initial experiments

This commit is contained in:
Damian at mba 2022-10-12 23:29:48 +02:00
parent 07a3df6001
commit b0b1993918
2 changed files with 21 additions and 0 deletions

View File

@ -1,4 +1,6 @@
"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers"""
from enum import Enum
import k_diffusion as K
import torch
import torch.nn as nn
@ -25,6 +27,9 @@ def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
minval = max(min(-1, scale*minval), -threshold)
return torch.clamp(result, min=minval, max=maxval)
class AttentionLayer(Enum):
SELF = 1
TOKENS = 2
class CFGDenoiser(nn.Module):
def __init__(self, model, threshold = 0, warmup = 0):
@ -34,11 +39,22 @@ class CFGDenoiser(nn.Module):
self.warmup_max = warmup
self.warmup = max(warmup / 10, 1)
def get_attention_module(self, which: AttentionLayer):
which_attn = "attn1" if which is AttentionLayer.SELF else "attn2"
module = next(module for name,module in self.inner_model.named_modules() if
type(module).__name__ == "CrossAttention" and which_attn in name)
return module
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
module = self.get_attention_module(AttentionLayer.TOKENS)
if self.warmup < self.warmup_max:
thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max))
self.warmup += 1

View File

@ -4,6 +4,8 @@ ldm.models.diffusion.sampler
Base class for ldm.models.diffusion.ddim, ldm.models.diffusion.ksampler, etc
'''
from enum import Enum
import torch
import numpy as np
from tqdm import tqdm
@ -411,3 +413,6 @@ class Sampler(object):
return self.model.inner_model.q_sample(x0,ts)
'''
return self.model.q_sample(x0,ts)