cleanup: remove unused scripts, cruft

App runs & tests pass.
This commit is contained in:
psychedelicious
2024-03-19 16:54:04 +11:00
parent 6c558279dd
commit b378cfcb46
38 changed files with 23 additions and 5601 deletions

View File

@ -2,32 +2,14 @@
Initialization file for invokeai.backend.util
"""
from .attention import auto_detect_slice_size # noqa: F401
from .devices import ( # noqa: F401
CPU_DEVICE,
CUDA_DEVICE,
MPS_DEVICE,
choose_precision,
choose_torch_device,
normalize_device,
torch_dtype,
)
from .devices import choose_precision, choose_torch_device
from .logging import InvokeAILogger
from .util import ( # TO DO: Clean this up; remove the unused symbols
GIG,
Chdir,
ask_user, # noqa
directory_size,
download_with_resume,
instantiate_from_config, # noqa
url_attachment_name, # noqa
)
from .util import GIG, Chdir, directory_size
__all__ = [
"GIG",
"directory_size",
"Chdir",
"download_with_resume",
"InvokeAILogger",
"choose_precision",
"choose_torch_device",

View File

@ -1,67 +0,0 @@
"""
Functions for better format logging
write_log -- logs the name of the output image, prompt, and prompt args to the terminal and different types of file
1 write_log_message -- Writes a message to the console
2 write_log_files -- Writes a message to files
2.1 write_log_default -- File in plain text
2.2 write_log_txt -- File in txt format
2.3 write_log_markdown -- File in markdown format
"""
import os
def write_log(results, log_path, file_types, output_cntr):
"""
logs the name of the output image, prompt, and prompt args to the terminal and files
"""
output_cntr = write_log_message(results, output_cntr)
write_log_files(results, log_path, file_types)
return output_cntr
def write_log_message(results, output_cntr):
"""logs to the terminal"""
if len(results) == 0:
return output_cntr
log_lines = [f"{path}: {prompt}\n" for path, prompt in results]
if len(log_lines) > 1:
subcntr = 1
for ll in log_lines:
print(f"[{output_cntr}.{subcntr}] {ll}", end="")
subcntr += 1
else:
print(f"[{output_cntr}] {log_lines[0]}", end="")
return output_cntr + 1
def write_log_files(results, log_path, file_types):
for file_type in file_types:
if file_type == "txt":
write_log_txt(log_path, results)
elif file_type == "md" or file_type == "markdown":
write_log_markdown(log_path, results)
else:
print(f"'{file_type}' format is not supported, so write in plain text")
write_log_default(log_path, results, file_type)
def write_log_default(log_path, results, file_type):
plain_txt_lines = [f"{path}: {prompt}\n" for path, prompt in results]
with open(log_path + "." + file_type, "a", encoding="utf-8") as file:
file.writelines(plain_txt_lines)
def write_log_txt(log_path, results):
txt_lines = [f"{path}: {prompt}\n" for path, prompt in results]
with open(log_path + ".txt", "a", encoding="utf-8") as file:
file.writelines(txt_lines)
def write_log_markdown(log_path, results):
md_lines = []
for path, prompt in results:
file_name = os.path.basename(path)
md_lines.append(f"## {file_name}\n![]({file_name})\n\n{prompt}\n")
with open(log_path + ".md", "a", encoding="utf-8") as file:
file.writelines(md_lines)

View File

@ -1,29 +1,13 @@
import base64
import importlib
import io
import math
import multiprocessing as mp
import os
import re
import warnings
from collections import abc
from inspect import isfunction
from pathlib import Path
from queue import Queue
from threading import Thread
import numpy as np
import requests
import torch
from diffusers import logging as diffusers_logging
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
from PIL import Image
from transformers import logging as transformers_logging
import invokeai.backend.util.logging as logger
from .devices import torch_dtype
# actual size of a gig
GIG = 1073741824
@ -41,340 +25,6 @@ def directory_size(directory: Path) -> int:
return sum
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = []
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.load_default()
nc = int(40 * (wh[0] / 256))
lines = "\n".join(xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc))
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
logger.warning("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
logger.debug(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
return total_params
def instantiate_from_config(config, **kwargs):
if "target" not in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", {}), **kwargs)
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
# create dummy dataset instance
# run prefetching
if idx_to_fn:
res = func(data, worker_id=idx)
else:
res = func(data)
Q.put([idx, res])
Q.put("Done")
def parallel_data_prefetch(
func: callable,
data,
n_proc,
target_data_type="ndarray",
cpu_intensive=True,
use_worker_id=False,
):
# if target_data_type not in ["ndarray", "list"]:
# raise ValueError(
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
# )
if isinstance(data, np.ndarray) and target_data_type == "list":
raise ValueError("list expected but function got ndarray.")
elif isinstance(data, abc.Iterable):
if isinstance(data, dict):
logger.warning(
'"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
)
data = list(data.values())
if target_data_type == "ndarray":
data = np.asarray(data)
else:
data = list(data)
else:
raise TypeError(
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
)
if cpu_intensive:
Q = mp.Queue(1000)
proc = mp.Process
else:
Q = Queue(1000)
proc = Thread
# spawn processes
if target_data_type == "ndarray":
arguments = [[func, Q, part, i, use_worker_id] for i, part in enumerate(np.array_split(data, n_proc))]
else:
step = int(len(data) / n_proc + 1) if len(data) % n_proc != 0 else int(len(data) / n_proc)
arguments = [
[func, Q, part, i, use_worker_id]
for i, part in enumerate([data[i : i + step] for i in range(0, len(data), step)])
]
processes = []
for i in range(n_proc):
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
processes += [p]
# start processes
logger.info("Start prefetching...")
import time
start = time.time()
gather_res = [[] for _ in range(n_proc)]
try:
for p in processes:
p.start()
k = 0
while k < n_proc:
# get result
res = Q.get()
if res == "Done":
k += 1
else:
gather_res[res[0]] = res[1]
except Exception as e:
logger.error("Exception: ", e)
for p in processes:
p.terminate()
raise e
finally:
for p in processes:
p.join()
logger.info(f"Prefetching complete. [{time.time() - start} sec.]")
if target_data_type == "ndarray":
if not isinstance(gather_res[0], np.ndarray):
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
# order outputs
return np.concatenate(gather_res, axis=0)
elif target_data_type == "list":
out = []
for r in gather_res:
out.extend(r)
return out
else:
return gather_res
def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3):
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = (
torch.stack(
torch.meshgrid(
torch.arange(0, res[0], delta[0]),
torch.arange(0, res[1], delta[1]),
indexing="ij",
),
dim=-1,
).to(device)
% 1
)
rand_val = torch.rand(res[0] + 1, res[1] + 1)
angles = 2 * math.pi * rand_val
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1).to(device)
def tile_grads(slice1, slice2):
return (
gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]
.repeat_interleave(d[0], 0)
.repeat_interleave(d[1], 1)
)
def dot(grad, shift):
return (
torch.stack(
(
grid[: shape[0], : shape[1], 0] + shift[0],
grid[: shape[0], : shape[1], 1] + shift[1],
),
dim=-1,
)
* grad[: shape[0], : shape[1]]
).sum(dim=-1)
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]).to(device)
n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]).to(device)
n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]).to(device)
t = fade(grid[: shape[0], : shape[1]])
noise = math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]).to(
device
)
return noise.to(dtype=torch_dtype(device))
def ask_user(question: str, answers: list):
from itertools import chain, repeat
user_prompt = f"\n>> {question} {answers}: "
invalid_answer_msg = "Invalid answer. Please try again."
pose_question = chain([user_prompt], repeat("\n".join([invalid_answer_msg, user_prompt])))
user_answers = map(input, pose_question)
valid_response = next(filter(answers.__contains__, user_answers))
return valid_response
# -------------------------------------
def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path:
"""
Download a model file.
:param url: https, http or ftp URL
:param dest: A Path object. If path exists and is a directory, then we try to derive the filename
from the URL's Content-Disposition header and copy the URL contents into
dest/filename
:param access_token: Access token to access this resource
"""
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
open_mode = "wb"
exist_size = 0
resp = requests.get(url, headers=header, stream=True, allow_redirects=True)
content_length = int(resp.headers.get("content-length", 0))
if dest.is_dir():
try:
file_name = re.search('filename="(.+)"', resp.headers.get("Content-Disposition")).group(1)
except AttributeError:
file_name = os.path.basename(url)
dest = dest / file_name
else:
dest.parent.mkdir(parents=True, exist_ok=True)
if dest.exists():
exist_size = dest.stat().st_size
header["Range"] = f"bytes={exist_size}-"
open_mode = "ab"
resp = requests.get(url, headers=header, stream=True) # new request with range
if exist_size > content_length:
logger.warning("corrupt existing file found. re-downloading")
os.remove(dest)
exist_size = 0
if resp.status_code == 416 or (content_length > 0 and exist_size == content_length):
logger.warning(f"{dest}: complete file found. Skipping.")
return dest
elif resp.status_code == 206 or exist_size > 0:
logger.warning(f"{dest}: partial file found. Resuming...")
elif resp.status_code != 200:
logger.error(f"An error occurred during downloading {dest}: {resp.reason}")
else:
logger.info(f"{dest}: Downloading...")
try:
if content_length < 2000:
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
return None
with (
open(dest, open_mode) as file,
tqdm(
desc=str(dest),
initial=exist_size,
total=content_length,
unit="iB",
unit_scale=True,
unit_divisor=1000,
) as bar,
):
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
except Exception as e:
logger.error(f"An error occurred while downloading {dest}: {str(e)}")
return None
return dest
def url_attachment_name(url: str) -> dict:
try:
resp = requests.get(url, stream=True)
match = re.search('filename="(.+)"', resp.headers.get("Content-Disposition"))
return match.group(1)
except Exception:
return None
def download_with_progress_bar(url: str, dest: Path) -> bool:
result = download_with_resume(url, dest, access_token=None)
return result is not None
def image_to_dataURL(image: Image.Image, image_format: str = "PNG") -> str:
"""
Converts an image into a base64 image dataURL.