wip: Initial implementation of safetensor support for IP Adapter

This commit is contained in:
blessedcoolant
2024-03-24 01:40:28 +05:30
parent e46c22e41a
commit b013d0e064
6 changed files with 103 additions and 53 deletions

View File

@ -323,10 +323,13 @@ class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}")
class IPAdapterConfig(ModelConfigBase):
"""Model config for IP Adaptor format models."""
class IPAdapterBaseConfig(ModelConfigBase):
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
class IPAdapterDiffusersConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter diffusers format models."""
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]
@ -335,6 +338,16 @@ class IPAdapterConfig(ModelConfigBase):
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}")
class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter checkpoint format models."""
format: Literal[ModelFormat.Checkpoint]
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
@ -390,7 +403,8 @@ AnyModelConfig = Annotated[
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()],
Annotated[IPAdapterDiffusersConfig, IPAdapterDiffusersConfig.get_tag()],
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
],

View File

@ -19,6 +19,7 @@ from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.Checkpoint)
class IPAdapterInvokeAILoader(ModelLoader):
"""Class to load IP Adapter diffusers models."""
@ -31,7 +32,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
if submodel_type is not None:
raise ValueError("There are no submodels in an IP-Adapter model.")
model = build_ip_adapter(
ip_adapter_ckpt_path=str(model_path / "ip_adapter.bin"),
ip_adapter_ckpt_path=str(model_path),
device=torch.device("cpu"),
dtype=self._torch_dtype,
)

View File

@ -230,9 +230,10 @@ class ModelProbe(object):
return ModelType.LoRA
elif any(key.startswith(v) for v in {"controlnet", "control_model", "input_blocks"}):
return ModelType.ControlNet
elif any(key.startswith(v) for v in {"image_proj.", "ip_adapter."}):
return ModelType.IPAdapter
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
else:
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
@ -527,8 +528,15 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
class IPAdapterCheckpointProbe(CheckpointProbeBase):
"""Class for probing IP Adapters"""
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
checkpoint = self.checkpoint
for key in checkpoint.keys():
if not key.startswith(("image_proj.", "ip_adapter.")):
continue
return BaseModelType.StableDiffusionXL
raise InvalidModelConfigException(f"{self.model_path}: Unable to determine base type")
class CLIPVisionCheckpointProbe(CheckpointProbeBase):
@ -689,9 +697,7 @@ class ControlNetFolderProbe(FolderProbeBase):
else (
BaseModelType.StableDiffusion2
if dimension == 1024
else BaseModelType.StableDiffusionXL
if dimension == 2048
else None
else BaseModelType.StableDiffusionXL if dimension == 2048 else None
)
)
if not base_model:
@ -768,7 +774,7 @@ class T2IAdapterFolderProbe(FolderProbeBase):
)
############## register probe classes ######
# Register probe classes
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe)