mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Return a MaskOutput from SegmentAnythingModelInvocation. And add a MaskTensorToImageInvocation.
This commit is contained in:
parent
fca119773b
commit
b5832768dc
@ -1,9 +1,10 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
|
||||
from invokeai.app.invocations.primitives import MaskOutput
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
|
||||
|
||||
|
||||
@invocation(
|
||||
@ -118,3 +119,28 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
|
||||
height=mask.shape[1],
|
||||
width=mask.shape[2],
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"tensor_mask_to_image",
|
||||
title="Tensor Mask to Image",
|
||||
tags=["mask"],
|
||||
category="mask",
|
||||
version="1.0.0",
|
||||
)
|
||||
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Convert a mask tensor to an image."""
|
||||
|
||||
mask: TensorField = InputField(description="The mask tensor to convert.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
mask = context.tensors.load(self.mask.tensor_name)
|
||||
# Ensure that the mask is binary.
|
||||
if mask.dtype != torch.bool:
|
||||
mask = mask > 0.5
|
||||
mask_np = mask.float().cpu().detach().numpy() * 255
|
||||
mask_np = mask_np.astype(np.uint8)
|
||||
|
||||
mask_pil = Image.fromarray(mask_np, mode="L")
|
||||
image_dto = context.images.save(image=mask_pil)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
@ -2,7 +2,6 @@ from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForMaskGeneration, AutoProcessor
|
||||
@ -10,8 +9,8 @@ from transformers.models.sam import SamModel
|
||||
from transformers.models.sam.processing_sam import SamProcessor
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField, TensorField
|
||||
from invokeai.app.invocations.primitives import MaskOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
|
||||
from invokeai.backend.image_util.segment_anything.segment_anything_model import SegmentAnythingModel
|
||||
@ -46,24 +45,22 @@ class SegmentAnythingModelInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
def invoke(self, context: InvocationContext) -> MaskOutput:
|
||||
# The models expect a 3-channel RGB image.
|
||||
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
|
||||
|
||||
if len(self.bounding_boxes) == 0:
|
||||
combined_mask = np.zeros(image_pil.size[::-1], dtype=np.uint8)
|
||||
combined_mask = torch.zeros(image_pil.size[::-1], dtype=torch.bool)
|
||||
else:
|
||||
masks = self._segment(context=context, image=image_pil)
|
||||
masks = self._filter_masks(masks=masks, bounding_boxes=self.bounding_boxes)
|
||||
# masks contains binary values of 0 or 1, so we merge them via max-reduce.
|
||||
combined_mask = np.maximum.reduce(masks)
|
||||
|
||||
# Map [0, 1] to [0, 255].
|
||||
mask_np = combined_mask * 255
|
||||
mask_pil = Image.fromarray(mask_np)
|
||||
# masks contains bool values, so we merge them via max-reduce.
|
||||
combined_mask, _ = torch.stack(masks).max(dim=0)
|
||||
|
||||
image_dto = context.images.save(image=mask_pil)
|
||||
return ImageOutput.build(image_dto)
|
||||
mask_tensor_name = context.tensors.save(combined_mask)
|
||||
height, width = combined_mask.shape
|
||||
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
|
||||
|
||||
@staticmethod
|
||||
def _load_sam_model(model_path: Path):
|
||||
@ -84,7 +81,7 @@ class SegmentAnythingModelInvocation(BaseInvocation):
|
||||
self,
|
||||
context: InvocationContext,
|
||||
image: Image.Image,
|
||||
) -> list[npt.NDArray[np.uint8]]:
|
||||
) -> list[torch.Tensor]:
|
||||
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
|
||||
# Convert the bounding boxes to the SAM input format.
|
||||
sam_bounding_boxes = [[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes]
|
||||
@ -97,22 +94,23 @@ class SegmentAnythingModelInvocation(BaseInvocation):
|
||||
assert isinstance(sam_pipeline, SegmentAnythingModel)
|
||||
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes)
|
||||
|
||||
masks = self._to_numpy_masks(masks)
|
||||
masks = self._process_masks(masks)
|
||||
if self.apply_polygon_refinement:
|
||||
masks = self._apply_polygon_refinement(masks)
|
||||
|
||||
return masks
|
||||
|
||||
def _to_numpy_masks(self, masks: torch.Tensor) -> list[npt.NDArray[np.uint8]]:
|
||||
"""Convert the tensor output from the Segment Anything model to a list of numpy masks."""
|
||||
eps = 0.0001
|
||||
def _process_masks(self, masks: torch.Tensor) -> list[torch.Tensor]:
|
||||
"""Convert the tensor output from the Segment Anything model from a tensor of shape
|
||||
[num_masks, channels, height, width] to a list of tensors of shape [height, width].
|
||||
"""
|
||||
assert masks.dtype == torch.bool
|
||||
# [num_masks, channels, height, width] -> [num_masks, height, width]
|
||||
masks = masks.permute(0, 2, 3, 1).float().mean(dim=-1)
|
||||
masks = masks > eps
|
||||
np_masks = masks.cpu().numpy().astype(np.uint8)
|
||||
return list(np_masks)
|
||||
masks, _ = masks.max(dim=1)
|
||||
# Split the first dimension into a list of masks.
|
||||
return list(masks.cpu().unbind(dim=0))
|
||||
|
||||
def _apply_polygon_refinement(self, masks: list[npt.NDArray[np.uint8]]) -> list[npt.NDArray[np.uint8]]:
|
||||
def _apply_polygon_refinement(self, masks: list[torch.Tensor]) -> list[torch.Tensor]:
|
||||
"""Apply polygon refinement to the masks.
|
||||
|
||||
Convert each mask to a polygon, then back to a mask. This has the following effect:
|
||||
@ -121,18 +119,23 @@ class SegmentAnythingModelInvocation(BaseInvocation):
|
||||
- Removes small mask pieces.
|
||||
- Removes holes from the mask.
|
||||
"""
|
||||
for idx, mask in enumerate(masks):
|
||||
# Convert tensor masks to np masks.
|
||||
np_masks = [mask.cpu().numpy().astype(np.uint8) for mask in masks]
|
||||
|
||||
# Apply polygon refinement.
|
||||
for idx, mask in enumerate(np_masks):
|
||||
shape = mask.shape
|
||||
assert len(shape) == 2 # Assert length to satisfy type checker.
|
||||
polygon = mask_to_polygon(mask)
|
||||
mask = polygon_to_mask(polygon, shape)
|
||||
masks[idx] = mask
|
||||
np_masks[idx] = mask
|
||||
|
||||
# Convert np masks back to tensor masks.
|
||||
masks = [torch.tensor(mask, dtype=torch.bool) for mask in np_masks]
|
||||
|
||||
return masks
|
||||
|
||||
def _filter_masks(
|
||||
self, masks: list[npt.NDArray[np.uint8]], bounding_boxes: list[BoundingBoxField]
|
||||
) -> list[npt.NDArray[np.uint8]]:
|
||||
def _filter_masks(self, masks: list[torch.Tensor], bounding_boxes: list[BoundingBoxField]) -> list[torch.Tensor]:
|
||||
"""Filter the detected masks based on the specified mask filter."""
|
||||
assert len(masks) == len(bounding_boxes)
|
||||
|
||||
@ -140,7 +143,7 @@ class SegmentAnythingModelInvocation(BaseInvocation):
|
||||
return masks
|
||||
elif self.mask_filter == "largest":
|
||||
# Find the largest mask.
|
||||
return [max(masks, key=lambda x: x.sum())]
|
||||
return [max(masks, key=lambda x: float(x.sum()))]
|
||||
elif self.mask_filter == "highest_box_score":
|
||||
# Find the index of the bounding box with the highest score.
|
||||
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most
|
||||
|
Loading…
Reference in New Issue
Block a user