Merge branch 'main' into feat/nodes/invocation-cache

This commit is contained in:
Jonathan 2023-09-18 19:54:14 -05:00 committed by GitHub
commit b9ebce9bdd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 164 additions and 85 deletions

View File

@ -1,8 +1,9 @@
import { CoreMetadata } from 'features/nodes/types/types';
import { CoreMetadata, LoRAMetadataItem } from 'features/nodes/types/types';
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
import { memo, useCallback } from 'react';
import ImageMetadataItem from './ImageMetadataItem';
import { useTranslation } from 'react-i18next';
import { isValidLoRAModel } from '../../../parameters/types/parameterSchemas';
import ImageMetadataItem from './ImageMetadataItem';
type Props = {
metadata?: CoreMetadata;
@ -24,6 +25,7 @@ const ImageMetadataActions = (props: Props) => {
recallWidth,
recallHeight,
recallStrength,
recallLoRA,
} = useRecallParameters();
const handleRecallPositivePrompt = useCallback(() => {
@ -66,6 +68,13 @@ const ImageMetadataActions = (props: Props) => {
recallStrength(metadata?.strength);
}, [metadata?.strength, recallStrength]);
const handleRecallLoRA = useCallback(
(lora: LoRAMetadataItem) => {
recallLoRA(lora);
},
[recallLoRA]
);
if (!metadata || Object.keys(metadata).length === 0) {
return null;
}
@ -130,20 +139,6 @@ const ImageMetadataActions = (props: Props) => {
onClick={handleRecallHeight}
/>
)}
{/* {metadata.threshold !== undefined && (
<MetadataItem
label={t('metadata.threshold')}
value={metadata.threshold}
onClick={() => dispatch(setThreshold(Number(metadata.threshold)))}
/>
)}
{metadata.perlin !== undefined && (
<MetadataItem
label={t('metadata.perlin')}
value={metadata.perlin}
onClick={() => dispatch(setPerlin(Number(metadata.perlin)))}
/>
)} */}
{metadata.scheduler && (
<ImageMetadataItem
label={t('metadata.scheduler')}
@ -165,40 +160,6 @@ const ImageMetadataActions = (props: Props) => {
onClick={handleRecallCfgScale}
/>
)}
{/* {metadata.variations && metadata.variations.length > 0 && (
<MetadataItem
label="{t('metadata.variations')}
value={seedWeightsToString(metadata.variations)}
onClick={() =>
dispatch(
setSeedWeights(seedWeightsToString(metadata.variations))
)
}
/>
)}
{metadata.seamless && (
<MetadataItem
label={t('metadata.seamless')}
value={metadata.seamless}
onClick={() => dispatch(setSeamless(metadata.seamless))}
/>
)}
{metadata.hires_fix && (
<MetadataItem
label={t('metadata.hiresFix')}
value={metadata.hires_fix}
onClick={() => dispatch(setHiresFix(metadata.hires_fix))}
/>
)} */}
{/* {init_image_path && (
<MetadataItem
label={t('metadata.initImage')}
value={init_image_path}
isLink
onClick={() => dispatch(setInitialImage(init_image_path))}
/>
)} */}
{metadata.strength && (
<ImageMetadataItem
label={t('metadata.strength')}
@ -206,13 +167,19 @@ const ImageMetadataActions = (props: Props) => {
onClick={handleRecallStrength}
/>
)}
{/* {metadata.fit && (
<MetadataItem
label={t('metadata.fit')}
value={metadata.fit}
onClick={() => dispatch(setShouldFitToWidthHeight(metadata.fit))}
{metadata.loras &&
metadata.loras.map((lora, index) => {
if (isValidLoRAModel(lora.lora)) {
return (
<ImageMetadataItem
key={index}
label="LoRA"
value={`${lora.lora.model_name} - ${lora.weight}`}
onClick={() => handleRecallLoRA(lora)}
/>
)} */}
);
}
})}
</>
);
};

View File

@ -27,6 +27,13 @@ export const loraSlice = createSlice({
const { model_name, id, base_model } = action.payload;
state.loras[id] = { id, model_name, base_model, ...defaultLoRAConfig };
},
loraRecalled: (
state,
action: PayloadAction<LoRAModelConfigEntity & { weight: number }>
) => {
const { model_name, id, base_model, weight } = action.payload;
state.loras[id] = { id, model_name, base_model, weight };
},
loraRemoved: (state, action: PayloadAction<string>) => {
const id = action.payload;
delete state.loras[id];
@ -62,6 +69,7 @@ export const {
loraWeightChanged,
loraWeightReset,
lorasCleared,
loraRecalled,
} = loraSlice.actions;
export default loraSlice.reducer;

View File

@ -1065,6 +1065,13 @@ export const isInvocationFieldSchema = (
export type InvocationEdgeExtra = { type: 'default' | 'collapsed' };
const zLoRAMetadataItem = z.object({
lora: zLoRAModelField.deepPartial(),
weight: z.number(),
});
export type LoRAMetadataItem = z.infer<typeof zLoRAMetadataItem>;
export const zCoreMetadata = z
.object({
app_version: z.string().nullish(),
@ -1084,14 +1091,7 @@ export const zCoreMetadata = z
.union([zMainModel.deepPartial(), zOnnxModel.deepPartial()])
.nullish(),
controlnets: z.array(zControlField.deepPartial()).nullish(),
loras: z
.array(
z.object({
lora: zLoRAModelField.deepPartial(),
weight: z.number(),
})
)
.nullish(),
loras: z.array(zLoRAMetadataItem).nullish(),
vae: zVaeModelField.nullish(),
strength: z.number().nullish(),
init_image: z.string().nullish(),

View File

@ -1,6 +1,8 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppToaster } from 'app/components/Toaster';
import { useAppDispatch } from 'app/store/storeHooks';
import { CoreMetadata } from 'features/nodes/types/types';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { CoreMetadata, LoRAMetadataItem } from 'features/nodes/types/types';
import {
refinerModelChanged,
setNegativeStylePromptSDXL,
@ -15,6 +17,11 @@ import {
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { ImageDTO } from 'services/api/types';
import {
loraModelsAdapter,
useGetLoRAModelsQuery,
} from '../../../services/api/endpoints/models';
import { loraRecalled } from '../../lora/store/loraSlice';
import { initialImageSelected, modelSelected } from '../store/actions';
import {
setCfgScale,
@ -30,6 +37,7 @@ import {
import {
isValidCfgScale,
isValidHeight,
isValidLoRAModel,
isValidMainModel,
isValidNegativePrompt,
isValidPositivePrompt,
@ -46,10 +54,16 @@ import {
isValidWidth,
} from '../types/parameterSchemas';
const selector = createSelector(stateSelector, ({ generation }) => {
const { model } = generation;
return { model };
});
export const useRecallParameters = () => {
const dispatch = useAppDispatch();
const toaster = useAppToaster();
const { t } = useTranslation();
const { model } = useAppSelector(selector);
const parameterSetToast = useCallback(() => {
toaster({
@ -60,14 +74,18 @@ export const useRecallParameters = () => {
});
}, [t, toaster]);
const parameterNotSetToast = useCallback(() => {
const parameterNotSetToast = useCallback(
(description?: string) => {
toaster({
title: t('toast.parameterNotSet'),
description,
status: 'warning',
duration: 2500,
isClosable: true,
});
}, [t, toaster]);
},
[t, toaster]
);
const allParameterSetToast = useCallback(() => {
toaster({
@ -78,14 +96,18 @@ export const useRecallParameters = () => {
});
}, [t, toaster]);
const allParameterNotSetToast = useCallback(() => {
const allParameterNotSetToast = useCallback(
(description?: string) => {
toaster({
title: t('toast.parametersNotSet'),
status: 'warning',
description,
duration: 2500,
isClosable: true,
});
}, [t, toaster]);
},
[t, toaster]
);
/**
* Recall both prompts with toast
@ -307,6 +329,67 @@ export const useRecallParameters = () => {
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall LoRA with toast
*/
const { loras } = useGetLoRAModelsQuery(undefined, {
selectFromResult: (result) => ({
loras: result.data
? loraModelsAdapter.getSelectors().selectAll(result.data)
: [],
}),
});
const prepareLoRAMetadataItem = useCallback(
(loraMetadataItem: LoRAMetadataItem) => {
if (!isValidLoRAModel(loraMetadataItem.lora)) {
return { lora: null, error: 'Invalid LoRA model' };
}
const { base_model, model_name } = loraMetadataItem.lora;
const matchingLoRA = loras.find(
(l) => l.base_model === base_model && l.model_name === model_name
);
if (!matchingLoRA) {
return { lora: null, error: 'LoRA model is not installed' };
}
const isCompatibleBaseModel =
matchingLoRA?.base_model === model?.base_model;
if (!isCompatibleBaseModel) {
return {
lora: null,
error: 'LoRA incompatible with currently-selected model',
};
}
return { lora: matchingLoRA, error: null };
},
[loras, model?.base_model]
);
const recallLoRA = useCallback(
(loraMetadataItem: LoRAMetadataItem) => {
const result = prepareLoRAMetadataItem(loraMetadataItem);
if (!result.lora) {
parameterNotSetToast(result.error);
return;
}
dispatch(
loraRecalled({ ...result.lora, weight: loraMetadataItem.weight })
);
parameterSetToast();
},
[prepareLoRAMetadataItem, dispatch, parameterSetToast, parameterNotSetToast]
);
/*
* Sets image as initial image with toast
*/
@ -344,6 +427,7 @@ export const useRecallParameters = () => {
refiner_positive_aesthetic_score,
refiner_negative_aesthetic_score,
refiner_start,
loras,
} = metadata;
if (isValidCfgScale(cfg_scale)) {
@ -425,9 +509,21 @@ export const useRecallParameters = () => {
dispatch(setRefinerStart(refiner_start));
}
loras?.forEach((lora) => {
const result = prepareLoRAMetadataItem(lora);
if (result.lora) {
dispatch(loraRecalled({ ...result.lora, weight: lora.weight }));
}
});
allParameterSetToast();
},
[allParameterNotSetToast, allParameterSetToast, dispatch]
[
allParameterNotSetToast,
allParameterSetToast,
dispatch,
prepareLoRAMetadataItem,
]
);
return {
@ -444,6 +540,7 @@ export const useRecallParameters = () => {
recallWidth,
recallHeight,
recallStrength,
recallLoRA,
recallAllParameters,
sendToImageToImage,
};

View File

@ -128,7 +128,7 @@ export const mainModelsAdapter = createEntityAdapter<MainModelConfigEntity>({
const onnxModelsAdapter = createEntityAdapter<OnnxModelConfigEntity>({
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
});
const loraModelsAdapter = createEntityAdapter<LoRAModelConfigEntity>({
export const loraModelsAdapter = createEntityAdapter<LoRAModelConfigEntity>({
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
});
export const controlNetModelsAdapter =

View File

@ -198,6 +198,13 @@ output = "coverage/index.xml"
max-line-length = 120
ignore = ["E203", "E266", "E501", "W503"]
select = ["B", "C", "E", "F", "W", "T4"]
exclude = [
".git",
"__pycache__",
"build",
"dist",
"invokeai/frontend/web/node_modules/"
]
[tool.black]
line-length = 120