mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
made MPS calls conditional on MPS actually being the chosen device with backend available
This commit is contained in:
parent
fab055995e
commit
b7296000e4
@ -6,7 +6,6 @@ from typing import List, Literal, Optional, Union
|
|||||||
import einops
|
import einops
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from torch import mps
|
|
||||||
import torchvision.transforms as T
|
import torchvision.transforms as T
|
||||||
from diffusers.image_processor import VaeImageProcessor
|
from diffusers.image_processor import VaeImageProcessor
|
||||||
from diffusers.models.attention_processor import (
|
from diffusers.models.attention_processor import (
|
||||||
@ -64,6 +63,9 @@ from .compel import ConditioningField
|
|||||||
from .controlnet_image_processors import ControlField
|
from .controlnet_image_processors import ControlField
|
||||||
from .model import ModelInfo, UNetField, VaeField
|
from .model import ModelInfo, UNetField, VaeField
|
||||||
|
|
||||||
|
if choose_torch_device() == torch.device("mps"):
|
||||||
|
from torch import mps
|
||||||
|
|
||||||
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
||||||
|
|
||||||
|
|
||||||
@ -542,7 +544,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||||
result_latents = result_latents.to("cpu")
|
result_latents = result_latents.to("cpu")
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if choose_torch_device() == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
context.services.latents.save(name, result_latents)
|
context.services.latents.save(name, result_latents)
|
||||||
@ -614,7 +617,8 @@ class LatentsToImageInvocation(BaseInvocation):
|
|||||||
|
|
||||||
# clear memory as vae decode can request a lot
|
# clear memory as vae decode can request a lot
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if choose_torch_device() == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
# copied from diffusers pipeline
|
# copied from diffusers pipeline
|
||||||
@ -627,7 +631,8 @@ class LatentsToImageInvocation(BaseInvocation):
|
|||||||
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
|
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if choose_torch_device() == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
image_dto = context.services.images.create(
|
image_dto = context.services.images.create(
|
||||||
image=image,
|
image=image,
|
||||||
@ -687,7 +692,8 @@ class ResizeLatentsInvocation(BaseInvocation):
|
|||||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||||
resized_latents = resized_latents.to("cpu")
|
resized_latents = resized_latents.to("cpu")
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if device == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
# context.services.latents.set(name, resized_latents)
|
# context.services.latents.set(name, resized_latents)
|
||||||
@ -724,7 +730,8 @@ class ScaleLatentsInvocation(BaseInvocation):
|
|||||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||||
resized_latents = resized_latents.to("cpu")
|
resized_latents = resized_latents.to("cpu")
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if device == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
# context.services.latents.set(name, resized_latents)
|
# context.services.latents.set(name, resized_latents)
|
||||||
@ -881,7 +888,8 @@ class BlendLatentsInvocation(BaseInvocation):
|
|||||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||||
blended_latents = blended_latents.to("cpu")
|
blended_latents = blended_latents.to("cpu")
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if device == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
# context.services.latents.set(name, resized_latents)
|
# context.services.latents.set(name, resized_latents)
|
||||||
|
@ -30,8 +30,12 @@ from torch import mps
|
|||||||
|
|
||||||
import invokeai.backend.util.logging as logger
|
import invokeai.backend.util.logging as logger
|
||||||
|
|
||||||
|
from ..util.devices import choose_torch_device
|
||||||
from .models import BaseModelType, ModelBase, ModelType, SubModelType
|
from .models import BaseModelType, ModelBase, ModelType, SubModelType
|
||||||
|
|
||||||
|
if choose_torch_device() == torch.device("mps"):
|
||||||
|
from torch import mps
|
||||||
|
|
||||||
# Maximum size of the cache, in gigs
|
# Maximum size of the cache, in gigs
|
||||||
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
|
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
|
||||||
DEFAULT_MAX_CACHE_SIZE = 6.0
|
DEFAULT_MAX_CACHE_SIZE = 6.0
|
||||||
@ -407,7 +411,8 @@ class ModelCache(object):
|
|||||||
|
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if choose_torch_device() == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}")
|
self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}")
|
||||||
|
|
||||||
@ -428,7 +433,8 @@ class ModelCache(object):
|
|||||||
|
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
mps.empty_cache()
|
if choose_torch_device() == torch.device("mps"):
|
||||||
|
mps.empty_cache()
|
||||||
|
|
||||||
def _local_model_hash(self, model_path: Union[str, Path]) -> str:
|
def _local_model_hash(self, model_path: Union[str, Path]) -> str:
|
||||||
sha = hashlib.sha256()
|
sha = hashlib.sha256()
|
||||||
|
Loading…
Reference in New Issue
Block a user