Merge branch 'mkdocs-fixes' of github.com:mauwii/stable-diffusion into mkdocs-fixes

This commit is contained in:
mauwii 2022-10-11 01:17:28 +02:00
commit b52c14a67f
No known key found for this signature in database
GPG Key ID: D923DB04ADB3F5AB
5 changed files with 5 additions and 30 deletions

View File

@ -147,13 +147,13 @@ you can try starting `invoke.py` with the `--precision=float32` flag:
- Support in both WebGUI and CLI for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/POSTPROCESS.md">post-processing of previously-generated images</a>
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E infinite canvas),
and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.m#this-is-an-example-of-txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- New `--hires` option on `invoke>` line allows <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.md#this-is-an-example-of-txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control variation
during image generation (see <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OTHER.md#thresholding-and-perlin-noise-initialization-options">Thresholding and Perlin Noise Initialization</a>
- Extensive metadata now written into PNG files, allowing reliable regeneration of images
and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac platforms.
- Improved <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.m">command-line completion behavior</a>.
- Improved <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.md">command-line completion behavior</a>.
New commands added:
* List command-line history with `!history`
* Search command-line history with `!search`

View File

@ -50,8 +50,6 @@ information underneath the transparent needs to be preserved, not erased.
More details can be found here:
[Creating Transparent Images For Inpainting](./INPAINTING.md#creating-transparent-regions-for-inpainting)
<<<<<<< HEAD
=======
**IMPORTANT ISSUE** `img2img` does not work properly on initial images smaller than 512x512. Please scale your
image to at least 512x512 before using it. Larger images are not a problem, but may run out of VRAM on your
GPU card. To fix this, use the --fit option, which downscales the initial image to fit within the box specified
@ -60,7 +58,6 @@ by width x height:
tree on a hill with a river, national geographic -I./test-pictures/big-sketch.png -H512 -W512 --fit
~~~
>>>>>>> main
## How does it actually work, though?
The main difference between `img2img` and `prompt2img` is the starting point. While `prompt2img` always starts with pure
@ -70,11 +67,7 @@ gaussian noise and progressively refines it over the requested number of steps,
**Let's start** by thinking about vanilla `prompt2img`, just generating an image from a prompt. If the step count is 10, then the "latent space" (Stable Diffusion's internal representation of the image) for the prompt "fire" with seed `1592514025` develops something like this:
```commandline
<<<<<<< HEAD
dream> "fire" -s10 -W384 -H384 -S1592514025
=======
invoke> "fire" -s10 -W384 -H384 -S1592514025
>>>>>>> main
```
![latent steps](../assets/img2img/000019.steps.png)
@ -102,11 +95,7 @@ Notice how much more fuzzy the starting image is for strength `0.7` compared to
| | strength = 0.7 | strength = 0.4 |
| -- | -- | -- |
| initial image that SD sees | ![](../assets/img2img/000032.step-0.png) | ![](../assets/img2img/000030.step-0.png) |
<<<<<<< HEAD
| steps argument to `dream>` | `-S10` | `-S10` |
=======
| steps argument to `invoke>` | `-S10` | `-S10` |
>>>>>>> main
| steps actually taken | 7 | 4 |
| latent space at each step | ![](../assets/img2img/000032.steps.gravity.png) | ![](../assets/img2img/000030.steps.gravity.png) |
| output | ![](../assets/img2img/000032.1592514025.png) | ![](../assets/img2img/000030.1592514025.png) |
@ -117,17 +106,10 @@ Both of the outputs look kind of like what I was thinking of. With the strength
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `fire`:
```commandline
<<<<<<< HEAD
dream> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```
The code for rendering intermediates is on my (damian0815's) branch [document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) - run `dream.py` and check your `outputs/img-samples/intermediates` folder while generating an image.
=======
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```
The code for rendering intermediates is on my (damian0815's) branch [document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) - run `invoke.py` and check your `outputs/img-samples/intermediates` folder while generating an image.
>>>>>>> main
### Compensating for the reduced step count
@ -136,11 +118,7 @@ After putting this guide together I was curious to see how the difference would
Here's strength `0.4` (note step count `50`, which is `20 ÷ 0.4` to make sure SD does `20` steps from my image):
```commandline
<<<<<<< HEAD
dream> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
=======
invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
>>>>>>> main
```
![](../assets/img2img/000035.1592514025.png)
@ -148,11 +126,7 @@ invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
and strength `0.7` (note step count `30`, which is roughly `20 ÷ 0.7` to make sure SD does `20` steps from my image):
```commandline
<<<<<<< HEAD
dream> "fire" -s30 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.7
=======
invoke> "fire" -s30 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.7
>>>>>>> main
```
![](../assets/img2img/000046.1592514025.png)

View File

@ -123,7 +123,7 @@ In order to setup CodeFormer to work, you need to download the models
like with GFPGAN. You can do this either by running
`preload_models.py` or by manually downloading the [model
file](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth)
and saving it to `ldm/restoration/codeformer/weights` folder.
and saving it to `ldm/invoke/restoration/codeformer/weights` folder.
You can use `-ft` prompt argument to swap between CodeFormer and the
default GFPGAN. The above mentioned `-G` prompt argument will allow

View File

@ -107,6 +107,7 @@ This distribution is changing rapidly. If you used the `git clone` method (step
```
(invokeai) ~/InvokeAI$ git pull
(invokeai) ~/InvokeAI$ conda env update -f environment.yml
```
This will bring your local copy into sync with the remote one.

View File

@ -99,7 +99,7 @@ PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-64 conda env create -f environment-mac.yml
# END ARCHITECTURE-DEPENDENT STEP #
# Activate the environment (you need to do this every time you want to run SD)
conda activate ldm
conda activate invokeai
# This will download some bits and pieces and make take a while
python scripts/preload_models.py