Use the FluxPipeline.encode_prompt() api rather than trying to run the two text encoders separately.

This commit is contained in:
Ryan Dick 2024-08-07 15:12:01 +00:00
parent 3599a4a3e4
commit b227b9059d

View File

@ -43,41 +43,14 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model]) model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
clip_embeddings = self._run_clip_text_encoder(context, model_path) t5_embeddings, clip_embeddings = self._encode_prompt(context, model_path)
t5_embeddings = self._run_t5_text_encoder(context, model_path)
latents = self._run_diffusion(context, model_path, clip_embeddings, t5_embeddings) latents = self._run_diffusion(context, model_path, clip_embeddings, t5_embeddings)
image = self._run_vae_decoding(context, model_path, latents) image = self._run_vae_decoding(context, model_path, latents)
image_dto = context.images.save(image=image) image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto) return ImageOutput.build(image_dto)
def _run_clip_text_encoder(self, context: InvocationContext, flux_model_dir: Path) -> torch.Tensor: def _encode_prompt(self, context: InvocationContext, flux_model_dir: Path) -> tuple[torch.Tensor, torch.Tensor]:
"""Run the CLIP text encoder.""" # Determine the T5 max sequence lenght based on the model.
tokenizer_path = flux_model_dir / "tokenizer"
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, local_files_only=True)
assert isinstance(tokenizer, CLIPTokenizer)
text_encoder_path = flux_model_dir / "text_encoder"
with context.models.load_local_model(
model_path=text_encoder_path, loader=self._load_flux_text_encoder
) as text_encoder:
assert isinstance(text_encoder, CLIPTextModel)
flux_pipeline_with_te = FluxPipeline(
scheduler=None,
vae=None,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=None,
tokenizer_2=None,
transformer=None,
)
return flux_pipeline_with_te._get_clip_prompt_embeds(
prompt=self.positive_prompt, device=TorchDevice.choose_torch_device()
)
def _run_t5_text_encoder(self, context: InvocationContext, flux_model_dir: Path) -> torch.Tensor:
"""Run the T5 text encoder."""
if self.model == "flux-schnell": if self.model == "flux-schnell":
max_seq_len = 256 max_seq_len = 256
# elif self.model == "flux-dev": # elif self.model == "flux-dev":
@ -85,28 +58,51 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
else: else:
raise ValueError(f"Unknown model: {self.model}") raise ValueError(f"Unknown model: {self.model}")
tokenizer_path = flux_model_dir / "tokenizer_2" # Load the CLIP tokenizer.
tokenizer_2 = T5TokenizerFast.from_pretrained(tokenizer_path, local_files_only=True) clip_tokenizer_path = flux_model_dir / "tokenizer"
assert isinstance(tokenizer_2, T5TokenizerFast) clip_tokenizer = CLIPTokenizer.from_pretrained(clip_tokenizer_path, local_files_only=True)
assert isinstance(clip_tokenizer, CLIPTokenizer)
text_encoder_path = flux_model_dir / "text_encoder_2" # Load the T5 tokenizer.
with context.models.load_local_model( t5_tokenizer_path = flux_model_dir / "tokenizer_2"
model_path=text_encoder_path, loader=self._load_flux_text_encoder_2 t5_tokenizer = T5TokenizerFast.from_pretrained(t5_tokenizer_path, local_files_only=True)
) as text_encoder_2: assert isinstance(t5_tokenizer, T5TokenizerFast)
flux_pipeline_with_te2 = FluxPipeline(
clip_text_encoder_path = flux_model_dir / "text_encoder"
t5_text_encoder_path = flux_model_dir / "text_encoder_2"
with (
context.models.load_local_model(
model_path=clip_text_encoder_path, loader=self._load_flux_text_encoder
) as clip_text_encoder,
context.models.load_local_model(
model_path=t5_text_encoder_path, loader=self._load_flux_text_encoder_2
) as t5_text_encoder,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(t5_text_encoder, T5EncoderModel)
pipeline = FluxPipeline(
scheduler=None, scheduler=None,
vae=None, vae=None,
text_encoder=None, text_encoder=clip_text_encoder,
tokenizer=None, tokenizer=clip_tokenizer,
text_encoder_2=text_encoder_2, text_encoder_2=t5_text_encoder,
tokenizer_2=tokenizer_2, tokenizer_2=t5_tokenizer,
transformer=None, transformer=None,
) )
return flux_pipeline_with_te2._get_t5_prompt_embeds( # prompt_embeds: T5 embeddings
prompt=self.positive_prompt, max_sequence_length=max_seq_len, device=TorchDevice.choose_torch_device() # pooled_prompt_embeds: CLIP embeddings
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
prompt=self.positive_prompt,
prompt_2=self.positive_prompt,
device=TorchDevice.choose_torch_device(),
max_sequence_length=max_seq_len,
) )
assert isinstance(prompt_embeds, torch.Tensor)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return prompt_embeds, pooled_prompt_embeds
def _run_diffusion( def _run_diffusion(
self, self,
context: InvocationContext, context: InvocationContext,