mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
initial experiments
This commit is contained in:
parent
07a3df6001
commit
b0b1993918
@ -1,4 +1,6 @@
|
||||
"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers"""
|
||||
from enum import Enum
|
||||
|
||||
import k_diffusion as K
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -25,6 +27,9 @@ def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
|
||||
minval = max(min(-1, scale*minval), -threshold)
|
||||
return torch.clamp(result, min=minval, max=maxval)
|
||||
|
||||
class AttentionLayer(Enum):
|
||||
SELF = 1
|
||||
TOKENS = 2
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model, threshold = 0, warmup = 0):
|
||||
@ -34,11 +39,22 @@ class CFGDenoiser(nn.Module):
|
||||
self.warmup_max = warmup
|
||||
self.warmup = max(warmup / 10, 1)
|
||||
|
||||
|
||||
def get_attention_module(self, which: AttentionLayer):
|
||||
which_attn = "attn1" if which is AttentionLayer.SELF else "attn2"
|
||||
module = next(module for name,module in self.inner_model.named_modules() if
|
||||
type(module).__name__ == "CrossAttention" and which_attn in name)
|
||||
return module
|
||||
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
||||
|
||||
module = self.get_attention_module(AttentionLayer.TOKENS)
|
||||
|
||||
if self.warmup < self.warmup_max:
|
||||
thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max))
|
||||
self.warmup += 1
|
||||
|
@ -4,6 +4,8 @@ ldm.models.diffusion.sampler
|
||||
Base class for ldm.models.diffusion.ddim, ldm.models.diffusion.ksampler, etc
|
||||
|
||||
'''
|
||||
from enum import Enum
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
@ -411,3 +413,6 @@ class Sampler(object):
|
||||
return self.model.inner_model.q_sample(x0,ts)
|
||||
'''
|
||||
return self.model.q_sample(x0,ts)
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user