First working TI draft

This commit is contained in:
Sergey Borisov 2023-05-31 02:12:27 +03:00
parent 69ccd3a0b5
commit b47786e846
4 changed files with 219 additions and 41 deletions

View File

@ -1,6 +1,7 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from contextlib import ExitStack
import re
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
@ -9,7 +10,8 @@ from .model import ClipField
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from ...backend.model_management.lora import LoRAHelper
from ...backend.model_management import SDModelType
from ...backend.model_management.lora import ModelPatcher
from compel import Compel
from compel.prompt_parser import (
@ -58,38 +60,44 @@ class CompelInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> CompelOutput:
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
with text_encoder_info as text_encoder,\
tokenizer_info as tokenizer,\
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
with tokenizer_info as orig_tokenizer,\
text_encoder_info as text_encoder,\
ExitStack() as stack:
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.clip.loras]
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
stack.enter_context(
context.services.model_manager.get_model(model_name=name, model_type=SDModelType.TextualInversion)
)
)
except Exception as e:
#print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
with ModelPatcher.apply_lora_text_encoder(text_encoder, loras),\
ModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager):
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=None,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
# TODO: support legacy blend?
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
@ -97,7 +105,6 @@ class CompelInvocation(BaseInvocation):
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
with LoRAHelper.apply_lora_text_encoder(text_encoder, loras):
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
# TODO: long prompt support

View File

@ -1,5 +1,6 @@
from __future__ import annotations
import copy
from pathlib import Path
from contextlib import contextmanager
from typing import Optional, Dict, Tuple, Any
@ -11,6 +12,8 @@ from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
from compel.embeddings_provider import BaseTextualInversionManager
class LoRALayerBase:
#rank: Optional[int]
#alpha: Optional[float]
@ -444,7 +447,7 @@ with LoRAHelper.apply_lora_unet(unet, loras):
"""
# TODO: rename smth like ModelPatcher and add TI method?
class LoRAHelper:
class ModelPatcher:
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
@ -539,3 +542,135 @@ class LoRAHelper:
for module_key, hook in hooks.items():
hook.remove()
hooks.clear()
@classmethod
@contextmanager
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
ti_list: List[Any],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
init_tokens_count = None
new_tokens_added = None
try:
ti_manager = TextualInversionManager()
ti_tokenizer = copy.deepcopy(tokenizer)
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
def _get_trigger(ti, index):
trigger = ti.name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
# modify text_encoder
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
model_embeddings = text_encoder.get_input_embeddings()
for ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i]
trigger = _get_trigger(ti, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
if model_embeddings.weight.data[token_id].shape != embedding.shape:
raise ValueError(
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {model_embeddings.weight.data[token_id].shape[0]}."
)
model_embeddings.weight.data[token_id] = embedding
ti_tokens.append(token_id)
if len(ti_tokens) > 1:
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
yield ti_tokenizer, ti_manager
finally:
if init_tokens_count and new_tokens_added:
text_encoder.resize_token_embeddings(init_tokens_count)
class TextualInversionModel:
name: str
embedding: torch.Tensor # [n, 768]|[n, 1280]
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if not isinstance(file_path, Path):
file_path = Path(file_path)
result = cls() # TODO:
result.name = file_path.stem # TODO:
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
# both v1 and v2 format embeddings
# difference mostly in metadata
if "string_to_param" in state_dict:
if len(state_dict["string_to_param"]) > 1:
print(f"Warn: Embedding \"{file_path.name}\" contains multiple tokens, which is not supported. The first token will be used.")
result.embedding = next(iter(state_dict["string_to_param"].values()))
# v3 (easynegative)
elif "emb_params" in state_dict:
result.embedding = state_dict["emb_params"]
# v4(diffusers bin files)
else:
result.embedding = next(iter(state_dict.values()))
if not isinstance(result.embedding, torch.Tensor):
raise ValueError(f"Invalid embeddings file: {file_path.name}")
return result
class TextualInversionManager(BaseTextualInversionManager):
pad_tokens: Dict[int, List[int]]
def __init__(self):
self.pad_tokens = dict()
def expand_textual_inversion_token_ids_if_necessary(
self, token_ids: list[int]
) -> list[int]:
#if token_ids[0] == self.tokenizer.bos_token_id:
# raise ValueError("token_ids must not start with bos_token_id")
#if token_ids[-1] == self.tokenizer.eos_token_id:
# raise ValueError("token_ids must not end with eos_token_id")
if len(self.pad_tokens) == 0:
return token_ids
new_token_ids = []
for token_id in token_ids:
new_token_ids.append(token_id)
if token_id in self.pad_tokens:
new_token_ids.extend(self.pad_tokens[token_id])
return new_token_ids

View File

@ -37,7 +37,7 @@ from transformers import logging as transformers_logging
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from .lora import LoRAModel
from .lora import LoRAModel, TextualInversionModel
def get_model_path(repo_id_or_path: str):
globals = get_invokeai_config()
@ -155,6 +155,7 @@ class SDModelType(str, Enum):
Vae = "vae"
Scheduler = "scheduler"
Lora = "lora"
TextualInversion = "textual_inversion"
class ModelInfoBase:
@ -417,7 +418,7 @@ class LoRAModelInfo(ModelInfoBase):
def get_size(self, child_type: Optional[SDModelType] = None):
if child_type is not None:
raise Exception("There is no child models in lora model")
raise Exception("There is no child models in lora")
return self.model_size
def get_model(
@ -426,7 +427,7 @@ class LoRAModelInfo(ModelInfoBase):
torch_dtype: Optional[torch.dtype] = None,
):
if child_type is not None:
raise Exception("There is no child models in lora model")
raise Exception("There is no child models in lora")
model = LoRAModel.from_checkpoint(
file_path=self.model_path,
@ -437,11 +438,46 @@ class LoRAModelInfo(ModelInfoBase):
return model
class TextualInversionModelInfo(ModelInfoBase):
#model_size: int
def __init__(self, file_path: str, model_type: SDModelType):
assert model_type == SDModelType.TextualInversion
# check manualy as super().__init__ will try to resolve repo_id too
if not os.path.exists(file_path):
raise Exception("Model not found")
super().__init__(file_path, model_type)
self.model_size = os.path.getsize(file_path)
def get_size(self, child_type: Optional[SDModelType] = None):
if child_type is not None:
raise Exception("There is no child models in textual inversion")
return self.model_size
def get_model(
self,
child_type: Optional[SDModelType] = None,
torch_dtype: Optional[torch.dtype] = None,
):
if child_type is not None:
raise Exception("There is no child models in textual inversion")
model = TextualInversionModel.from_checkpoint(
file_path=self.model_path,
dtype=torch_dtype,
)
self.model_size = model.embedding.nelement() * model.embedding.element_size()
return model
MODEL_TYPES = {
SDModelType.Diffusers: DiffusersModelInfo,
SDModelType.Classifier: ClassifierModelInfo,
SDModelType.Vae: VaeModelInfo,
SDModelType.Lora: LoRAModelInfo,
SDModelType.TextualInversion: TextualInversionModelInfo,
}

View File

@ -332,7 +332,7 @@ class ModelManager(object):
location = None
revision = mconfig.get('revision')
if model_type in [SDModelType.Lora]:
if model_type in [SDModelType.Lora, SDModelType.TextualInversion]:
hash = "<NO_HASH>" # TODO:
else:
hash = self.cache.model_hash(location, revision)