image',
},
});
// Create Mask If Coherence Mode Is Mask
if (canvasCoherenceMode === 'mask') {
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
} else {
graph.edges.push({
source: {
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
}
}
if (canvasCoherenceMode === 'edge') {
graph.nodes[CANVAS_COHERENCE_MASK_EDGE] = {
type: 'mask_edge',
id: CANVAS_COHERENCE_MASK_EDGE,
is_intermediate: true,
edge_blur: maskBlur,
edge_size: maskBlur * 2,
low_threshold: 100,
high_threshold: 200,
};
// Handle Scaled Dimensions For Mask Edge
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
});
} else {
graph.edges.push({
source: {
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
});
}
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
}
// Plug Denoise Mask To Coherence Denoise Latents
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'denoise_mask',
},
destination: {
node_id: CANVAS_COHERENCE_DENOISE_LATENTS,
field: 'denoise_mask',
},
});
}
// Handle Seed
if (shouldRandomizeSeed) {
// Random int node to generate the starting seed

View File

@ -67,6 +67,8 @@ export const buildCanvasSDXLImageToImageGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
@ -133,7 +135,7 @@ export const buildCanvasSDXLImageToImageGraph = (
type: 'i2l',
id: IMAGE_TO_LATENTS,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[SDXL_DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -258,7 +260,7 @@ export const buildCanvasSDXLImageToImageGraph = (
id: LATENTS_TO_IMAGE,
type: 'l2i',
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
graph.nodes[CANVAS_OUTPUT] = {
id: CANVAS_OUTPUT,
@ -305,7 +307,7 @@ export const buildCanvasSDXLImageToImageGraph = (
type: 'l2i',
id: CANVAS_OUTPUT,
is_intermediate: !shouldAutoSave,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
(graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image =

View File

@ -6,6 +6,7 @@ import {
ImageBlurInvocation,
ImageDTO,
ImageToLatentsInvocation,
MaskEdgeInvocation,
NoiseInvocation,
RandomIntInvocation,
RangeOfSizeInvocation,
@ -19,6 +20,8 @@ import { addVAEToGraph } from './addVAEToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
CANVAS_COHERENCE_INPAINT_CREATE_MASK,
CANVAS_COHERENCE_MASK_EDGE,
CANVAS_COHERENCE_NOISE,
CANVAS_COHERENCE_NOISE_INCREMENT,
CANVAS_OUTPUT,
@ -68,6 +71,7 @@ export const buildCanvasSDXLInpaintGraph = (
shouldUseCpuNoise,
maskBlur,
maskBlurMethod,
canvasCoherenceMode,
canvasCoherenceSteps,
canvasCoherenceStrength,
seamlessXAxis,
@ -96,6 +100,12 @@ export const buildCanvasSDXLInpaintGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
let modelLoaderNodeId = SDXL_MODEL_LOADER;
const use_cpu = shouldUseNoiseSettings
@ -137,7 +147,7 @@ export const buildCanvasSDXLInpaintGraph = (
type: 'i2l',
id: INPAINT_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[NOISE]: {
type: 'noise',
@ -149,7 +159,7 @@ export const buildCanvasSDXLInpaintGraph = (
type: 'create_denoise_mask',
id: INPAINT_CREATE_MASK,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[SDXL_DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -177,7 +187,7 @@ export const buildCanvasSDXLInpaintGraph = (
},
[CANVAS_COHERENCE_DENOISE_LATENTS]: {
type: 'denoise_latents',
id: SDXL_DENOISE_LATENTS,
id: CANVAS_COHERENCE_DENOISE_LATENTS,
is_intermediate: true,
steps: canvasCoherenceSteps,
cfg_scale: cfg_scale,
@ -189,7 +199,7 @@ export const buildCanvasSDXLInpaintGraph = (
type: 'l2i',
id: LATENTS_TO_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[CANVAS_OUTPUT]: {
type: 'color_correct',
@ -433,7 +443,7 @@ export const buildCanvasSDXLInpaintGraph = (
};
// Handle Scale Before Processing
if (['auto', 'manual'].includes(boundingBoxScaleMethod)) {
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;
const scaledHeight: number = scaledBoundingBoxDimensions.height;
@ -596,6 +606,116 @@ export const buildCanvasSDXLInpaintGraph = (
);
}
// Handle Coherence Mode
if (canvasCoherenceMode !== 'unmasked') {
// Create Mask If Coherence Mode Is Not Full
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
type: 'create_denoise_mask',
id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
is_intermediate: true,
fp32,
};
// Handle Image Input For Mask Creation
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: INPAINT_IMAGE_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'image',
},
});
} else {
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
...(graph.nodes[
CANVAS_COHERENCE_INPAINT_CREATE_MASK
] as CreateDenoiseMaskInvocation),
image: canvasInitImage,
};
}
// Create Mask If Coherence Mode Is Mask
if (canvasCoherenceMode === 'mask') {
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
} else {
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
...(graph.nodes[
CANVAS_COHERENCE_INPAINT_CREATE_MASK
] as CreateDenoiseMaskInvocation),
mask: canvasMaskImage,
};
}
}
// Create Mask Edge If Coherence Mode Is Edge
if (canvasCoherenceMode === 'edge') {
graph.nodes[CANVAS_COHERENCE_MASK_EDGE] = {
type: 'mask_edge',
id: CANVAS_COHERENCE_MASK_EDGE,
is_intermediate: true,
edge_blur: maskBlur,
edge_size: maskBlur * 2,
low_threshold: 100,
high_threshold: 200,
};
// Handle Scaled Dimensions For Mask Edge
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
});
} else {
graph.nodes[CANVAS_COHERENCE_MASK_EDGE] = {
...(graph.nodes[CANVAS_COHERENCE_MASK_EDGE] as MaskEdgeInvocation),
image: canvasMaskImage,
};
}
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
}
// Plug Denoise Mask To Coherence Denoise Latents
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'denoise_mask',
},
destination: {
node_id: CANVAS_COHERENCE_DENOISE_LATENTS,
field: 'denoise_mask',
},
});
}
// Handle Seed
if (shouldRandomizeSeed) {
// Random int node to generate the starting seed

View File

@ -2,7 +2,6 @@ import { logger } from 'app/logging/logger';
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import {
ImageBlurInvocation,
ImageDTO,
ImageToLatentsInvocation,
InfillPatchMatchInvocation,
@ -20,6 +19,8 @@ import { addVAEToGraph } from './addVAEToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
CANVAS_COHERENCE_INPAINT_CREATE_MASK,
CANVAS_COHERENCE_MASK_EDGE,
CANVAS_COHERENCE_NOISE,
CANVAS_COHERENCE_NOISE_INCREMENT,
CANVAS_OUTPUT,
@ -31,7 +32,6 @@ import {
INPAINT_INFILL_RESIZE_DOWN,
ITERATE,
LATENTS_TO_IMAGE,
MASK_BLUR,
MASK_COMBINE,
MASK_FROM_ALPHA,
MASK_RESIZE_DOWN,
@ -72,10 +72,11 @@ export const buildCanvasSDXLOutpaintGraph = (
shouldUseNoiseSettings,
shouldUseCpuNoise,
maskBlur,
maskBlurMethod,
canvasCoherenceMode,
canvasCoherenceSteps,
canvasCoherenceStrength,
tileSize,
infillTileSize,
infillPatchmatchDownscaleSize,
infillMethod,
seamlessXAxis,
seamlessYAxis,
@ -103,6 +104,12 @@ export const buildCanvasSDXLOutpaintGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
let modelLoaderNodeId = SDXL_MODEL_LOADER;
const use_cpu = shouldUseNoiseSettings
@ -145,18 +152,11 @@ export const buildCanvasSDXLOutpaintGraph = (
is_intermediate: true,
mask2: canvasMaskImage,
},
[MASK_BLUR]: {
type: 'img_blur',
id: MASK_BLUR,
is_intermediate: true,
radius: maskBlur,
blur_type: maskBlurMethod,
},
[INPAINT_IMAGE]: {
type: 'i2l',
id: INPAINT_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[NOISE]: {
type: 'noise',
@ -168,7 +168,7 @@ export const buildCanvasSDXLOutpaintGraph = (
type: 'create_denoise_mask',
id: INPAINT_CREATE_MASK,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[SDXL_DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -208,7 +208,7 @@ export const buildCanvasSDXLOutpaintGraph = (
type: 'l2i',
id: LATENTS_TO_IMAGE,
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[CANVAS_OUTPUT]: {
type: 'color_correct',
@ -348,7 +348,7 @@ export const buildCanvasSDXLOutpaintGraph = (
// Create Inpaint Mask
{
source: {
node_id: MASK_BLUR,
node_id: isUsingScaledDimensions ? MASK_RESIZE_UP : MASK_COMBINE,
field: 'image',
},
destination: {
@ -410,7 +410,7 @@ export const buildCanvasSDXLOutpaintGraph = (
},
{
source: {
node_id: SDXL_MODEL_LOADER,
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
@ -458,6 +458,16 @@ export const buildCanvasSDXLOutpaintGraph = (
field: 'latents',
},
},
{
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Decode inpainted latents to image
{
source: {
@ -473,12 +483,12 @@ export const buildCanvasSDXLOutpaintGraph = (
};
// Add Infill Nodes
if (infillMethod === 'patchmatch') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_patchmatch',
id: INPAINT_INFILL,
is_intermediate: true,
downscale: infillPatchmatchDownscaleSize,
};
}
@ -490,17 +500,25 @@ export const buildCanvasSDXLOutpaintGraph = (
};
}
if (infillMethod === 'cv2') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_cv2',
id: INPAINT_INFILL,
is_intermediate: true,
};
}
if (infillMethod === 'tile') {
graph.nodes[INPAINT_INFILL] = {
type: 'infill_tile',
id: INPAINT_INFILL,
is_intermediate: true,
tile_size: tileSize,
tile_size: infillTileSize,
};
}
// Handle Scale Before Processing
if (['auto', 'manual'].includes(boundingBoxScaleMethod)) {
if (isUsingScaledDimensions) {
const scaledWidth: number = scaledBoundingBoxDimensions.width;
const scaledHeight: number = scaledBoundingBoxDimensions.height;
@ -562,16 +580,7 @@ export const buildCanvasSDXLOutpaintGraph = (
field: 'image',
},
},
{
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Take combined mask and resize and then blur
{
source: {
@ -583,16 +592,7 @@ export const buildCanvasSDXLOutpaintGraph = (
field: 'image',
},
},
{
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: MASK_BLUR,
field: 'image',
},
},
// Resize Results Down
{
source: {
@ -674,32 +674,8 @@ export const buildCanvasSDXLOutpaintGraph = (
...(graph.nodes[INPAINT_IMAGE] as ImageToLatentsInvocation),
image: canvasInitImage,
};
graph.nodes[MASK_BLUR] = {
...(graph.nodes[MASK_BLUR] as ImageBlurInvocation),
};
graph.edges.push(
// Take combined mask and plug it to blur
{
source: {
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
node_id: MASK_BLUR,
field: 'image',
},
},
{
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Color Correct The Inpainted Result
{
source: {
@ -723,7 +699,7 @@ export const buildCanvasSDXLOutpaintGraph = (
},
{
source: {
node_id: MASK_BLUR,
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
@ -734,7 +710,116 @@ export const buildCanvasSDXLOutpaintGraph = (
);
}
// Handle seed
// Handle Coherence Mode
if (canvasCoherenceMode !== 'unmasked') {
graph.nodes[CANVAS_COHERENCE_INPAINT_CREATE_MASK] = {
type: 'create_denoise_mask',
id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
is_intermediate: true,
fp32,
};
// Handle Image Input For Mask Creation
graph.edges.push({
source: {
node_id: INPAINT_INFILL,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'image',
},
});
// Create Mask If Coherence Mode Is Mask
if (canvasCoherenceMode === 'mask') {
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
} else {
graph.edges.push({
source: {
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
}
}
if (canvasCoherenceMode === 'edge') {
graph.nodes[CANVAS_COHERENCE_MASK_EDGE] = {
type: 'mask_edge',
id: CANVAS_COHERENCE_MASK_EDGE,
is_intermediate: true,
edge_blur: maskBlur,
edge_size: maskBlur * 2,
low_threshold: 100,
high_threshold: 200,
};
// Handle Scaled Dimensions For Mask Edge
if (isUsingScaledDimensions) {
graph.edges.push({
source: {
node_id: MASK_RESIZE_UP,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
});
} else {
graph.edges.push({
source: {
node_id: MASK_COMBINE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
});
}
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_MASK_EDGE,
field: 'image',
},
destination: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'mask',
},
});
}
// Plug Denoise Mask To Coherence Denoise Latents
graph.edges.push({
source: {
node_id: CANVAS_COHERENCE_INPAINT_CREATE_MASK,
field: 'denoise_mask',
},
destination: {
node_id: CANVAS_COHERENCE_DENOISE_LATENTS,
field: 'denoise_mask',
},
});
}
// Handle Seed
if (shouldRandomizeSeed) {
// Random int node to generate the starting seed
const randomIntNode: RandomIntInvocation = {

View File

@ -61,6 +61,8 @@ export const buildCanvasSDXLTextToImageGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
@ -252,7 +254,7 @@ export const buildCanvasSDXLTextToImageGraph = (
id: LATENTS_TO_IMAGE,
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
graph.nodes[CANVAS_OUTPUT] = {
@ -290,7 +292,7 @@ export const buildCanvasSDXLTextToImageGraph = (
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
id: CANVAS_OUTPUT,
is_intermediate: !shouldAutoSave,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
graph.edges.push({

View File

@ -59,6 +59,8 @@ export const buildCanvasTextToImageGraph = (
shouldAutoSave,
} = state.canvas;
const fp32 = vaePrecision === 'fp32';
const isUsingScaledDimensions = ['auto', 'manual'].includes(
boundingBoxScaleMethod
);
@ -238,7 +240,7 @@ export const buildCanvasTextToImageGraph = (
id: LATENTS_TO_IMAGE,
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
is_intermediate: true,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
graph.nodes[CANVAS_OUTPUT] = {
@ -276,7 +278,7 @@ export const buildCanvasTextToImageGraph = (
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
id: CANVAS_OUTPUT,
is_intermediate: !shouldAutoSave,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
};
graph.edges.push({

View File

@ -84,6 +84,8 @@ export const buildLinearImageToImageGraph = (
throw new Error('No model found in state');
}
const fp32 = vaePrecision === 'fp32';
let modelLoaderNodeId = MAIN_MODEL_LOADER;
const use_cpu = shouldUseNoiseSettings
@ -122,7 +124,7 @@ export const buildLinearImageToImageGraph = (
[LATENTS_TO_IMAGE]: {
type: 'l2i',
id: LATENTS_TO_IMAGE,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -140,7 +142,7 @@ export const buildLinearImageToImageGraph = (
// image: {
// image_name: initialImage.image_name,
// },
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
},
edges: [

View File

@ -84,6 +84,8 @@ export const buildLinearSDXLImageToImageGraph = (
throw new Error('No model found in state');
}
const fp32 = vaePrecision === 'fp32';
// Model Loader ID
let modelLoaderNodeId = SDXL_MODEL_LOADER;
@ -124,7 +126,7 @@ export const buildLinearSDXLImageToImageGraph = (
[LATENTS_TO_IMAGE]: {
type: 'l2i',
id: LATENTS_TO_IMAGE,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
[SDXL_DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -144,7 +146,7 @@ export const buildLinearSDXLImageToImageGraph = (
// image: {
// image_name: initialImage.image_name,
// },
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
},
edges: [

View File

@ -62,6 +62,8 @@ export const buildLinearSDXLTextToImageGraph = (
throw new Error('No model found in state');
}
const fp32 = vaePrecision === 'fp32';
// Construct Style Prompt
const { craftedPositiveStylePrompt, craftedNegativeStylePrompt } =
craftSDXLStylePrompt(state, shouldConcatSDXLStylePrompt);
@ -118,7 +120,7 @@ export const buildLinearSDXLTextToImageGraph = (
[LATENTS_TO_IMAGE]: {
type: 'l2i',
id: LATENTS_TO_IMAGE,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
},
edges: [

View File

@ -57,6 +57,8 @@ export const buildLinearTextToImageGraph = (
throw new Error('No model found in state');
}
const fp32 = vaePrecision === 'fp32';
const isUsingOnnxModel = model.model_type === 'onnx';
let modelLoaderNodeId = isUsingOnnxModel
@ -139,7 +141,7 @@ export const buildLinearTextToImageGraph = (
[LATENTS_TO_IMAGE]: {
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
id: LATENTS_TO_IMAGE,
fp32: vaePrecision === 'fp32' ? true : false,
fp32,
},
},
edges: [

View File

@ -27,11 +27,15 @@ export const INPAINT_INFILL = 'inpaint_infill';
export const INPAINT_INFILL_RESIZE_DOWN = 'inpaint_infill_resize_down';
export const INPAINT_FINAL_IMAGE = 'inpaint_final_image';
export const INPAINT_CREATE_MASK = 'inpaint_create_mask';
export const INPAINT_MASK = 'inpaint_mask';
export const CANVAS_COHERENCE_DENOISE_LATENTS =
'canvas_coherence_denoise_latents';
export const CANVAS_COHERENCE_NOISE = 'canvas_coherence_noise';
export const CANVAS_COHERENCE_NOISE_INCREMENT =
'canvas_coherence_noise_increment';
export const CANVAS_COHERENCE_MASK_EDGE = 'canvas_coherence_mask_edge';
export const CANVAS_COHERENCE_INPAINT_CREATE_MASK =
'canvas_coherence_inpaint_create_mask';
export const MASK_FROM_ALPHA = 'tomask';
export const MASK_EDGE = 'mask_edge';
export const MASK_BLUR = 'mask_blur';

View File

@ -0,0 +1,42 @@
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { IAISelectDataType } from 'common/components/IAIMantineSearchableSelect';
import IAIMantineSelect from 'common/components/IAIMantineSelect';
import { setCanvasCoherenceMode } from 'features/parameters/store/generationSlice';
import { CanvasCoherenceModeParam } from 'features/parameters/types/parameterSchemas';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
const coherenceModeSelectData: IAISelectDataType[] = [
{ label: 'Unmasked', value: 'unmasked' },
{ label: 'Mask', value: 'mask' },
{ label: 'Mask Edge', value: 'edge' },
];
const ParamCanvasCoherenceMode = () => {
const dispatch = useAppDispatch();
const canvasCoherenceMode = useAppSelector(
(state: RootState) => state.generation.canvasCoherenceMode
);
const { t } = useTranslation();
const handleCoherenceModeChange = (v: string | null) => {
if (!v) {
return;
}
dispatch(setCanvasCoherenceMode(v as CanvasCoherenceModeParam));
};
return (
<IAIMantineSelect
label={t('parameters.coherenceMode')}
data={coherenceModeSelectData}
value={canvasCoherenceMode}
onChange={handleCoherenceModeChange}
/>
);
};
export default memo(ParamCanvasCoherenceMode);

View File

@ -3,6 +3,7 @@ import IAICollapse from 'common/components/IAICollapse';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import SubParametersWrapper from '../../SubParametersWrapper';
import ParamCanvasCoherenceMode from './CoherencePass/ParamCanvasCoherenceMode';
import ParamCanvasCoherenceSteps from './CoherencePass/ParamCanvasCoherenceSteps';
import ParamCanvasCoherenceStrength from './CoherencePass/ParamCanvasCoherenceStrength';
import ParamMaskBlur from './MaskAdjustment/ParamMaskBlur';
@ -14,15 +15,16 @@ const ParamCompositingSettingsCollapse = () => {
return (
<IAICollapse label={t('parameters.compositingSettingsHeader')}>
<Flex sx={{ flexDirection: 'column', gap: 2 }}>
<SubParametersWrapper label={t('parameters.coherencePassHeader')}>
<ParamCanvasCoherenceMode />
<ParamCanvasCoherenceSteps />
<ParamCanvasCoherenceStrength />
</SubParametersWrapper>
<Divider />
<SubParametersWrapper label={t('parameters.maskAdjustmentsHeader')}>
<ParamMaskBlur />
<ParamMaskBlurMethod />
</SubParametersWrapper>
<Divider />
<SubParametersWrapper label={t('parameters.coherencePassHeader')}>
<ParamCanvasCoherenceSteps />
<ParamCanvasCoherenceStrength />
</SubParametersWrapper>
</Flex>
</IAICollapse>
);

View File

@ -5,7 +5,7 @@ import { useTranslation } from 'react-i18next';
import IAICollapse from 'common/components/IAICollapse';
import SubParametersWrapper from '../../SubParametersWrapper';
import ParamInfillMethod from './ParamInfillMethod';
import ParamInfillTilesize from './ParamInfillTilesize';
import ParamInfillOptions from './ParamInfillOptions';
import ParamScaleBeforeProcessing from './ParamScaleBeforeProcessing';
import ParamScaledHeight from './ParamScaledHeight';
import ParamScaledWidth from './ParamScaledWidth';
@ -18,7 +18,7 @@ const ParamInfillCollapse = () => {
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<SubParametersWrapper>
<ParamInfillMethod />
<ParamInfillTilesize />
<ParamInfillOptions />
</SubParametersWrapper>
<Divider />
<SubParametersWrapper>

View File

@ -27,9 +27,7 @@ const ParamInfillMethod = () => {
const { data: appConfigData, isLoading } = useGetAppConfigQuery();
const infill_methods = appConfigData?.infill_methods.filter(
(method) => method !== 'lama'
);
const infill_methods = appConfigData?.infill_methods;
const { t } = useTranslation();

View File

@ -0,0 +1,29 @@
import { Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import ParamInfillPatchmatchDownscaleSize from './ParamInfillPatchmatchDownscaleSize';
import ParamInfillTilesize from './ParamInfillTilesize';
const selector = createSelector(
[generationSelector],
(parameters) => {
const { infillMethod } = parameters;
return {
infillMethod,
};
},
defaultSelectorOptions
);
export default function ParamInfillOptions() {
const { infillMethod } = useAppSelector(selector);
return (
<Flex>
{infillMethod === 'tile' && <ParamInfillTilesize />}
{infillMethod === 'patchmatch' && <ParamInfillPatchmatchDownscaleSize />}
</Flex>
);
}

View File

@ -0,0 +1,58 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider from 'common/components/IAISlider';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { setInfillPatchmatchDownscaleSize } from 'features/parameters/store/generationSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const selector = createSelector(
[generationSelector],
(parameters) => {
const { infillPatchmatchDownscaleSize, infillMethod } = parameters;
return {
infillPatchmatchDownscaleSize,
infillMethod,
};
},
defaultSelectorOptions
);
const ParamInfillPatchmatchDownscaleSize = () => {
const dispatch = useAppDispatch();
const { infillPatchmatchDownscaleSize, infillMethod } =
useAppSelector(selector);
const { t } = useTranslation();
const handleChange = useCallback(
(v: number) => {
dispatch(setInfillPatchmatchDownscaleSize(v));
},
[dispatch]
);
const handleReset = useCallback(() => {
dispatch(setInfillPatchmatchDownscaleSize(2));
}, [dispatch]);
return (
<IAISlider
isDisabled={infillMethod !== 'patchmatch'}
label={t('parameters.patchmatchDownScaleSize')}
min={1}
max={10}
value={infillPatchmatchDownscaleSize}
onChange={handleChange}
withInput
withSliderMarks
withReset
handleReset={handleReset}
/>
);
};
export default memo(ParamInfillPatchmatchDownscaleSize);

View File

@ -3,7 +3,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider from 'common/components/IAISlider';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { setTileSize } from 'features/parameters/store/generationSlice';
import { setInfillTileSize } from 'features/parameters/store/generationSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@ -11,10 +11,10 @@ import { useTranslation } from 'react-i18next';
const selector = createSelector(
[generationSelector],
(parameters) => {
const { tileSize, infillMethod } = parameters;
const { infillTileSize, infillMethod } = parameters;
return {
tileSize,
infillTileSize,
infillMethod,
};
},
@ -23,19 +23,19 @@ const selector = createSelector(
const ParamInfillTileSize = () => {
const dispatch = useAppDispatch();
const { tileSize, infillMethod } = useAppSelector(selector);
const { infillTileSize, infillMethod } = useAppSelector(selector);
const { t } = useTranslation();
const handleChange = useCallback(
(v: number) => {
dispatch(setTileSize(v));
dispatch(setInfillTileSize(v));
},
[dispatch]
);
const handleReset = useCallback(() => {
dispatch(setTileSize(32));
dispatch(setInfillTileSize(32));
}, [dispatch]);
return (
@ -45,7 +45,7 @@ const ParamInfillTileSize = () => {
min={16}
max={64}
sliderNumberInputProps={{ max: 256 }}
value={tileSize}
value={infillTileSize}
onChange={handleChange}
withInput
withSliderMarks

View File

@ -7,6 +7,7 @@ import { ImageDTO } from 'services/api/types';
import { clipSkipMap } from '../types/constants';
import {
CanvasCoherenceModeParam,
CfgScaleParam,
HeightParam,
MainModelParam,
@ -37,6 +38,7 @@ export interface GenerationState {
scheduler: SchedulerParam;
maskBlur: number;
maskBlurMethod: MaskBlurMethodParam;
canvasCoherenceMode: CanvasCoherenceModeParam;
canvasCoherenceSteps: number;
canvasCoherenceStrength: StrengthParam;
seed: SeedParam;
@ -47,7 +49,8 @@ export interface GenerationState {
shouldUseNoiseSettings: boolean;
steps: StepsParam;
threshold: number;
tileSize: number;
infillTileSize: number;
infillPatchmatchDownscaleSize: number;
variationAmount: number;
width: WidthParam;
shouldUseSymmetry: boolean;
@ -77,6 +80,7 @@ export const initialGenerationState: GenerationState = {
scheduler: 'euler',
maskBlur: 16,
maskBlurMethod: 'box',
canvasCoherenceMode: 'edge',
canvasCoherenceSteps: 20,
canvasCoherenceStrength: 0.3,
seed: 0,
@ -87,7 +91,8 @@ export const initialGenerationState: GenerationState = {
shouldUseNoiseSettings: false,
steps: 50,
threshold: 0,
tileSize: 32,
infillTileSize: 32,
infillPatchmatchDownscaleSize: 1,
variationAmount: 0.1,
width: 512,
shouldUseSymmetry: false,
@ -206,18 +211,30 @@ export const generationSlice = createSlice({
setMaskBlurMethod: (state, action: PayloadAction<MaskBlurMethodParam>) => {
state.maskBlurMethod = action.payload;
},
setCanvasCoherenceMode: (
state,
action: PayloadAction<CanvasCoherenceModeParam>
) => {
state.canvasCoherenceMode = action.payload;
},
setCanvasCoherenceSteps: (state, action: PayloadAction<number>) => {
state.canvasCoherenceSteps = action.payload;
},
setCanvasCoherenceStrength: (state, action: PayloadAction<number>) => {
state.canvasCoherenceStrength = action.payload;
},
setTileSize: (state, action: PayloadAction<number>) => {
state.tileSize = action.payload;
},
setInfillMethod: (state, action: PayloadAction<string>) => {
state.infillMethod = action.payload;
},
setInfillTileSize: (state, action: PayloadAction<number>) => {
state.infillTileSize = action.payload;
},
setInfillPatchmatchDownscaleSize: (
state,
action: PayloadAction<number>
) => {
state.infillPatchmatchDownscaleSize = action.payload;
},
setShouldUseSymmetry: (state, action: PayloadAction<boolean>) => {
state.shouldUseSymmetry = action.payload;
},
@ -323,6 +340,7 @@ export const {
setScheduler,
setMaskBlur,
setMaskBlurMethod,
setCanvasCoherenceMode,
setCanvasCoherenceSteps,
setCanvasCoherenceStrength,
setSeed,
@ -332,7 +350,8 @@ export const {
setShouldRandomizeSeed,
setSteps,
setThreshold,
setTileSize,
setInfillTileSize,
setInfillPatchmatchDownscaleSize,
setVariationAmount,
setShouldUseSymmetry,
setHorizontalSymmetrySteps,

View File

@ -418,6 +418,22 @@ export const isValidMaskBlurMethod = (
val: unknown
): val is MaskBlurMethodParam => zMaskBlurMethod.safeParse(val).success;
/**
* Zod schema for a Canvas Coherence Mode method parameter
*/
export const zCanvasCoherenceMode = z.enum(['unmasked', 'mask', 'edge']);
/**
* Type alias for Canvas Coherence Mode parameter, inferred from its zod schema
*/
export type CanvasCoherenceModeParam = z.infer<typeof zCanvasCoherenceMode>;
/**
* Validates/type-guards a value as a mask blur method parameter
*/
export const isValidCoherenceModeParam = (
val: unknown
): val is CanvasCoherenceModeParam =>
zCanvasCoherenceMode.safeParse(val).success;
// /**
// * Zod schema for BaseModelType
// */

File diff suppressed because one or more lines are too long

View File

@ -112,6 +112,7 @@ export type ImageScaleInvocation = s['ImageScaleInvocation'];
export type InfillPatchMatchInvocation = s['InfillPatchMatchInvocation'];
export type InfillTileInvocation = s['InfillTileInvocation'];
export type CreateDenoiseMaskInvocation = s['CreateDenoiseMaskInvocation'];
export type MaskEdgeInvocation = s['MaskEdgeInvocation'];
export type RandomIntInvocation = s['RandomIntInvocation'];
export type CompelInvocation = s['CompelInvocation'];
export type DynamicPromptInvocation = s['DynamicPromptInvocation'];