mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Pass IP-Adapter conditioning via cross_attention_kwargs instead of concatenating to the text embedding. This avoids interference with other features that manipulate the text embedding (e.g. long prompts).
This commit is contained in:
@ -51,6 +51,18 @@ class PostprocessingSettings:
|
||||
v_symmetry_time_pct: Optional[float]
|
||||
|
||||
|
||||
@dataclass
|
||||
class IPAdapterConditioningInfo:
|
||||
cond_image_prompt_embeds: torch.Tensor
|
||||
"""IP-Adapter image encoder conditioning embeddings.
|
||||
Shape: (batch_size, num_tokens, encoding_dim). Typically: (1, 4, 1024) TODO(ryand): confirm
|
||||
"""
|
||||
uncond_image_prompt_embeds: torch.Tensor
|
||||
"""IP-Adapter image encoding embeddings to use for unconditional generation.
|
||||
Shape: (batch_size, num_tokens, encoding_dim). Typically: (1, 4, 1024) TODO(ryand): confirm
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningData:
|
||||
unconditioned_embeddings: BasicConditioningInfo
|
||||
@ -69,6 +81,8 @@ class ConditioningData:
|
||||
"""
|
||||
postprocessing_settings: Optional[PostprocessingSettings] = None
|
||||
|
||||
ip_adapter_conditioning: Optional[IPAdapterConditioningInfo] = None
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.text_embeddings.dtype
|
||||
|
@ -10,6 +10,7 @@ from typing_extensions import TypeAlias
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
ConditioningData,
|
||||
ExtraConditioningInfo,
|
||||
PostprocessingSettings,
|
||||
SDXLConditioningInfo,
|
||||
@ -232,6 +233,8 @@ class InvokeAIDiffuserComponent:
|
||||
total_step_count: int,
|
||||
**kwargs,
|
||||
):
|
||||
# TODO(ryand): Raise here if both cross attention control and ip-adapter are enabled?
|
||||
|
||||
cross_attention_control_types_to_do = []
|
||||
context: Context = self.cross_attention_control_context
|
||||
if self.cross_attention_control_context is not None:
|
||||
@ -339,11 +342,24 @@ class InvokeAIDiffuserComponent:
|
||||
|
||||
# methods below are called from do_diffusion_step and should be considered private to this class.
|
||||
|
||||
def _apply_standard_conditioning(self, x, sigma, conditioning_data, **kwargs):
|
||||
# fast batched path
|
||||
def _apply_standard_conditioning(self, x, sigma, conditioning_data: ConditioningData, **kwargs):
|
||||
"""Runs the conditioned and unconditioned UNet forward passes in a single batch for faster inference speed at
|
||||
the cost of higher memory usage.
|
||||
"""
|
||||
x_twice = torch.cat([x] * 2)
|
||||
sigma_twice = torch.cat([sigma] * 2)
|
||||
|
||||
cross_attention_kwargs = None
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": torch.cat(
|
||||
[
|
||||
conditioning_data.ip_adapter_conditioning.uncond_image_prompt_embeds,
|
||||
conditioning_data.ip_adapter_conditioning.cond_image_prompt_embeds,
|
||||
]
|
||||
)
|
||||
}
|
||||
|
||||
added_cond_kwargs = None
|
||||
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
|
||||
added_cond_kwargs = {
|
||||
@ -371,6 +387,7 @@ class InvokeAIDiffuserComponent:
|
||||
x_twice,
|
||||
sigma_twice,
|
||||
both_conditionings,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
@ -382,9 +399,12 @@ class InvokeAIDiffuserComponent:
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
sigma,
|
||||
conditioning_data,
|
||||
conditioning_data: ConditioningData,
|
||||
**kwargs,
|
||||
):
|
||||
"""Runs the conditioned and unconditioned UNet forward passes sequentially for lower memory usage at the cost of
|
||||
slower execution speed.
|
||||
"""
|
||||
# low-memory sequential path
|
||||
uncond_down_block, cond_down_block = None, None
|
||||
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
|
||||
@ -400,6 +420,13 @@ class InvokeAIDiffuserComponent:
|
||||
if mid_block_additional_residual is not None:
|
||||
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
|
||||
|
||||
# Run unconditional UNet denoising.
|
||||
cross_attention_kwargs = None
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": conditioning_data.ip_adapter_conditioning.uncond_image_prompt_embeds
|
||||
}
|
||||
|
||||
added_cond_kwargs = None
|
||||
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
|
||||
if is_sdxl:
|
||||
@ -412,12 +439,21 @@ class InvokeAIDiffuserComponent:
|
||||
x,
|
||||
sigma,
|
||||
conditioning_data.unconditioned_embeddings.embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
down_block_additional_residuals=uncond_down_block,
|
||||
mid_block_additional_residual=uncond_mid_block,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Run conditional UNet denoising.
|
||||
cross_attention_kwargs = None
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": conditioning_data.ip_adapter_conditioning.cond_image_prompt_embeds
|
||||
}
|
||||
|
||||
added_cond_kwargs = None
|
||||
if is_sdxl:
|
||||
added_cond_kwargs = {
|
||||
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
|
||||
@ -428,6 +464,7 @@ class InvokeAIDiffuserComponent:
|
||||
x,
|
||||
sigma,
|
||||
conditioning_data.text_embeddings.embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
down_block_additional_residuals=cond_down_block,
|
||||
mid_block_additional_residual=cond_mid_block,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
|
Reference in New Issue
Block a user