mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'development' into fix-doc-typos
This commit is contained in:
@ -1,4 +1,10 @@
|
||||
# Before you begin
|
||||
---
|
||||
title: Docker
|
||||
---
|
||||
|
||||
# :fontawesome-brands-docker: Docker
|
||||
|
||||
## Before you begin
|
||||
|
||||
- For end users: Install Stable Diffusion locally using the instructions for
|
||||
your OS.
|
||||
@ -6,7 +12,7 @@
|
||||
deployment to other environments (on-premises or cloud), follow these
|
||||
instructions. For general use, install locally to leverage your machine's GPU.
|
||||
|
||||
# Why containers?
|
||||
## Why containers?
|
||||
|
||||
They provide a flexible, reliable way to build and deploy Stable Diffusion.
|
||||
You'll also use a Docker volume to store the largest model files and image
|
||||
@ -26,11 +32,11 @@ development purposes it's fine. Once you're done with development tasks on your
|
||||
laptop you can build for the target platform and architecture and deploy to
|
||||
another environment with NVIDIA GPUs on-premises or in the cloud.
|
||||
|
||||
# Installation on a Linux container
|
||||
## Installation on a Linux container
|
||||
|
||||
## Prerequisites
|
||||
### Prerequisites
|
||||
|
||||
### Get the data files
|
||||
#### Get the data files
|
||||
|
||||
Go to
|
||||
[Hugging Face](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original),
|
||||
@ -44,14 +50,14 @@ cd ~/Downloads
|
||||
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
|
||||
```
|
||||
|
||||
### Install [Docker](https://github.com/santisbon/guides#docker)
|
||||
#### Install [Docker](https://github.com/santisbon/guides#docker)
|
||||
|
||||
On the Docker Desktop app, go to Preferences, Resources, Advanced. Increase the
|
||||
CPUs and Memory to avoid this
|
||||
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
|
||||
increase Swap and Disk image size too.
|
||||
|
||||
## Setup
|
||||
### Setup
|
||||
|
||||
Set the fork you want to use and other variables.
|
||||
|
||||
@ -132,9 +138,9 @@ docker run -it \
|
||||
$TAG_STABLE_DIFFUSION
|
||||
```
|
||||
|
||||
# Usage (time to have fun)
|
||||
## Usage (time to have fun)
|
||||
|
||||
## Startup
|
||||
### Startup
|
||||
|
||||
If you're on a **Linux container** the `invoke` script is **automatically
|
||||
started** and the output dir set to the Docker volume you created earlier.
|
||||
@ -158,7 +164,7 @@ invoke> -h
|
||||
invoke> q
|
||||
```
|
||||
|
||||
## Text to Image
|
||||
### Text to Image
|
||||
|
||||
For quick (but bad) image results test with 5 steps (default 50) and 1 sample
|
||||
image. This will let you know that everything is set up correctly.
|
||||
@ -188,7 +194,7 @@ volume):
|
||||
docker cp dummy:/data/000001.928403745.png /Users/<your-user>/Pictures
|
||||
```
|
||||
|
||||
## Image to Image
|
||||
### Image to Image
|
||||
|
||||
You can also do text-guided image-to-image translation. For example, turning a
|
||||
sketch into a detailed drawing.
|
||||
@ -225,7 +231,7 @@ If you're on a Linux container on your Mac
|
||||
invoke> "A fantasy landscape, trending on artstation" -I /data/sketch-mountains-input.jpg --strength 0.75 --steps 50 -n1
|
||||
```
|
||||
|
||||
## Web Interface
|
||||
### Web Interface
|
||||
|
||||
You can use the `invoke` script with a graphical web interface. Start the web
|
||||
server with:
|
||||
@ -238,7 +244,7 @@ If it's running on your Mac point your Mac web browser to http://127.0.0.1:9090
|
||||
|
||||
Press Control-C at the command line to stop the web server.
|
||||
|
||||
## Notes
|
||||
### Notes
|
||||
|
||||
Some text you can add at the end of the prompt to make it very pretty:
|
||||
|
||||
|
@ -26,38 +26,36 @@ title: Linux
|
||||
|
||||
3. Copy the InvokeAI source code from GitHub:
|
||||
|
||||
```
|
||||
(base) ~$ git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
```
|
||||
```bash
|
||||
(base) ~$ git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
```
|
||||
|
||||
This will create InvokeAI folder where you will follow the rest of the steps.
|
||||
This will create InvokeAI folder where you will follow the rest of the steps.
|
||||
|
||||
4. Enter the newly-created InvokeAI folder. From this step forward make sure that you are working in the InvokeAI directory!
|
||||
|
||||
```
|
||||
(base) ~$ cd InvokeAI
|
||||
(base) ~/InvokeAI$
|
||||
```
|
||||
```bash
|
||||
(base) ~$ cd InvokeAI
|
||||
(base) ~/InvokeAI$
|
||||
```
|
||||
|
||||
5. Use anaconda to copy necessary python packages, create a new python
|
||||
environment named `ldm` and activate the environment.
|
||||
environment named `invokeai` and activate the environment.
|
||||
|
||||
```bash
|
||||
(base) ~/InvokeAI$ conda env create
|
||||
(base) ~/InvokeAI$ conda activate invokeai
|
||||
(invokeai) ~/InvokeAI$
|
||||
```
|
||||
|
||||
```
|
||||
(base) ~/InvokeAI$ conda env create
|
||||
(base) ~/InvokeAI$ conda activate ldm
|
||||
(ldm) ~/InvokeAI$
|
||||
```
|
||||
|
||||
After these steps, your command prompt will be prefixed by `(ldm)` as shown
|
||||
After these steps, your command prompt will be prefixed by `(invokeai)` as shown
|
||||
above.
|
||||
|
||||
6. Load a couple of small machine-learning models required by stable diffusion:
|
||||
|
||||
|
||||
```
|
||||
(ldm) ~/InvokeAI$ python3 scripts/preload_models.py
|
||||
```
|
||||
```bash
|
||||
(invokeai) ~/InvokeAI$ python3 scripts/preload_models.py
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
@ -69,7 +67,7 @@ This will create InvokeAI folder where you will follow the rest of the steps.
|
||||
|
||||
- For running with the released weights, you will first need to set up an acount
|
||||
with [Hugging Face](https://huggingface.co).
|
||||
- Use your credentials to log in, and then point your browser [here](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.)
|
||||
- Use your credentials to log in, and then point your browser [here](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original).
|
||||
- You may be asked to sign a license agreement at this point.
|
||||
- Click on "Files and versions" near the top of the page, and then click on the
|
||||
file named "sd-v1-4.ckpt". You'll be taken to a page that prompts you to click
|
||||
@ -79,34 +77,33 @@ This will create InvokeAI folder where you will follow the rest of the steps.
|
||||
This will create a symbolic link from the stable-diffusion model.ckpt file, to
|
||||
the true location of the `sd-v1-4.ckpt` file.
|
||||
|
||||
|
||||
```
|
||||
(ldm) ~/InvokeAI$ mkdir -p models/ldm/stable-diffusion-v1
|
||||
(ldm) ~/InvokeAI$ ln -sf /path/to/sd-v1-4.ckpt models/ldm/stable-diffusion-v1/model.ckpt
|
||||
```
|
||||
```bash
|
||||
(invokeai) ~/InvokeAI$ mkdir -p models/ldm/stable-diffusion-v1
|
||||
(invokeai) ~/InvokeAI$ ln -sf /path/to/sd-v1-4.ckpt models/ldm/stable-diffusion-v1/model.ckpt
|
||||
```
|
||||
|
||||
8. Start generating images!
|
||||
|
||||
```
|
||||
# for the pre-release weights use the -l or --liaon400m switch
|
||||
(ldm) ~/InvokeAI$ python3 scripts/invoke.py -l
|
||||
```bash
|
||||
# for the pre-release weights use the -l or --liaon400m switch
|
||||
(invokeai) ~/InvokeAI$ python3 scripts/invoke.py -l
|
||||
|
||||
# for the post-release weights do not use the switch
|
||||
(ldm) ~/InvokeAI$ python3 scripts/invoke.py
|
||||
# for the post-release weights do not use the switch
|
||||
(invokeai) ~/InvokeAI$ python3 scripts/invoke.py
|
||||
|
||||
# for additional configuration switches and arguments, use -h or --help
|
||||
(ldm) ~/InvokeAI$ python3 scripts/invoke.py -h
|
||||
```
|
||||
# for additional configuration switches and arguments, use -h or --help
|
||||
(invokeai) ~/InvokeAI$ python3 scripts/invoke.py -h
|
||||
```
|
||||
|
||||
9. Subsequently, to relaunch the script, be sure to run "conda activate ldm" (step 5, second command), enter the `InvokeAI` directory, and then launch the invoke script (step 8). If you forget to activate the ldm environment, the script will fail with multiple `ModuleNotFound` errors.
|
||||
9. Subsequently, to relaunch the script, be sure to run "conda activate invokeai" (step 5, second command), enter the `InvokeAI` directory, and then launch the invoke script (step 8). If you forget to activate the 'invokeai' environment, the script will fail with multiple `ModuleNotFound` errors.
|
||||
|
||||
## Updating to newer versions of the script
|
||||
|
||||
|
||||
This distribution is changing rapidly. If you used the `git clone` method (step 5) to download the InvokeAI directory, then to update to the latest and greatest version, launch the Anaconda window, enter `InvokeAI` and type:
|
||||
|
||||
```
|
||||
(ldm) ~/InvokeAI$ git pull
|
||||
```bash
|
||||
(invokeai) ~/InvokeAI$ git pull
|
||||
(invokeai) ~/InvokeAI$ conda env update -f environment.yml
|
||||
```
|
||||
|
||||
This will bring your local copy into sync with the remote one.
|
||||
|
@ -2,6 +2,8 @@
|
||||
title: macOS
|
||||
---
|
||||
|
||||
# :fontawesome-brands-apple: macOS
|
||||
|
||||
Invoke AI runs quite well on M1 Macs and we have a number of M1 users
|
||||
in the community.
|
||||
|
||||
@ -24,100 +26,130 @@ First you need to download a large checkpoint file.
|
||||
3. Accept the terms and click Access Repository
|
||||
4. Download [sd-v1-4.ckpt (4.27 GB)](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/blob/main/sd-v1-4.ckpt) and note where you have saved it (probably the Downloads folder). You may want to move it somewhere else for longer term storage - SD needs this file to run.
|
||||
|
||||
While that is downloading, open Terminal and run the following
|
||||
commands one at a time, reading the comments and taking care to run
|
||||
the appropriate command for your Mac's architecture (Intel or M1).
|
||||
While that is downloading, open Terminal and run the following commands one at a time, reading the comments and taking care to run the appropriate command for your Mac's architecture (Intel or M1).
|
||||
|
||||
Do not just copy and paste the whole thing into your terminal!
|
||||
!!! todo "Homebrew"
|
||||
|
||||
```bash
|
||||
# Install brew (and Xcode command line tools):
|
||||
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
||||
If you have no brew installation yet (otherwise skip):
|
||||
|
||||
# Now there are two options to get the Python (miniconda) environment up and running:
|
||||
# 1. Alongside pyenv
|
||||
# 2. Standalone
|
||||
#
|
||||
# If you don't know what we are talking about, choose 2.
|
||||
#
|
||||
# If you are familiar with python environments, you'll know there are other options
|
||||
# for setting up the environment - you are on your own if you go one of those routes.
|
||||
##### BEGIN TWO DIFFERENT OPTIONS #####
|
||||
```bash title="install brew (and Xcode command line tools)"
|
||||
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
||||
```
|
||||
|
||||
### BEGIN OPTION 1: Installing alongside pyenv ###
|
||||
brew install pyenv-virtualenv # you might have this from before, no problem
|
||||
pyenv install anaconda3-2022.05
|
||||
pyenv virtualenv anaconda3-2022.05
|
||||
eval "$(pyenv init -)"
|
||||
pyenv activate anaconda3-2022.05
|
||||
### END OPTION 1 ###
|
||||
!!! todo "Conda Installation"
|
||||
|
||||
Now there are two different ways to set up the Python (miniconda) environment:
|
||||
|
||||
### BEGIN OPTION 2: Installing standalone ###
|
||||
# Install cmake, protobuf, and rust:
|
||||
brew install cmake protobuf rust
|
||||
1. Standalone
|
||||
2. with pyenv
|
||||
|
||||
# BEGIN ARCHITECTURE-DEPENDENT STEP #
|
||||
# For M1: install miniconda (M1 arm64 version):
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o Miniconda3-latest-MacOSX-arm64.sh
|
||||
/bin/bash Miniconda3-latest-MacOSX-arm64.sh
|
||||
If you don't know what we are talking about, choose Standalone. If you are familiar with python environments, choose "with pyenv"
|
||||
|
||||
# For Intel: install miniconda (Intel x86-64 version):
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o Miniconda3-latest-MacOSX-x86_64.sh
|
||||
/bin/bash Miniconda3-latest-MacOSX-x86_64.sh
|
||||
# END ARCHITECTURE-DEPENDENT STEP #
|
||||
=== "Standalone"
|
||||
|
||||
### END OPTION 2 ###
|
||||
```bash title="Install cmake, protobuf, and rust"
|
||||
brew install cmake protobuf rust
|
||||
```
|
||||
|
||||
##### END TWO DIFFERENT OPTIONS #####
|
||||
Then clone the InvokeAI repository:
|
||||
|
||||
```bash title="Clone the InvokeAI repository:
|
||||
# Clone the Invoke AI repo
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
cd InvokeAI
|
||||
```
|
||||
|
||||
Choose the appropriate architecture for your system and install miniconda:
|
||||
|
||||
# Clone the Invoke AI repo
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
cd InvokeAI
|
||||
=== "M1 arm64"
|
||||
|
||||
### WAIT FOR THE CHECKPOINT FILE TO DOWNLOAD, THEN PROCEED ###
|
||||
# We will leave the big checkpoint wherever you stashed it for long-term storage,
|
||||
# and make a link to it from the repo's folder. This allows you to use it for
|
||||
# other repos, and if you need to delete Invoke AI, you won't have to download it again.
|
||||
```bash title="Install miniconda for M1 arm64"
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh \
|
||||
-o Miniconda3-latest-MacOSX-arm64.sh
|
||||
/bin/bash Miniconda3-latest-MacOSX-arm64.sh
|
||||
```
|
||||
|
||||
# Make the directory in the repo for the symlink
|
||||
mkdir -p models/ldm/stable-diffusion-v1/
|
||||
=== "Intel x86_64"
|
||||
|
||||
# This is the folder where you put the checkpoint file `sd-v1-4.ckpt`
|
||||
PATH_TO_CKPT="$HOME/Downloads"
|
||||
```bash title="Install miniconda for Intel"
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh \
|
||||
-o Miniconda3-latest-MacOSX-x86_64.sh
|
||||
/bin/bash Miniconda3-latest-MacOSX-x86_64.sh
|
||||
```
|
||||
|
||||
# Create a link to the checkpoint
|
||||
ln -s "$PATH_TO_CKPT/sd-v1-4.ckpt" models/ldm/stable-diffusion-v1/model.ckpt
|
||||
=== "with pyenv"
|
||||
|
||||
# BEGIN ARCHITECTURE-DEPENDENT STEP #
|
||||
# For M1: Create the environment & install packages
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-arm64 conda env create -f environment-mac.yml
|
||||
```bash
|
||||
brew install pyenv-virtualenv
|
||||
pyenv install anaconda3-2022.05
|
||||
pyenv virtualenv anaconda3-2022.05
|
||||
eval "$(pyenv init -)"
|
||||
pyenv activate anaconda3-2022.05
|
||||
```
|
||||
|
||||
# For Intel: Create the environment & install packages
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-64 conda env create -f environment-mac.yml
|
||||
# END ARCHITECTURE-DEPENDENT STEP #
|
||||
!!! todo "Clone the Invoke AI repo"
|
||||
|
||||
# Activate the environment (you need to do this every time you want to run SD)
|
||||
conda activate invokeai
|
||||
```bash
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
cd InvokeAI
|
||||
```
|
||||
|
||||
# This will download some bits and pieces and make take a while
|
||||
python scripts/preload_models.py
|
||||
!!! todo "Wait until the checkpoint-file download finished, then proceed"
|
||||
|
||||
# Run SD!
|
||||
python scripts/dream.py
|
||||
```
|
||||
# or run the web interface!
|
||||
python scripts/invoke.py --web
|
||||
We will leave the big checkpoint wherever you stashed it for long-term storage,
|
||||
and make a link to it from the repo's folder. This allows you to use it for
|
||||
other repos, or if you need to delete Invoke AI, you won't have to download it again.
|
||||
|
||||
# The original scripts should work as well.
|
||||
python scripts/orig_scripts/txt2img.py \
|
||||
--prompt "a photograph of an astronaut riding a horse" \
|
||||
--plms
|
||||
```
|
||||
```{.bash .annotate}
|
||||
# Make the directory in the repo for the symlink
|
||||
mkdir -p models/ldm/stable-diffusion-v1/
|
||||
|
||||
Note, `export PIP_EXISTS_ACTION=w` is a precaution to fix `conda env
|
||||
create -f environment-mac.yml` never finishing in some situations. So
|
||||
it isn't required but wont hurt.
|
||||
# This is the folder where you put the checkpoint file `sd-v1-4.ckpt`
|
||||
PATH_TO_CKPT="$HOME/Downloads" # (1)!
|
||||
|
||||
# Create a link to the checkpoint
|
||||
ln -s "$PATH_TO_CKPT/sd-v1-4.ckpt" models/ldm/stable-diffusion-v1/model.ckpt
|
||||
```
|
||||
|
||||
1. replace `$HOME/Downloads` with the Location where you actually stored the Checkppoint (`sd-v1-4.ckpt`)
|
||||
|
||||
!!! todo "Create the environment & install packages"
|
||||
|
||||
=== "M1 Mac"
|
||||
|
||||
```bash
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-arm64 conda env create -f environment-mac.yml
|
||||
```
|
||||
|
||||
=== "Intel x86_64 Mac"
|
||||
|
||||
```bash
|
||||
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-64 conda env create -f environment-mac.yml
|
||||
```
|
||||
|
||||
```bash
|
||||
# Activate the environment (you need to do this every time you want to run SD)
|
||||
conda activate invokeai
|
||||
|
||||
# This will download some bits and pieces and make take a while
|
||||
(invokeai) python scripts/preload_models.py
|
||||
|
||||
# Run SD!
|
||||
(invokeai) python scripts/dream.py
|
||||
|
||||
# or run the web interface!
|
||||
(invokeai) python scripts/invoke.py --web
|
||||
|
||||
# The original scripts should work as well.
|
||||
(invokeai) python scripts/orig_scripts/txt2img.py \
|
||||
--prompt "a photograph of an astronaut riding a horse" \
|
||||
--plms
|
||||
```
|
||||
!!! info
|
||||
|
||||
`export PIP_EXISTS_ACTION=w` is a precaution to fix `conda env
|
||||
create -f environment-mac.yml` never finishing in some situations. So
|
||||
it isn't required but wont hurt.
|
||||
---
|
||||
|
||||
## Common problems
|
||||
@ -157,7 +189,6 @@ conda install \
|
||||
-n invokeai
|
||||
```
|
||||
|
||||
|
||||
If it takes forever to run `conda env create -f environment-mac.yml`, try this:
|
||||
|
||||
```bash
|
||||
@ -169,12 +200,12 @@ conda clean \
|
||||
|
||||
Or you could try to completley reset Anaconda:
|
||||
|
||||
```bash
|
||||
conda update \
|
||||
--force-reinstall \
|
||||
-y \
|
||||
-n base \
|
||||
-c defaults conda
|
||||
```bash
|
||||
conda update \
|
||||
--force-reinstall \
|
||||
-y \
|
||||
-n base \
|
||||
-c defaults conda
|
||||
```
|
||||
|
||||
---
|
||||
|
@ -39,7 +39,7 @@ in the wiki
|
||||
|
||||
4. Run the command:
|
||||
|
||||
```bash
|
||||
```batch
|
||||
git clone https://github.com/invoke-ai/InvokeAI.git
|
||||
```
|
||||
|
||||
@ -48,17 +48,21 @@ in the wiki
|
||||
|
||||
5. Enter the newly-created InvokeAI folder. From this step forward make sure that you are working in the InvokeAI directory!
|
||||
|
||||
```
|
||||
cd InvokeAI
|
||||
```
|
||||
```batch
|
||||
cd InvokeAI
|
||||
```
|
||||
|
||||
6. Run the following two commands:
|
||||
|
||||
```
|
||||
conda env create (step 6a)
|
||||
conda activate ldm (step 6b)
|
||||
```
|
||||
This will install all python requirements and activate the "ldm" environment
|
||||
```batch title="step 6a"
|
||||
conda env create
|
||||
```
|
||||
|
||||
```batch title="step 6b"
|
||||
conda activate invokeai
|
||||
```
|
||||
|
||||
This will install all python requirements and activate the "invokeai" environment
|
||||
which sets PATH and other environment variables properly.
|
||||
|
||||
Note that the long form of the first command is `conda env create -f environment.yml`. If the
|
||||
@ -67,7 +71,7 @@ conda activate ldm (step 6b)
|
||||
|
||||
7. Run the command:
|
||||
|
||||
```bash
|
||||
```batch
|
||||
python scripts\preload_models.py
|
||||
```
|
||||
|
||||
@ -79,45 +83,44 @@ conda activate ldm (step 6b)
|
||||
|
||||
8. Now you need to install the weights for the big stable diffusion model.
|
||||
|
||||
- For running with the released weights, you will first need to set up an acount with Hugging Face (https://huggingface.co).
|
||||
- Use your credentials to log in, and then point your browser at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
|
||||
- You may be asked to sign a license agreement at this point.
|
||||
- Click on "Files and versions" near the top of the page, and then click on the file named `sd-v1-4.ckpt`. You'll be taken to a page that
|
||||
prompts you to click the "download" link. Now save the file somewhere safe on your local machine.
|
||||
- The weight file is >4 GB in size, so
|
||||
downloading may take a while.
|
||||
1. For running with the released weights, you will first need to set up an acount with Hugging Face (https://huggingface.co).
|
||||
2. Use your credentials to log in, and then point your browser at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
|
||||
3. You may be asked to sign a license agreement at this point.
|
||||
4. Click on "Files and versions" near the top of the page, and then click on the file named `sd-v1-4.ckpt`. You'll be taken to a page that
|
||||
prompts you to click the "download" link. Now save the file somewhere safe on your local machine.
|
||||
5. The weight file is >4 GB in size, so
|
||||
downloading may take a while.
|
||||
|
||||
Now run the following commands from **within the InvokeAI directory** to copy the weights file to the right place:
|
||||
Now run the following commands from **within the InvokeAI directory** to copy the weights file to the right place:
|
||||
|
||||
```
|
||||
mkdir -p models\ldm\stable-diffusion-v1
|
||||
copy C:\path\to\sd-v1-4.ckpt models\ldm\stable-diffusion-v1\model.ckpt
|
||||
```
|
||||
```batch
|
||||
mkdir -p models\ldm\stable-diffusion-v1
|
||||
copy C:\path\to\sd-v1-4.ckpt models\ldm\stable-diffusion-v1\model.ckpt
|
||||
```
|
||||
|
||||
Please replace `C:\path\to\sd-v1.4.ckpt` with the correct path to wherever you stashed this file. If you prefer not to copy or move the .ckpt file,
|
||||
you may instead create a shortcut to it from within `models\ldm\stable-diffusion-v1\`.
|
||||
Please replace `C:\path\to\sd-v1.4.ckpt` with the correct path to wherever you stashed this file. If you prefer not to copy or move the .ckpt file,
|
||||
you may instead create a shortcut to it from within `models\ldm\stable-diffusion-v1\`.
|
||||
|
||||
9. Start generating images!
|
||||
|
||||
```bash
|
||||
# for the pre-release weights
|
||||
```batch title="for the pre-release weights"
|
||||
python scripts\invoke.py -l
|
||||
```
|
||||
|
||||
# for the post-release weights
|
||||
```batch title="for the post-release weights"
|
||||
python scripts\invoke.py
|
||||
```
|
||||
|
||||
10. Subsequently, to relaunch the script, first activate the Anaconda command window (step 3),enter the InvokeAI directory (step 5, `cd \path\to\InvokeAI`), run `conda activate ldm` (step 6b), and then launch the invoke script (step 9).
|
||||
10. Subsequently, to relaunch the script, first activate the Anaconda command window (step 3),enter the InvokeAI directory (step 5, `cd \path\to\InvokeAI`), run `conda activate invokeai` (step 6b), and then launch the invoke script (step 9).
|
||||
|
||||
!!! tip "Tildebyte has written an alternative"
|
||||
|
||||
**Note:** Tildebyte has written an alternative
|
||||
["Easy peasy Windows install"](https://github.com/invoke-ai/InvokeAI/wiki/Easy-peasy-Windows-install)
|
||||
which uses the Windows Powershell and pew. If you are having trouble with
|
||||
Anaconda on Windows, give this a try (or try it first!)
|
||||
|
||||
---
|
||||
|
||||
This distribution is changing rapidly. If you used the `git clone` method (step 5) to download the InvokeAI directory, then to update to the latest and greatest version, launch the Anaconda window, enter `InvokeAI`, and type:
|
||||
|
||||
This distribution is changing rapidly. If you used the `git clone` method
|
||||
(step 5) to download the stable-diffusion directory, then to update to the
|
||||
latest and greatest version, launch the Anaconda window, enter
|
||||
|
Reference in New Issue
Block a user