Merge branch 'main' into lstein/feat/simple-mm2-api

This commit is contained in:
Lincoln Stein 2024-04-28 11:33:26 -04:00
commit bb04f496e0
103 changed files with 4797 additions and 779 deletions

495
README.md
View File

@ -2,21 +2,102 @@
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
# Invoke - Professional Creative AI Tools for Visual Media
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
# Invoke - Professional Creative AI Tools for Visual Media
#### To learn more about Invoke, or implement our Business solutions, visit [invoke.com]
[![discord badge]][discord link]
[![discord badge]][discord link] [![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link] [![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link] [![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
</div>
[![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link]
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
[Installation][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
</div>
## Quick Start
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
2. Run the installer script.
- **Windows**: Double-click on the `install.bat` script.
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
- **Linux**: Run `install.sh`.
3. When prompted, enter a location for the install and select your GPU type.
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Troubleshooting, FAQ and Support
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
For more help, please join our [Discord][discord link].
## Features
Full details on features can be found in [our documentation][features docs].
### Web Server & UI
Invoke runs a locally hosted web server & React UI with an industry-leading user experience.
### Unified Canvas
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/out-painting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### Workflows & Nodes
Invoke offers a fully featured workflow management solution, enabling users to combine the power of node-based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
### Board & Gallery Management
Invoke features an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- Support for both ckpt and diffusers models
- SD1.5, SD2.0, and SDXL support
- Upscaling Tools
- Embedding Manager & Support
- Model Manager & Support
- Workflow creation & management
- Node-Based Architecture
## Contributing
Anyone who wishes to contribute to this project - whether documentation, features, bug fixes, code cleanup, testing, or code reviews - is very much encouraged to do so.
Get started with contributing by reading our [contribution documentation][contributing docs], joining the [#dev-chat] or the GitHub discussion board.
We hope you enjoy using Invoke as much as we enjoy creating it, and we hope you will elect to become part of our community.
## Thanks
Invoke is a combined effort of [passionate and talented people from across the world][contributors]. We thank them for their time, hard work and effort.
Original portions of the software are Copyright © 2024 by respective contributors.
[features docs]: https://invoke-ai.github.io/InvokeAI/features/
[faq]: https://invoke-ai.github.io/InvokeAI/help/FAQ/
[contributors]: https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/
[invoke.com]: https://www.invoke.com/about
[github issues]: https://github.com/invoke-ai/InvokeAI/issues
[docs home]: https://invoke-ai.github.io/InvokeAI
[installation docs]: https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/
[#dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
[contributing docs]: https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/
[CI checks on main badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/main?label=CI%20status%20on%20main&cache=900&icon=github
[CI checks on main link]:https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[CI checks on main link]: https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[discord badge]: https://flat.badgen.net/discord/members/ZmtBAhwWhy?icon=discord
[discord link]: https://discord.gg/ZmtBAhwWhy
[github forks badge]: https://flat.badgen.net/github/forks/invoke-ai/InvokeAI?icon=github
@ -30,402 +111,6 @@
[latest commit to main badge]: https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/main?icon=github&color=yellow&label=last%20dev%20commit&cache=900
[latest commit to main link]: https://github.com/invoke-ai/InvokeAI/commits/main
[latest release badge]: https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
[translation status link]: https://hosted.weblate.org/engage/invokeai/
</div>
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
[<a
href="https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/">Contributing</a>]
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
</div>
## Table of Contents
Table of Contents 📝
**Getting Started**
1. 🏁 [Quick Start](#quick-start)
3. 🖥️ [Hardware Requirements](#hardware-requirements)
**More About Invoke**
1. 🌟 [Features](#features)
2. 📣 [Latest Changes](#latest-changes)
3. 🛠️ [Troubleshooting](#troubleshooting)
**Supporting the Project**
1. 🤝 [Contributing](#contributing)
2. 👥 [Contributors](#contributors)
3. 💕 [Support](#support)
## Quick Start
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.
### Automatic Installer (suggested for 1st time users)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
2. Download the .zip file for your OS (Windows/macOS/Linux).
3. Unzip the file.
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. **Linux:** run `install.sh`.
5. You'll be asked to confirm the location of the folder in which
to install InvokeAI and its image generation model files. Pick a
location with at least 15 GB of free memory. More if you plan on
installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this
folder (if you didn't change it in step 5) is `~/invokeai` on
Linux/Mac systems, and `C:\Users\YourName\invokeai` on Windows. This directory will contain launcher scripts named `invoke.sh` and `invoke.bat`.
8. On Windows systems, double-click on the `invoke.bat` file. On
macOS, open a Terminal window, drag `invoke.sh` from the folder into
the Terminal, and press return. On Linux, run `invoke.sh`
9. Press 2 to open the "browser-based UI", press enter/return, wait a
minute or two for Stable Diffusion to start up, then open your browser
and go to http://localhost:9090.
10. Type `banana sushi` in the box on the top left and click `Invoke`
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with `pnpm` (can be installed with
the command `npm install -g pnpm` if needed)
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
```terminal
mkdir invokeai
````
3. Create a virtual environment named `.venv` inside this directory and activate it:
```terminal
cd invokeai
python -m venv .venv --prompt InvokeAI
```
4. Activate the virtual environment (do it every time you run InvokeAI)
_For Linux/Mac users:_
```sh
source .venv/bin/activate
```
_For Windows users:_
```ps
.venv\Scripts\activate
```
5. Install the InvokeAI module and its dependencies. Choose the command suited for your platform & GPU.
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2/M3:_
```sh
pip install InvokeAI --use-pep517
```
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
```terminal
invokeai-configure --root .
```
Don't miss the dot at the end!
7. Launch the web server (do it every time you run InvokeAI):
```terminal
invokeai-web
```
8. Point your browser to http://localhost:9090 to bring up the web interface.
9. Type `banana sushi` in the box on the top left and click `Invoke`.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
## Detailed Installation Instructions
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
<a name="migrating-to-3"></a>
### Migrating a v2.3 InvokeAI root directory
The InvokeAI root directory is where the InvokeAI startup file,
installed models, and generated images are stored. It is ordinarily
named `invokeai` and located in your home directory. The contents and
layout of this directory has changed between versions 2.3 and 3.0 and
cannot be used directly.
We currently recommend that you use the installer to create a new root
directory named differently from the 2.3 one, e.g. `invokeai-3` and
then use a migration script to copy your 2.3 models into the new
location. However, if you choose, you can upgrade this directory in
place. This section gives both recipes.
#### Creating a new root directory and migrating old models
This is the safer recipe because it leaves your old root directory in
place to fall back on.
1. Follow the instructions above to create and install InvokeAI in a
directory that has a different name from the 2.3 invokeai directory.
In this example, we will use "invokeai-3"
2. When you are prompted to select models to install, select a minimal
set of models, such as stable-diffusion-v1.5 only.
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
`invokeai.bat` and select option 8 "Open the developers console". This
will take you to the command line.
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
paths for your v2.3 and v3.0 root directories respectively.
This will copy and convert your old models from 2.3 format to 3.0
format and create a new `models` directory in the 3.0 directory. The
old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
If you wish, you can pass the 2.3 root directory to both `--from` and
`--to` in order to update in place. Warning: this directory will no
longer be usable with InvokeAI 2.3.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. ***This recipe does not work on
Windows platforms due to a bug in the Windows version of the 2.3
upgrade script.** See the next section for a Windows recipe.
##### For Mac and Linux Users:
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [6] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
update it to the 3.0 format. The following files will be replaced:
- The invokeai.init file, replaced by invokeai.yaml
- The models directory
- The configs/models.yaml model index
The original versions of these files will be saved with the suffix
".orig" appended to the end. Once you have confirmed that the upgrade
worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
##### For Windows Users:
Windows Users can upgrade with the
1. Enter the 2.3 root directory you wish to upgrade
2. Launch `invoke.sh` or `invoke.bat`
3. Select the "Developer's console" option [8]
4. Type the following commands
```
pip install "invokeai @ https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v3.0.0" --use-pep517 --upgrade
invokeai-configure --root .
```
(Replace `v3.0.0` with the current release number if this document is out of date).
The first command will install and upgrade new software to run
InvokeAI. The second will prepare the 2.3 directory for use with 3.0.
You may now launch the WebUI in the usual way, by selecting option [1]
from the launcher script
#### Migrating Images
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. To do this, you
need to run an additional step:
1. From a working InvokeAI 3.0 root directory, start the launcher and
enter menu option [8] to open the "developer's console".
2. At the developer's console command line, type the command:
```bash
invokeai-import-images
```
3. This will lead you through the process of confirming the desired
source and destination for the imported images. The images will
appear in the gallery board of your choice, and contain the
original prompt, model name, and other parameters used to generate
the image.
(Many kudos to **techjedi** for contributing this script.)
## Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver).
### System
You will need one of the following:
- An NVIDIA-based graphics card with 4 GB or more VRAM memory. 6-8 GB
of VRAM is highly recommended for rendering using the Stable
Diffusion XL models
- An Apple computer with an M1 chip.
- An AMD-based graphics card with 4GB or more VRAM memory (Linux
only), 6-8 GB for XL rendering.
We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
**Memory** - At least 12 GB Main Memory RAM.
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
## Features
Feature documentation can be reviewed by navigating to [the InvokeAI Documentation page](https://invoke-ai.github.io/InvokeAI/features/)
### *Web Server & UI*
InvokeAI offers a locally hosted Web Server & React Frontend, with an industry leading user experience. The Web-based UI allows for simple and intuitive workflows, and is responsive for use on mobile devices and tablets accessing the web server.
### *Unified Canvas*
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### *Workflows & Nodes*
InvokeAI offers a fully featured workflow management solution, enabling users to combine the power of nodes based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
### *Board & Gallery Management*
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1, XL support*
- *Upscaling Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
- *Workflow creation & management*
- *Node-Based Architecture*
### Latest Changes
For our latest changes, view our [Release
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
[CHANGELOG](docs/CHANGELOG.md).
### Troubleshooting / FAQ
Please check out our **[FAQ](https://invoke-ai.github.io/InvokeAI/help/FAQ/)** to get solutions for common installation
problems and other issues. For more help, please join our [Discord][discord link]
## Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so.
Get started with contributing by reading our [Contribution documentation](https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/), joining the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) or the GitHub discussion board.
If you are unfamiliar with how
to contribute to GitHub projects, we have a new contributor checklist you can follow to get started contributing:
[New Contributor Checklist](https://invoke-ai.github.io/InvokeAI/contributing/contribution_guides/newContributorChecklist/).
We hope you enjoy using our software as much as we enjoy creating it,
and we hope that some of those of you who are reading this will elect
to become part of our community.
Welcome to InvokeAI!
### Contributors
This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the [Discord][discord link].
Original portions of the software are Copyright (c) 2023 by respective contributors.

View File

@ -51,13 +51,11 @@ The settings in this file will override the defaults. You only need
to change this file if the default for a particular setting doesn't
work for you.
You'll find an example file next to `invokeai.yaml` that shows the default values.
Some settings, like [Model Marketplace API Keys], require the YAML
to be formatted correctly. Here is a [basic guide to YAML files].
You can fix a broken `invokeai.yaml` by deleting it and running the
configuration script again -- option [6] in the launcher, "Re-run the
configure script".
#### Custom Config File Location
You can use any config file with the `--config` CLI arg. Pass in the path to the `invokeai.yaml` file you want to use.

View File

@ -35,6 +35,7 @@ from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
@ -44,14 +45,6 @@ from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
CONTROLNET_RESIZE_VALUES = Literal[
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")

View File

@ -51,6 +51,7 @@ from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
@ -185,7 +186,7 @@ class GradientMaskOutput(BaseInvocationOutput):
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
version="1.1.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
@ -198,6 +199,32 @@ class CreateGradientMaskInvocation(BaseInvocation):
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
)
image: Optional[ImageField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] Image",
ui_order=6,
)
unet: Optional[UNetField] = InputField(
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
default=None,
input=Input.Connection,
title="[OPTIONAL] UNet",
ui_order=5,
)
vae: Optional[VAEField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] VAE",
input=Input.Connection,
ui_order=7,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
fp32: bool = InputField(
default=DEFAULT_PRECISION == "float32",
description=FieldDescriptions.fp32,
ui_order=9,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
@ -233,8 +260,27 @@ class CreateGradientMaskInvocation(BaseInvocation):
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
masked_latents_name = None
if self.unet is not None and self.vae is not None and self.image is not None:
# all three fields must be present at the same time
main_model_config = context.models.get_config(self.unet.unet.key)
assert isinstance(main_model_config, MainConfigBase)
if main_model_config.variant is ModelVariantType.Inpaint:
mask = blur_tensor
vae_info: LoadedModel = context.models.load(self.vae.vae)
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
masked_latents = ImageToLatentsInvocation.vae_encode(
vae_info, self.fp32, self.tiled, masked_image.clone()
)
masked_latents_name = context.tensors.save(tensor=masked_latents)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=None, gradient=True),
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
)

View File

@ -1,7 +1,8 @@
import numpy as np
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, InvocationContext, invocation
from invokeai.app.invocations.fields import InputField, TensorField, WithMetadata
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
from invokeai.app.invocations.primitives import MaskOutput
@ -34,3 +35,86 @@ class RectangleMaskInvocation(BaseInvocation, WithMetadata):
width=self.width,
height=self.height,
)
@invocation(
"alpha_mask_to_tensor",
title="Alpha Mask to Tensor",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
classification=Classification.Beta,
)
class AlphaMaskToTensorInvocation(BaseInvocation):
"""Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0."""
image: ImageField = InputField(description="The mask image to convert.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.images.get_pil(self.image.image_name)
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
if self.invert:
mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool)
else:
mask[0] = torch.tensor(np.array(image)[:, :, 3] > 0, dtype=torch.bool)
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(mask)),
height=mask.shape[1],
width=mask.shape[2],
)
@invocation(
"invert_tensor_mask",
title="Invert Tensor Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
classification=Classification.Beta,
)
class InvertTensorMaskInvocation(BaseInvocation):
"""Inverts a tensor mask."""
mask: TensorField = InputField(description="The tensor mask to convert.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = context.tensors.load(self.mask.tensor_name)
inverted = ~mask
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(inverted)),
height=inverted.shape[1],
width=inverted.shape[2],
)
@invocation(
"image_mask_to_tensor",
title="Image Mask to Tensor",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
"""Convert a mask image to a tensor. Converts the image to grayscale and uses thresholding at the specified value."""
image: ImageField = InputField(description="The mask image to convert.")
cutoff: int = InputField(ge=0, le=255, description="Cutoff (<)", default=128)
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.images.get_pil(self.image.image_name, mode="L")
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
if self.invert:
mask[0] = torch.tensor(np.array(image)[:, :] >= self.cutoff, dtype=torch.bool)
else:
mask[0] = torch.tensor(np.array(image)[:, :] < self.cutoff, dtype=torch.bool)
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(mask)),
height=mask.shape[1],
width=mask.shape[2],
)

View File

@ -3,7 +3,6 @@ from typing import Any, Literal, Optional, Union
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@ -14,6 +13,7 @@ from invokeai.app.invocations.fields import (
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from ...version import __version__

View File

@ -8,11 +8,11 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
class T2IAdapterField(BaseModel):

View File

@ -3,7 +3,6 @@
import locale
import os
import re
import signal
import threading
import time
from pathlib import Path
@ -42,6 +41,7 @@ from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMet
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.util import slugify
@ -112,17 +112,6 @@ class ModelInstallService(ModelInstallServiceBase):
def start(self, invoker: Optional[Invoker] = None) -> None:
"""Start the installer thread."""
# Yes, this is weird. When the installer thread is running, the
# thread masks the ^C signal. When we receive a
# sigINT, we stop the thread, reset sigINT, and send a new
# sigINT to the parent process.
def sigint_handler(signum, frame):
self.stop()
signal.signal(signal.SIGINT, signal.SIG_DFL)
signal.raise_signal(signal.SIGINT)
signal.signal(signal.SIGINT, sigint_handler)
with self._lock:
if self._running:
raise Exception("Attempt to start the installer service twice")
@ -132,7 +121,8 @@ class ModelInstallService(ModelInstallServiceBase):
# In normal use, we do not want to scan the models directory - it should never have orphaned models.
# We should only do the scan when the flag is set (which should only be set when testing).
if self.app_config.scan_models_on_startup:
self._register_orphaned_models()
with catch_sigint():
self._register_orphaned_models()
# Check all models' paths and confirm they exist. A model could be missing if it was installed on a volume
# that isn't currently mounted. In this case, we don't want to delete the model from the database, but we do

View File

@ -1,6 +1,6 @@
import shutil
import tempfile
import typing
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Optional, TypeVar
@ -17,12 +17,6 @@ if TYPE_CHECKING:
T = TypeVar("T")
@dataclass
class DeleteAllResult:
deleted_count: int
freed_space_bytes: float
class ObjectSerializerDisk(ObjectSerializerBase[T]):
"""Disk-backed storage for arbitrary python objects. Serialization is handled by `torch.save` and `torch.load`.
@ -35,6 +29,12 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
self._ephemeral = ephemeral
self._base_output_dir = output_dir
self._base_output_dir.mkdir(parents=True, exist_ok=True)
if self._ephemeral:
# Remove dangling tempdirs that might have been left over from an earlier unplanned shutdown.
for temp_dir in filter(Path.is_dir, self._base_output_dir.glob("tmp*")):
shutil.rmtree(temp_dir)
# Must specify `ignore_cleanup_errors` to avoid fatal errors during cleanup on Windows
self._tempdir = (
tempfile.TemporaryDirectory(dir=self._base_output_dir, ignore_cleanup_errors=True) if ephemeral else None

View File

@ -1,13 +1,21 @@
from typing import Union
from typing import Any, Literal, Union
import cv2
import numpy as np
import torch
from controlnet_aux.util import HWC3
from diffusers.utils import PIL_INTERPOLATION
from einops import rearrange
from PIL import Image
from invokeai.backend.image_util.util import nms, normalize_image_channel_count
CONTROLNET_RESIZE_VALUES = Literal[
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
###################################################################
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
###################################################################
@ -68,17 +76,6 @@ def lvmin_thin(x, prunings=True):
return y
def nake_nms(x):
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
return y
################################################################################
# copied from Mikubill/sd-webui-controlnet external_code.py and modified for InvokeAI
################################################################################
@ -134,98 +131,122 @@ def pixel_perfect_resolution(
return int(np.round(estimation))
def clone_contiguous(x: np.ndarray[Any, Any]) -> np.ndarray[Any, Any]:
"""Get a memory-contiguous clone of the given numpy array, as a safety measure and to improve computation efficiency."""
return np.ascontiguousarray(x).copy()
def np_img_to_torch(np_img: np.ndarray[Any, Any], device: torch.device) -> torch.Tensor:
"""Convert a numpy image to a PyTorch tensor. The image is normalized to 0-1, rearranged to BCHW format and sent to
the specified device."""
torch_img = torch.from_numpy(np_img)
normalized = torch_img.float() / 255.0
bchw = rearrange(normalized, "h w c -> 1 c h w")
on_device = bchw.to(device)
return on_device.clone()
def heuristic_resize(np_img: np.ndarray[Any, Any], size: tuple[int, int]) -> np.ndarray[Any, Any]:
"""Resizes an image using a heuristic to choose the best resizing strategy.
- If the image appears to be an edge map, special handling will be applied to ensure the edges are not distorted.
- Single-pixel edge maps use NMS and thinning to keep the edges as single-pixel lines.
- Low-color-count images are resized with nearest-neighbor to preserve color information (for e.g. segmentation maps).
- The alpha channel is handled separately to ensure it is resized correctly.
Args:
np_img (np.ndarray): The input image.
size (tuple[int, int]): The target size for the image.
Returns:
np.ndarray: The resized image.
Adapted from https://github.com/Mikubill/sd-webui-controlnet.
"""
# Return early if the image is already at the requested size
if np_img.shape[0] == size[1] and np_img.shape[1] == size[0]:
return np_img
# If the image has an alpha channel, separate it for special handling later.
inpaint_mask = None
if np_img.ndim == 3 and np_img.shape[2] == 4:
inpaint_mask = np_img[:, :, 3]
np_img = np_img[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (np_img.shape[0] * np_img.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (np_img.shape[0] * np_img.shape[1])
unique_color_count = np.unique(np_img.reshape(-1, np_img.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
# If the image has only two colors, it is likely binary. Check if the image has one-pixel edges.
is_binary = np.min(np_img) < 16 and np.max(np_img) > 240
if is_binary:
eroded = cv2.erode(np_img, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
dilated = cv2.dilate(eroded, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(dilated < np_img)[0].shape[0]
all_edge_count = np.where(np_img > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
# With a low color count, we assume this is a map where exact colors are important. Near-neighbor preserves
# the colors as needed.
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
# This works best for downscaling
interpolation = cv2.INTER_AREA
else:
# Fall back for other cases
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
# This may be further transformed depending on the binary nature of the image.
resized = cv2.resize(np_img, size, interpolation=interpolation)
if inpaint_mask is not None:
# Resize the inpaint mask to match the resized image using the same interpolation method.
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
# If the image is binary, we will perform some additional processing to ensure the edges are preserved.
if is_binary:
resized = np.mean(resized.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
# Use NMS and thinning to keep the edges as single-pixel lines.
resized = nms(resized)
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
resized = lvmin_thin(resized, prunings=new_size_is_bigger)
else:
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
resized = np.stack([resized] * 3, axis=2)
# Restore the alpha channel if it was present.
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
resized = np.concatenate([resized, inpaint_mask], axis=2)
return resized
###########################################################################
# Copied from detectmap_proc method in scripts/detectmap_proc.py in Mikubill/sd-webui-controlnet
# modified for InvokeAI
###########################################################################
# def detectmap_proc(detected_map, module, resize_mode, h, w):
def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device: torch.device = torch.device("cpu")):
# if 'inpaint' in module:
# np_img = np_img.astype(np.float32)
# else:
# np_img = HWC3(np_img)
np_img = HWC3(np_img)
def np_img_resize(
np_img: np.ndarray,
resize_mode: CONTROLNET_RESIZE_VALUES,
h: int,
w: int,
device: torch.device = torch.device("cpu"),
) -> tuple[torch.Tensor, np.ndarray[Any, Any]]:
np_img = normalize_image_channel_count(np_img)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def get_pytorch_control(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, "h w c -> 1 c h w")
y = y.clone()
# y = y.to(devices.get_device_for("controlnet"))
y = y.to(device)
y = y.clone()
return y
def high_quality_resize(x: np.ndarray, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
# if resize_mode == external_code.ResizeMode.RESIZE:
if resize_mode == "just_resize": # RESIZE
np_img = high_quality_resize(np_img, (w, h))
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
np_img = heuristic_resize(np_img, (w, h))
np_img = clone_contiguous(np_img)
return np_img_to_torch(np_img, device), np_img
old_h, old_w, _ = np_img.shape
old_w = float(old_w)
@ -236,7 +257,6 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
def safeint(x: Union[int, float]) -> int:
return int(np.round(x))
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
if resize_mode == "fill_resize": # OUTER_FIT
k = min(k0, k1)
borders = np.concatenate([np_img[0, :, :], np_img[-1, :, :], np_img[:, 0, :], np_img[:, -1, :]], axis=0)
@ -245,23 +265,23 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = np_img
np_img = high_quality_background
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
np_img = clone_contiguous(np_img)
return np_img_to_torch(np_img, device), np_img
else: # resize_mode == "crop_resize" (INNER_FIT)
k = max(k0, k1)
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
np_img = np_img[pad_h : pad_h + h, pad_w : pad_w + w]
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
np_img = clone_contiguous(np_img)
return np_img_to_torch(np_img, device), np_img
def prepare_control_image(
@ -269,12 +289,12 @@ def prepare_control_image(
width: int,
height: int,
num_channels: int = 3,
device="cuda",
dtype=torch.float16,
do_classifier_free_guidance=True,
control_mode="balanced",
resize_mode="just_resize_simple",
):
device: str = "cuda",
dtype: torch.dtype = torch.float16,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
do_classifier_free_guidance: bool = True,
) -> torch.Tensor:
"""Pre-process images for ControlNets or T2I-Adapters.
Args:
@ -292,26 +312,15 @@ def prepare_control_image(
resize_mode (str, optional): Defaults to "just_resize_simple".
Raises:
NotImplementedError: If resize_mode == "crop_resize_simple".
NotImplementedError: If resize_mode == "fill_resize_simple".
ValueError: If `resize_mode` is not recognized.
ValueError: If `num_channels` is out of range.
Returns:
torch.Tensor: The pre-processed input tensor.
"""
if (
resize_mode == "just_resize_simple"
or resize_mode == "crop_resize_simple"
or resize_mode == "fill_resize_simple"
):
if resize_mode == "just_resize_simple":
image = image.convert("RGB")
if resize_mode == "just_resize_simple":
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
elif resize_mode == "crop_resize_simple":
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
elif resize_mode == "fill_resize_simple":
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
image = image.resize((width, height), resample=Image.LANCZOS)
nimage = np.array(image)
nimage = nimage[None, :]
nimage = np.concatenate([nimage], axis=0)
@ -328,8 +337,7 @@ def prepare_control_image(
resize_mode=resize_mode,
h=height,
w=width,
# device=torch.device('cpu')
device=device,
device=torch.device(device),
)
else:
raise ValueError(f"Unsupported resize_mode: '{resize_mode}'.")

View File

@ -8,7 +8,7 @@ from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
non_maximum_suppression,
nms,
normalize_image_channel_count,
np_to_pil,
pil_to_np,
@ -134,7 +134,7 @@ class HEDProcessor:
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
if scribble:
detected_map = non_maximum_suppression(detected_map, 127, 3.0)
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0

View File

@ -1,4 +1,5 @@
from math import ceil, floor, sqrt
from typing import Optional
import cv2
import numpy as np
@ -153,10 +154,13 @@ def resize_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.n
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_AREA)
def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
def nms(np_img: np.ndarray, threshold: Optional[int] = None, sigma: Optional[float] = None) -> np.ndarray:
"""
Apply non-maximum suppression to an image.
If both threshold and sigma are provided, the image will blurred before the suppression and thresholded afterwards,
resulting in a binary output image.
This function is adapted from https://github.com/lllyasviel/ControlNet.
Args:
@ -166,23 +170,36 @@ def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
Returns:
The image after non-maximum suppression.
Raises:
ValueError: If only one of threshold and sigma provided.
"""
image = cv2.GaussianBlur(image.astype(np.float32), (0, 0), sigma)
# Raise a value error if only one of threshold and sigma is provided
if (threshold is None) != (sigma is None):
raise ValueError("Both threshold and sigma must be provided if one is provided.")
if sigma is not None and threshold is not None:
# Blurring the image can help to thin out features
np_img = cv2.GaussianBlur(np_img.astype(np.float32), (0, 0), sigma)
filter_1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
filter_2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
filter_3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
filter_4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(image)
nms_img = np.zeros_like(np_img)
for f in [filter_1, filter_2, filter_3, filter_4]:
np.putmask(y, cv2.dilate(image, kernel=f) == image, image)
np.putmask(nms_img, cv2.dilate(np_img, kernel=f) == np_img, np_img)
z = np.zeros_like(y, dtype=np.uint8)
z[y > threshold] = 255
return z
if sigma is not None and threshold is not None:
# We blurred - now threshold to get a binary image
thresholded = np.zeros_like(nms_img, dtype=np.uint8)
thresholded[nms_img > threshold] = 255
return thresholded
return nms_img
def safe_step(x: np.ndarray, step: int = 2) -> np.ndarray:

View File

@ -301,12 +301,12 @@ class MainConfigBase(ModelConfigBase):
default_settings: Optional[MainModelDefaultSettings] = Field(
description="Default settings for this model", default=None
)
variant: ModelVariantType = ModelVariantType.Normal
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
variant: ModelVariantType = ModelVariantType.Normal
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False

View File

@ -51,6 +51,7 @@ LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[Sched
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
ModelVariantType.Inpaint: "sd_xl_inpaint.yaml",
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",

View File

@ -155,7 +155,7 @@ STARTER_MODELS: list[StarterModel] = [
StarterModel(
name="IP Adapter",
base=BaseModelType.StableDiffusion1,
source="InvokeAI/ip_adapter_sd15",
source="https://huggingface.co/InvokeAI/ip_adapter_sd15/resolve/main/ip-adapter_sd15.safetensors",
description="IP-Adapter for SD 1.5 models",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
@ -163,7 +163,7 @@ STARTER_MODELS: list[StarterModel] = [
StarterModel(
name="IP Adapter Plus",
base=BaseModelType.StableDiffusion1,
source="InvokeAI/ip_adapter_plus_sd15",
source="https://huggingface.co/InvokeAI/ip_adapter_plus_sd15/resolve/main/ip-adapter-plus_sd15.safetensors",
description="Refined IP-Adapter for SD 1.5 models",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
@ -171,7 +171,7 @@ STARTER_MODELS: list[StarterModel] = [
StarterModel(
name="IP Adapter Plus Face",
base=BaseModelType.StableDiffusion1,
source="InvokeAI/ip_adapter_plus_face_sd15",
source="https://huggingface.co/InvokeAI/ip_adapter_plus_face_sd15/resolve/main/ip-adapter-plus-face_sd15.safetensors",
description="Refined IP-Adapter for SD 1.5 models, adapted for faces",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sd_image_encoder],
@ -179,7 +179,7 @@ STARTER_MODELS: list[StarterModel] = [
StarterModel(
name="IP Adapter SDXL",
base=BaseModelType.StableDiffusionXL,
source="InvokeAI/ip_adapter_sdxl",
source="https://huggingface.co/InvokeAI/ip_adapter_sdxl_vit_h/resolve/main/ip-adapter_sdxl_vit-h.safetensors",
description="IP-Adapter for SDXL models",
type=ModelType.IPAdapter,
dependencies=[ip_adapter_sdxl_image_encoder],

View File

@ -0,0 +1,29 @@
"""
This module defines a context manager `catch_sigint()` which temporarily replaces
the sigINT handler defined by the ASGI in order to allow the user to ^C the application
and shut it down immediately. This was implemented in order to allow the user to interrupt
slow model hashing during startup.
Use like this:
from invokeai.backend.util.catch_sigint import catch_sigint
with catch_sigint():
run_some_hard_to_interrupt_process()
"""
import signal
from contextlib import contextmanager
from typing import Generator
def sigint_handler(signum, frame): # type: ignore
signal.signal(signal.SIGINT, signal.SIG_DFL)
signal.raise_signal(signal.SIGINT)
@contextmanager
def catch_sigint() -> Generator[None, None, None]:
original_handler = signal.getsignal(signal.SIGINT)
signal.signal(signal.SIGINT, sigint_handler)
yield
signal.signal(signal.SIGINT, original_handler)

View File

@ -0,0 +1,98 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.13025
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 9
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
# crossattn cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
params:
layer: hidden
layer_idx: 11
# crossattn and vector cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
freeze: True
layer: penultimate
always_return_pooled: True
legacy: False
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: target_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

View File

@ -11,6 +11,7 @@ import { createStore } from '../src/app/store/store';
// @ts-ignore
import translationEN from '../public/locales/en.json';
import { ReduxInit } from './ReduxInit';
import { $store } from 'app/store/nanostores/store';
i18n.use(initReactI18next).init({
lng: 'en',
@ -25,6 +26,7 @@ i18n.use(initReactI18next).init({
});
const store = createStore(undefined, false);
$store.set(store);
$baseUrl.set('http://localhost:9090');
const preview: Preview = {

View File

@ -25,7 +25,7 @@
"typegen": "node scripts/typegen.js",
"preview": "vite preview",
"lint:knip": "knip",
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:1 src/main.tsx",
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:0 src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
"lint:prettier": "prettier --check .",
"lint:tsc": "tsc --noEmit",
@ -95,6 +95,7 @@
"reactflow": "^11.10.4",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"redux-undo": "^1.1.0",
"rfdc": "^1.3.1",
"roarr": "^7.21.1",
"serialize-error": "^11.0.3",

View File

@ -140,6 +140,9 @@ dependencies:
redux-remember:
specifier: ^5.1.0
version: 5.1.0(redux@5.0.1)
redux-undo:
specifier: ^1.1.0
version: 1.1.0
rfdc:
specifier: ^1.3.1
version: 1.3.1
@ -11962,6 +11965,10 @@ packages:
redux: 5.0.1
dev: false
/redux-undo@1.1.0:
resolution: {integrity: sha512-zzLFh2qeF0MTIlzDhDLm9NtkfBqCllQJ3OCuIl5RKlG/ayHw6GUdIFdMhzMS9NnrnWdBX5u//ExMOHpfudGGOg==}
dev: false
/redux@5.0.1:
resolution: {integrity: sha512-M9/ELqF6fy8FwmkpnF0S3YKOqMyoWJ4+CS5Efg2ct3oY9daQvd/Pc71FpGZsVsbl3Cpb+IIcjBDUnnyBdQbq4w==}
dev: false

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 KiB

View File

@ -84,6 +84,8 @@
"direction": "Direction",
"ipAdapter": "IP Adapter",
"t2iAdapter": "T2I Adapter",
"positivePrompt": "Positive Prompt",
"negativePrompt": "Negative Prompt",
"discordLabel": "Discord",
"dontAskMeAgain": "Don't ask me again",
"error": "Error",
@ -136,7 +138,9 @@
"red": "Red",
"green": "Green",
"blue": "Blue",
"alpha": "Alpha"
"alpha": "Alpha",
"selected": "Selected",
"viewer": "Viewer"
},
"controlnet": {
"controlAdapter_one": "Control Adapter",
@ -893,6 +897,7 @@
"denoisingStrength": "Denoising Strength",
"downloadImage": "Download Image",
"general": "General",
"globalSettings": "Global Settings",
"height": "Height",
"imageFit": "Fit Initial Image To Output Size",
"images": "Images",
@ -1183,6 +1188,10 @@
"heading": "Resize Mode",
"paragraphs": ["Method to fit Control Adapter's input image size to the output generation size."]
},
"ipAdapterMethod": {
"heading": "Method",
"paragraphs": ["Method by which to apply the current IP Adapter."]
},
"controlNetWeight": {
"heading": "Weight",
"paragraphs": [
@ -1501,5 +1510,27 @@
},
"app": {
"storeNotInitialized": "Store is not initialized"
},
"regionalPrompts": {
"deleteAll": "Delete All",
"addLayer": "Add Layer",
"moveToFront": "Move to Front",
"moveToBack": "Move to Back",
"moveForward": "Move Forward",
"moveBackward": "Move Backward",
"brushSize": "Brush Size",
"regionalControl": "Regional Control (ALPHA)",
"enableRegionalPrompts": "Enable $t(regionalPrompts.regionalPrompts)",
"globalMaskOpacity": "Global Mask Opacity",
"autoNegative": "Auto Negative",
"toggleVisibility": "Toggle Layer Visibility",
"deletePrompt": "Delete Prompt",
"resetRegion": "Reset Region",
"debugLayers": "Debug Layers",
"rectangle": "Rectangle",
"maskPreviewColor": "Mask Preview Color",
"addPositivePrompt": "Add $t(common.positivePrompt)",
"addNegativePrompt": "Add $t(common.negativePrompt)",
"addIPAdapter": "Add $t(common.ipAdapter)"
}
}

View File

@ -27,7 +27,8 @@ export type LoggerNamespace =
| 'socketio'
| 'session'
| 'queue'
| 'dnd';
| 'dnd'
| 'regionalPrompts';
export const logger = (namespace: LoggerNamespace) => $logger.get().child({ namespace });

View File

@ -21,6 +21,11 @@ import { workflowPersistConfig, workflowSlice } from 'features/nodes/store/workf
import { generationPersistConfig, generationSlice } from 'features/parameters/store/generationSlice';
import { postprocessingPersistConfig, postprocessingSlice } from 'features/parameters/store/postprocessingSlice';
import { queueSlice } from 'features/queue/store/queueSlice';
import {
regionalPromptsPersistConfig,
regionalPromptsSlice,
regionalPromptsUndoableConfig,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { sdxlPersistConfig, sdxlSlice } from 'features/sdxl/store/sdxlSlice';
import { configSlice } from 'features/system/store/configSlice';
import { systemPersistConfig, systemSlice } from 'features/system/store/systemSlice';
@ -30,6 +35,7 @@ import { defaultsDeep, keys, omit, pick } from 'lodash-es';
import dynamicMiddlewares from 'redux-dynamic-middlewares';
import type { SerializeFunction, UnserializeFunction } from 'redux-remember';
import { rememberEnhancer, rememberReducer } from 'redux-remember';
import undoable from 'redux-undo';
import { serializeError } from 'serialize-error';
import { api } from 'services/api';
import { authToastMiddleware } from 'services/api/authToastMiddleware';
@ -59,6 +65,7 @@ const allReducers = {
[queueSlice.name]: queueSlice.reducer,
[workflowSlice.name]: workflowSlice.reducer,
[hrfSlice.name]: hrfSlice.reducer,
[regionalPromptsSlice.name]: undoable(regionalPromptsSlice.reducer, regionalPromptsUndoableConfig),
[api.reducerPath]: api.reducer,
};
@ -103,6 +110,7 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
[loraPersistConfig.name]: loraPersistConfig,
[modelManagerV2PersistConfig.name]: modelManagerV2PersistConfig,
[hrfPersistConfig.name]: hrfPersistConfig,
[regionalPromptsPersistConfig.name]: regionalPromptsPersistConfig,
};
const unserialize: UnserializeFunction = (data, key) => {
@ -114,6 +122,7 @@ const unserialize: UnserializeFunction = (data, key) => {
try {
const { initialState, migrate } = persistConfig;
const parsed = JSON.parse(data);
// strip out old keys
const stripped = pick(parsed, keys(initialState));
// run (additive) migrations
@ -141,7 +150,9 @@ const serialize: SerializeFunction = (data, key) => {
if (!persistConfig) {
throw new Error(`No persist config for slice "${key}"`);
}
const result = omit(data, persistConfig.persistDenylist);
// Heuristic to determine if the slice is undoable - could just hardcode it in the persistConfig
const isUndoable = 'present' in data && 'past' in data && 'future' in data && '_latestUnfiltered' in data;
const result = omit(isUndoable ? data.present : data, persistConfig.persistDenylist);
return JSON.stringify(result);
};

View File

@ -26,7 +26,7 @@ const sx: ChakraProps['sx'] = {
const colorPickerStyles: CSSProperties = { width: '100%' };
const numberInputWidth: ChakraProps['w'] = '4.2rem';
const numberInputWidth: ChakraProps['w'] = '3.5rem';
const IAIColorPicker = (props: IAIColorPickerProps) => {
const { color, onChange, withNumberInput, ...rest } = props;
@ -41,7 +41,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
{withNumberInput && (
<Flex gap={5}>
<FormControl gap={0}>
<FormLabel>{t('common.red')}</FormLabel>
<FormLabel>{t('common.red')[0]}</FormLabel>
<CompositeNumberInput
value={color.r}
onChange={handleChangeR}
@ -53,7 +53,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
/>
</FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.green')}</FormLabel>
<FormLabel>{t('common.green')[0]}</FormLabel>
<CompositeNumberInput
value={color.g}
onChange={handleChangeG}
@ -65,7 +65,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
/>
</FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.blue')}</FormLabel>
<FormLabel>{t('common.blue')[0]}</FormLabel>
<CompositeNumberInput
value={color.b}
onChange={handleChangeB}
@ -77,7 +77,7 @@ const IAIColorPicker = (props: IAIColorPickerProps) => {
/>
</FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.alpha')}</FormLabel>
<FormLabel>{t('common.alpha')[0]}</FormLabel>
<CompositeNumberInput
value={color.a}
onChange={handleChangeA}

View File

@ -24,6 +24,7 @@ export type Feature =
| 'dynamicPromptsSeedBehaviour'
| 'imageFit'
| 'infillMethod'
| 'ipAdapterMethod'
| 'lora'
| 'loraWeight'
| 'noiseUseCPU'

View File

@ -0,0 +1,84 @@
import type { ChakraProps } from '@invoke-ai/ui-library';
import { CompositeNumberInput, Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { CSSProperties } from 'react';
import { memo, useCallback } from 'react';
import { RgbColorPicker as ColorfulRgbColorPicker } from 'react-colorful';
import type { ColorPickerBaseProps, RgbColor } from 'react-colorful/dist/types';
import { useTranslation } from 'react-i18next';
type RgbColorPickerProps = ColorPickerBaseProps<RgbColor> & {
withNumberInput?: boolean;
};
const colorPickerPointerStyles: NonNullable<ChakraProps['sx']> = {
width: 6,
height: 6,
borderColor: 'base.100',
};
const sx: ChakraProps['sx'] = {
'.react-colorful__hue-pointer': colorPickerPointerStyles,
'.react-colorful__saturation-pointer': colorPickerPointerStyles,
'.react-colorful__alpha-pointer': colorPickerPointerStyles,
gap: 5,
flexDir: 'column',
};
const colorPickerStyles: CSSProperties = { width: '100%' };
const numberInputWidth: ChakraProps['w'] = '3.5rem';
const RgbColorPicker = (props: RgbColorPickerProps) => {
const { color, onChange, withNumberInput, ...rest } = props;
const { t } = useTranslation();
const handleChangeR = useCallback((r: number) => onChange({ ...color, r }), [color, onChange]);
const handleChangeG = useCallback((g: number) => onChange({ ...color, g }), [color, onChange]);
const handleChangeB = useCallback((b: number) => onChange({ ...color, b }), [color, onChange]);
return (
<Flex sx={sx}>
<ColorfulRgbColorPicker color={color} onChange={onChange} style={colorPickerStyles} {...rest} />
{withNumberInput && (
<Flex gap={5}>
<FormControl gap={0}>
<FormLabel>{t('common.red')[0]}</FormLabel>
<CompositeNumberInput
value={color.r}
onChange={handleChangeR}
min={0}
max={255}
step={1}
w={numberInputWidth}
defaultValue={90}
/>
</FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.green')[0]}</FormLabel>
<CompositeNumberInput
value={color.g}
onChange={handleChangeG}
min={0}
max={255}
step={1}
w={numberInputWidth}
defaultValue={90}
/>
</FormControl>
<FormControl gap={0}>
<FormLabel>{t('common.blue')[0]}</FormLabel>
<CompositeNumberInput
value={color.b}
onChange={handleChangeB}
min={0}
max={255}
step={1}
w={numberInputWidth}
defaultValue={255}
/>
</FormControl>
</Flex>
)}
</Flex>
);
};
export default memo(RgbColorPicker);

View File

@ -0,0 +1,85 @@
import { moveBackward, moveForward, moveToBack, moveToFront } from 'common/util/arrayUtils';
import { describe, expect, it } from 'vitest';
describe('Array Manipulation Functions', () => {
const originalArray = ['a', 'b', 'c', 'd'];
describe('moveForwardOne', () => {
it('should move an item forward by one position', () => {
const array = [...originalArray];
const result = moveForward(array, (item) => item === 'b');
expect(result).toEqual(['a', 'c', 'b', 'd']);
});
it('should do nothing if the item is at the end', () => {
const array = [...originalArray];
const result = moveForward(array, (item) => item === 'd');
expect(result).toEqual(['a', 'b', 'c', 'd']);
});
it("should leave the array unchanged if the item isn't in the array", () => {
const array = [...originalArray];
const result = moveForward(array, (item) => item === 'z');
expect(result).toEqual(originalArray);
});
});
describe('moveToFront', () => {
it('should move an item to the front', () => {
const array = [...originalArray];
const result = moveToFront(array, (item) => item === 'c');
expect(result).toEqual(['c', 'a', 'b', 'd']);
});
it('should do nothing if the item is already at the front', () => {
const array = [...originalArray];
const result = moveToFront(array, (item) => item === 'a');
expect(result).toEqual(['a', 'b', 'c', 'd']);
});
it("should leave the array unchanged if the item isn't in the array", () => {
const array = [...originalArray];
const result = moveToFront(array, (item) => item === 'z');
expect(result).toEqual(originalArray);
});
});
describe('moveBackwardsOne', () => {
it('should move an item backward by one position', () => {
const array = [...originalArray];
const result = moveBackward(array, (item) => item === 'c');
expect(result).toEqual(['a', 'c', 'b', 'd']);
});
it('should do nothing if the item is at the beginning', () => {
const array = [...originalArray];
const result = moveBackward(array, (item) => item === 'a');
expect(result).toEqual(['a', 'b', 'c', 'd']);
});
it("should leave the array unchanged if the item isn't in the array", () => {
const array = [...originalArray];
const result = moveBackward(array, (item) => item === 'z');
expect(result).toEqual(originalArray);
});
});
describe('moveToBack', () => {
it('should move an item to the back', () => {
const array = [...originalArray];
const result = moveToBack(array, (item) => item === 'b');
expect(result).toEqual(['a', 'c', 'd', 'b']);
});
it('should do nothing if the item is already at the back', () => {
const array = [...originalArray];
const result = moveToBack(array, (item) => item === 'd');
expect(result).toEqual(['a', 'b', 'c', 'd']);
});
it("should leave the array unchanged if the item isn't in the array", () => {
const array = [...originalArray];
const result = moveToBack(array, (item) => item === 'z');
expect(result).toEqual(originalArray);
});
});
});

View File

@ -0,0 +1,37 @@
export const moveForward = <T>(array: T[], callback: (item: T) => boolean): T[] => {
const index = array.findIndex(callback);
if (index >= 0 && index < array.length - 1) {
//@ts-expect-error - These indicies are safe per the previous check
[array[index], array[index + 1]] = [array[index + 1], array[index]];
}
return array;
};
export const moveToFront = <T>(array: T[], callback: (item: T) => boolean): T[] => {
const index = array.findIndex(callback);
if (index > 0) {
const [item] = array.splice(index, 1);
//@ts-expect-error - These indicies are safe per the previous check
array.unshift(item);
}
return array;
};
export const moveBackward = <T>(array: T[], callback: (item: T) => boolean): T[] => {
const index = array.findIndex(callback);
if (index > 0) {
//@ts-expect-error - These indicies are safe per the previous check
[array[index], array[index - 1]] = [array[index - 1], array[index]];
}
return array;
};
export const moveToBack = <T>(array: T[], callback: (item: T) => boolean): T[] => {
const index = array.findIndex(callback);
if (index >= 0 && index < array.length - 1) {
const [item] = array.splice(index, 1);
//@ts-expect-error - These indicies are safe per the previous check
array.push(item);
}
return array;
};

View File

@ -10,6 +10,18 @@ import { clamp } from 'lodash-es';
import type { MutableRefObject } from 'react';
import { useCallback } from 'react';
export const calculateNewBrushSize = (brushSize: number, delta: number) => {
// This equation was derived by fitting a curve to the desired brush sizes and deltas
// see https://github.com/invoke-ai/InvokeAI/pull/5542#issuecomment-1915847565
const targetDelta = Math.sign(delta) * 0.7363 * Math.pow(1.0394, brushSize);
// This needs to be clamped to prevent the delta from getting too large
const finalDelta = clamp(targetDelta, -20, 20);
// The new brush size is also clamped to prevent it from getting too large or small
const newBrushSize = clamp(brushSize + finalDelta, 1, 500);
return newBrushSize;
};
const useCanvasWheel = (stageRef: MutableRefObject<Konva.Stage | null>) => {
const dispatch = useAppDispatch();
const stageScale = useAppSelector((s) => s.canvas.stageScale);
@ -36,15 +48,7 @@ const useCanvasWheel = (stageRef: MutableRefObject<Konva.Stage | null>) => {
}
if ($ctrl.get() || $meta.get()) {
// This equation was derived by fitting a curve to the desired brush sizes and deltas
// see https://github.com/invoke-ai/InvokeAI/pull/5542#issuecomment-1915847565
const targetDelta = Math.sign(delta) * 0.7363 * Math.pow(1.0394, brushSize);
// This needs to be clamped to prevent the delta from getting too large
const finalDelta = clamp(targetDelta, -20, 20);
// The new brush size is also clamped to prevent it from getting too large or small
const newBrushSize = clamp(brushSize + finalDelta, 1, 500);
dispatch(setBrushSize(newBrushSize));
dispatch(setBrushSize(calculateNewBrushSize(brushSize, delta)));
} else {
const cursorPos = stageRef.current.getPointerPosition();
let delta = e.evt.deltaY;

View File

@ -7,3 +7,22 @@ export const blobToDataURL = (blob: Blob): Promise<string> => {
reader.readAsDataURL(blob);
});
};
export function imageDataToDataURL(imageData: ImageData): string {
const { width, height } = imageData;
// Create a canvas to transfer the ImageData to
const canvas = document.createElement('canvas');
canvas.width = width;
canvas.height = height;
// Draw the ImageData onto the canvas
const ctx = canvas.getContext('2d');
if (!ctx) {
throw new Error('Unable to get canvas context');
}
ctx.putImageData(imageData, 0, 0);
// Convert the canvas to a data URL (base64)
return canvas.toDataURL();
}

View File

@ -1,6 +1,11 @@
import type { RgbaColor } from 'react-colorful';
import type { RgbaColor, RgbColor } from 'react-colorful';
export const rgbaColorToString = (color: RgbaColor): string => {
const { r, g, b, a } = color;
return `rgba(${r}, ${g}, ${b}, ${a})`;
};
export const rgbColorToString = (color: RgbColor): string => {
const { r, g, b } = color;
return `rgba(${r}, ${g}, ${b})`;
};

View File

@ -52,7 +52,7 @@ const ParamControlAdapterIPMethod = ({ id }: Props) => {
return (
<FormControl>
<InformationalPopover feature="controlNetResizeMode">
<InformationalPopover feature="ipAdapterMethod">
<FormLabel>{t('controlnet.ipAdapterMethod')}</FormLabel>
</InformationalPopover>
<Combobox value={value} options={options} isDisabled={!isEnabled} onChange={handleIPMethodChanged} />

View File

@ -6,6 +6,7 @@ import { deepClone } from 'common/util/deepClone';
import { buildControlAdapter } from 'features/controlAdapters/util/buildControlAdapter';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { maskLayerIPAdapterAdded } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { merge, uniq } from 'lodash-es';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { socketInvocationError } from 'services/events/actions';
@ -382,6 +383,10 @@ export const controlAdaptersSlice = createSlice({
builder.addCase(socketInvocationError, (state) => {
state.pendingControlImages = [];
});
builder.addCase(maskLayerIPAdapterAdded, (state, action) => {
caAdapter.addOne(state, buildControlAdapter(action.meta.uuid, 'ip_adapter'));
});
},
});

View File

@ -1,4 +1,4 @@
import { Box, Flex, IconButton, Tooltip } from '@invoke-ai/ui-library';
import { Box, Flex, IconButton, Tooltip, useShiftModifier } from '@invoke-ai/ui-library';
import { getOverlayScrollbarsParams } from 'common/components/OverlayScrollbars/constants';
import { isString } from 'lodash-es';
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
@ -9,18 +9,19 @@ import { PiCopyBold, PiDownloadSimpleBold } from 'react-icons/pi';
type Props = {
label: string;
data: object | string;
data: unknown;
fileName?: string;
withDownload?: boolean;
withCopy?: boolean;
extraCopyActions?: { label: string; getData: (data: unknown) => unknown }[];
};
const overlayscrollbarsOptions = getOverlayScrollbarsParams('scroll', 'scroll').options;
const DataViewer = (props: Props) => {
const { label, data, fileName, withDownload = true, withCopy = true } = props;
const { label, data, fileName, withDownload = true, withCopy = true, extraCopyActions } = props;
const dataString = useMemo(() => (isString(data) ? data : JSON.stringify(data, null, 2)), [data]);
const shift = useShiftModifier();
const handleCopy = useCallback(() => {
navigator.clipboard.writeText(dataString);
}, [dataString]);
@ -67,6 +68,10 @@ const DataViewer = (props: Props) => {
/>
</Tooltip>
)}
{shift &&
extraCopyActions?.map(({ label, getData }) => (
<ExtraCopyAction label={label} getData={getData} data={data} key={label} />
))}
</Flex>
</Flex>
);
@ -78,3 +83,27 @@ const overlayScrollbarsStyles: CSSProperties = {
height: '100%',
width: '100%',
};
type ExtraCopyActionProps = {
label: string;
data: unknown;
getData: (data: unknown) => unknown;
};
const ExtraCopyAction = ({ label, data, getData }: ExtraCopyActionProps) => {
const { t } = useTranslation();
const handleCopy = useCallback(() => {
navigator.clipboard.writeText(JSON.stringify(getData(data), null, 2));
}, [data, getData]);
return (
<Tooltip label={`${t('gallery.copy')} ${label} JSON`}>
<IconButton
aria-label={`${t('gallery.copy')} ${label} JSON`}
icon={<PiCopyBold size={16} />}
variant="ghost"
opacity={0.7}
onClick={handleCopy}
/>
</Tooltip>
);
};

View File

@ -1,4 +1,4 @@
import { Button, Flex, Heading, Text } from '@invoke-ai/ui-library';
import { Button, Flex, Heading, SimpleGrid, Text } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useControlNetOrT2IAdapterDefaultSettings } from 'features/modelManagerV2/hooks/useControlNetOrT2IAdapterDefaultSettings';
import { DefaultPreprocessor } from 'features/modelManagerV2/subpanels/ModelPanel/ControlNetOrT2IAdapterDefaultSettings/DefaultPreprocessor';
@ -92,13 +92,9 @@ export const ControlNetOrT2IAdapterDefaultSettings = () => {
</Button>
</Flex>
<Flex flexDir="column" gap={8}>
<Flex gap={8}>
<Flex gap={4} w="full">
<DefaultPreprocessor control={control} name="preprocessor" />
</Flex>
</Flex>
</Flex>
<SimpleGrid columns={2} gap={8}>
<DefaultPreprocessor control={control} name="preprocessor" />
</SimpleGrid>
</>
);
};

View File

@ -1,4 +1,4 @@
import { Button, Flex, Heading, Text } from '@invoke-ai/ui-library';
import { Button, Flex, Heading, SimpleGrid, Text } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useMainModelDefaultSettings } from 'features/modelManagerV2/hooks/useMainModelDefaultSettings';
import { DefaultHeight } from 'features/modelManagerV2/subpanels/ModelPanel/MainModelDefaultSettings/DefaultHeight';
@ -122,40 +122,16 @@ export const MainModelDefaultSettings = () => {
</Button>
</Flex>
<Flex flexDir="column" gap={8}>
<Flex gap={8}>
<Flex gap={4} w="full">
<DefaultVae control={control} name="vae" />
</Flex>
<Flex gap={4} w="full">
<DefaultVaePrecision control={control} name="vaePrecision" />
</Flex>
</Flex>
<Flex gap={8}>
<Flex gap={4} w="full">
<DefaultScheduler control={control} name="scheduler" />
</Flex>
<Flex gap={4} w="full">
<DefaultSteps control={control} name="steps" />
</Flex>
</Flex>
<Flex gap={8}>
<Flex gap={4} w="full">
<DefaultCfgScale control={control} name="cfgScale" />
</Flex>
<Flex gap={4} w="full">
<DefaultCfgRescaleMultiplier control={control} name="cfgRescaleMultiplier" />
</Flex>
</Flex>
<Flex gap={8}>
<Flex gap={4} w="full">
<DefaultWidth control={control} optimalDimension={optimalDimension} />
</Flex>
<Flex gap={4} w="full">
<DefaultHeight control={control} optimalDimension={optimalDimension} />
</Flex>
</Flex>
</Flex>
<SimpleGrid columns={2} gap={8}>
<DefaultVae control={control} name="vae" />
<DefaultVaePrecision control={control} name="vaePrecision" />
<DefaultScheduler control={control} name="scheduler" />
<DefaultSteps control={control} name="steps" />
<DefaultCfgScale control={control} name="cfgScale" />
<DefaultCfgRescaleMultiplier control={control} name="cfgRescaleMultiplier" />
<DefaultWidth control={control} optimalDimension={optimalDimension} />
<DefaultHeight control={control} optimalDimension={optimalDimension} />
</SimpleGrid>
</>
);
};

View File

@ -6,6 +6,7 @@ import {
FormLabel,
Heading,
Input,
SimpleGrid,
Text,
Textarea,
} from '@invoke-ai/ui-library';
@ -66,25 +67,21 @@ export const ModelEdit = ({ form }: Props) => {
<Heading as="h3" fontSize="md" mt="4">
{t('modelManager.modelSettings')}
</Heading>
<Flex gap={4}>
<SimpleGrid columns={2} gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.baseModel')}</FormLabel>
<BaseModelSelect control={form.control} />
</FormControl>
</Flex>
{data.type === 'main' && data.format === 'checkpoint' && (
<>
<Flex gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.variant')}</FormLabel>
<ModelVariantSelect control={form.control} />
</FormControl>
{data.type === 'main' && data.format === 'checkpoint' && (
<>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.pathToConfig')}</FormLabel>
<Input {...form.register('config_path', stringFieldOptions)} />
</FormControl>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.variant')}</FormLabel>
<ModelVariantSelect control={form.control} />
</FormControl>
</Flex>
<Flex gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.predictionType')}</FormLabel>
<PredictionTypeSelect control={form.control} />
@ -93,9 +90,9 @@ export const ModelEdit = ({ form }: Props) => {
<FormLabel>{t('modelManager.upcastAttention')}</FormLabel>
<Checkbox {...form.register('upcast_attention')} />
</FormControl>
</Flex>
</>
)}
</>
)}
</SimpleGrid>
</Flex>
</form>
</Flex>

View File

@ -1,4 +1,4 @@
import { Box, Flex, Text } from '@invoke-ai/ui-library';
import { Box, Flex, SimpleGrid, Text } from '@invoke-ai/ui-library';
import { skipToken } from '@reduxjs/toolkit/query';
import { useAppSelector } from 'app/store/storeHooks';
import { ControlNetOrT2IAdapterDefaultSettings } from 'features/modelManagerV2/subpanels/ModelPanel/ControlNetOrT2IAdapterDefaultSettings/ControlNetOrT2IAdapterDefaultSettings';
@ -24,57 +24,32 @@ export const ModelView = () => {
return (
<Flex flexDir="column" h="full" gap={4}>
<Box layerStyle="second" borderRadius="base" p={4}>
<Flex flexDir="column" gap={4}>
<Flex gap={2}>
<ModelAttrView label={t('modelManager.baseModel')} value={data.base} />
<ModelAttrView label={t('modelManager.modelType')} value={data.type} />
</Flex>
<Flex gap={2}>
<ModelAttrView label={t('common.format')} value={data.format} />
<ModelAttrView label={t('modelManager.path')} value={data.path} />
</Flex>
<SimpleGrid columns={2} gap={4}>
<ModelAttrView label={t('modelManager.baseModel')} value={data.base} />
<ModelAttrView label={t('modelManager.modelType')} value={data.type} />
<ModelAttrView label={t('common.format')} value={data.format} />
<ModelAttrView label={t('modelManager.path')} value={data.path} />
{data.type === 'main' && <ModelAttrView label={t('modelManager.variant')} value={data.variant} />}
{data.type === 'main' && data.format === 'diffusers' && data.repo_variant && (
<Flex gap={2}>
<ModelAttrView label={t('modelManager.repoVariant')} value={data.repo_variant} />
</Flex>
<ModelAttrView label={t('modelManager.repoVariant')} value={data.repo_variant} />
)}
{data.type === 'main' && data.format === 'checkpoint' && (
<>
<Flex gap={2}>
<ModelAttrView label={t('modelManager.pathToConfig')} value={data.config_path} />
<ModelAttrView label={t('modelManager.variant')} value={data.variant} />
</Flex>
<Flex gap={2}>
<ModelAttrView label={t('modelManager.predictionType')} value={data.prediction_type} />
<ModelAttrView label={t('modelManager.upcastAttention')} value={`${data.upcast_attention}`} />
</Flex>
<ModelAttrView label={t('modelManager.pathToConfig')} value={data.config_path} />
<ModelAttrView label={t('modelManager.predictionType')} value={data.prediction_type} />
<ModelAttrView label={t('modelManager.upcastAttention')} value={`${data.upcast_attention}`} />
</>
)}
{data.type === 'ip_adapter' && data.format === 'invokeai' && (
<Flex gap={2}>
<ModelAttrView label={t('modelManager.imageEncoderModelId')} value={data.image_encoder_model_id} />
</Flex>
<ModelAttrView label={t('modelManager.imageEncoderModelId')} value={data.image_encoder_model_id} />
)}
</Flex>
</SimpleGrid>
</Box>
<Box layerStyle="second" borderRadius="base" p={4}>
{data.type === 'main' && data.base !== 'sdxl-refiner' && <MainModelDefaultSettings />}
{(data.type === 'controlnet' || data.type === 't2i_adapter') && <ControlNetOrT2IAdapterDefaultSettings />}
{(data.type === 'main' || data.type === 'lora') && <TriggerPhrases />}
</Box>
{data.type === 'main' && data.base !== 'sdxl-refiner' && (
<Box layerStyle="second" borderRadius="base" p={4}>
<MainModelDefaultSettings />
</Box>
)}
{(data.type === 'controlnet' || data.type === 't2i_adapter') && (
<Box layerStyle="second" borderRadius="base" p={4}>
<ControlNetOrT2IAdapterDefaultSettings />
</Box>
)}
{(data.type === 'main' || data.type === 'lora') && (
<Box layerStyle="second" borderRadius="base" p={4}>
<TriggerPhrases />
</Box>
)}
</Flex>
);
};

View File

@ -77,9 +77,17 @@ export const TriggerPhrases = () => {
[updateModel, selectedModelKey, triggerPhrases]
);
const onTriggerPhraseAddFormSubmit = useCallback(
(e: React.FormEvent<HTMLFormElement>) => {
e.preventDefault();
addTriggerPhrase();
},
[addTriggerPhrase]
);
return (
<Flex flexDir="column" w="full" gap="5">
<form>
<form onSubmit={onTriggerPhraseAddFormSubmit}>
<FormControl w="full" isInvalid={Boolean(errors.length)} orientation="vertical">
<FormLabel>{t('modelManager.triggerPhrases')}</FormLabel>
<Flex flexDir="column" w="full">

View File

@ -23,6 +23,7 @@ export type NodesState = {
nodeOpacity: number;
shouldSnapToGrid: boolean;
shouldColorEdges: boolean;
shouldShowEdgeLabels: boolean;
selectedNodes: string[];
selectedEdges: string[];
nodeExecutionStates: Record<string, NodeExecutionState>;
@ -32,7 +33,6 @@ export type NodesState = {
isAddNodePopoverOpen: boolean;
addNewNodePosition: XYPosition | null;
selectionMode: SelectionMode;
shouldShowEdgeLabels: boolean;
};
export type WorkflowMode = 'edit' | 'view';

View File

@ -19,12 +19,14 @@ export const addIPAdapterToLinearGraph = async (
graph: NonNullableGraph,
baseNodeId: string
): Promise<void> => {
const validIPAdapters = selectValidIPAdapters(state.controlAdapters).filter(({ model, controlImage, isEnabled }) => {
const hasModel = Boolean(model);
const doesBaseMatch = model?.base === state.generation.model?.base;
const hasControlImage = controlImage;
return isEnabled && hasModel && doesBaseMatch && hasControlImage;
});
const validIPAdapters = selectValidIPAdapters(state.controlAdapters)
.filter(({ model, controlImage, isEnabled }) => {
const hasModel = Boolean(model);
const doesBaseMatch = model?.base === state.generation.model?.base;
const hasControlImage = controlImage;
return isEnabled && hasModel && doesBaseMatch && hasControlImage;
})
.filter((ca) => !state.regionalPrompts.present.layers.some((l) => l.ipAdapterIds.includes(ca.id)));
if (validIPAdapters.length) {
// Even though denoise_latents' ip adapter input is collection or scalar, keep it simple and always use a collect

View File

@ -0,0 +1,346 @@
import { getStore } from 'app/store/nanostores/store';
import type { RootState } from 'app/store/store';
import { selectAllIPAdapters } from 'features/controlAdapters/store/controlAdaptersSlice';
import {
IP_ADAPTER_COLLECT,
NEGATIVE_CONDITIONING,
NEGATIVE_CONDITIONING_COLLECT,
POSITIVE_CONDITIONING,
POSITIVE_CONDITIONING_COLLECT,
PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX,
PROMPT_REGION_MASK_TO_TENSOR_PREFIX,
PROMPT_REGION_NEGATIVE_COND_PREFIX,
PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX,
PROMPT_REGION_POSITIVE_COND_PREFIX,
} from 'features/nodes/util/graph/constants';
import { isVectorMaskLayer } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { getRegionalPromptLayerBlobs } from 'features/regionalPrompts/util/getLayerBlobs';
import { size } from 'lodash-es';
import { imagesApi } from 'services/api/endpoints/images';
import type { CollectInvocation, Edge, IPAdapterInvocation, NonNullableGraph, S } from 'services/api/types';
import { assert } from 'tsafe';
export const addRegionalPromptsToGraph = async (state: RootState, graph: NonNullableGraph, denoiseNodeId: string) => {
if (!state.regionalPrompts.present.isEnabled) {
return;
}
const { dispatch } = getStore();
const isSDXL = state.generation.model?.base === 'sdxl';
const layers = state.regionalPrompts.present.layers
// Only support vector mask layers now
// TODO: Image masks
.filter(isVectorMaskLayer)
// Only visible layers are rendered on the canvas
.filter((l) => l.isVisible)
// Only layers with prompts get added to the graph
.filter((l) => {
const hasTextPrompt = Boolean(l.positivePrompt || l.negativePrompt);
const hasIPAdapter = l.ipAdapterIds.length !== 0;
return hasTextPrompt || hasIPAdapter;
});
const regionalIPAdapters = selectAllIPAdapters(state.controlAdapters).filter(
({ id, model, controlImage, isEnabled }) => {
const hasModel = Boolean(model);
const doesBaseMatch = model?.base === state.generation.model?.base;
const hasControlImage = controlImage;
const isRegional = layers.some((l) => l.ipAdapterIds.includes(id));
return isEnabled && hasModel && doesBaseMatch && hasControlImage && isRegional;
}
);
const layerIds = layers.map((l) => l.id);
const blobs = await getRegionalPromptLayerBlobs(layerIds);
assert(size(blobs) === size(layerIds), 'Mismatch between layer IDs and blobs');
// TODO: We should probably just use conditioning collectors by default, and skip all this fanagling with re-routing
// the existing conditioning nodes.
// With regional prompts we have multiple conditioning nodes which much be routed into collectors. Set those up
const posCondCollectNode: CollectInvocation = {
id: POSITIVE_CONDITIONING_COLLECT,
type: 'collect',
};
graph.nodes[POSITIVE_CONDITIONING_COLLECT] = posCondCollectNode;
const negCondCollectNode: CollectInvocation = {
id: NEGATIVE_CONDITIONING_COLLECT,
type: 'collect',
};
graph.nodes[NEGATIVE_CONDITIONING_COLLECT] = negCondCollectNode;
// Re-route the denoise node's OG conditioning inputs to the collect nodes
const newEdges: Edge[] = [];
for (const edge of graph.edges) {
if (edge.destination.node_id === denoiseNodeId && edge.destination.field === 'positive_conditioning') {
newEdges.push({
source: edge.source,
destination: {
node_id: POSITIVE_CONDITIONING_COLLECT,
field: 'item',
},
});
} else if (edge.destination.node_id === denoiseNodeId && edge.destination.field === 'negative_conditioning') {
newEdges.push({
source: edge.source,
destination: {
node_id: NEGATIVE_CONDITIONING_COLLECT,
field: 'item',
},
});
} else {
newEdges.push(edge);
}
}
graph.edges = newEdges;
// Connect collectors to the denoise nodes - must happen _after_ rerouting else you get cycles
graph.edges.push({
source: {
node_id: POSITIVE_CONDITIONING_COLLECT,
field: 'collection',
},
destination: {
node_id: denoiseNodeId,
field: 'positive_conditioning',
},
});
graph.edges.push({
source: {
node_id: NEGATIVE_CONDITIONING_COLLECT,
field: 'collection',
},
destination: {
node_id: denoiseNodeId,
field: 'negative_conditioning',
},
});
if (!graph.nodes[IP_ADAPTER_COLLECT] && regionalIPAdapters.length > 0) {
const ipAdapterCollectNode: CollectInvocation = {
id: IP_ADAPTER_COLLECT,
type: 'collect',
is_intermediate: true,
};
graph.nodes[IP_ADAPTER_COLLECT] = ipAdapterCollectNode;
graph.edges.push({
source: { node_id: IP_ADAPTER_COLLECT, field: 'collection' },
destination: {
node_id: denoiseNodeId,
field: 'ip_adapter',
},
});
}
// Upload the blobs to the backend, add each to graph
// TODO: Store the uploaded image names in redux to reuse them, so long as the layer hasn't otherwise changed. This
// would be a great perf win - not only would we skip re-uploading the same image, but we'd be able to use the node
// cache (currently, when we re-use the same mask data, since it is a different image, the node cache is not used).
for (const layer of layers) {
const blob = blobs[layer.id];
assert(blob, `Blob for layer ${layer.id} not found`);
const file = new File([blob], `${layer.id}_mask.png`, { type: 'image/png' });
const req = dispatch(
imagesApi.endpoints.uploadImage.initiate({ file, image_category: 'mask', is_intermediate: true })
);
req.reset();
// TODO: This will raise on network error
const { image_name } = await req.unwrap();
// The main mask-to-tensor node
const maskToTensorNode: S['AlphaMaskToTensorInvocation'] = {
id: `${PROMPT_REGION_MASK_TO_TENSOR_PREFIX}_${layer.id}`,
type: 'alpha_mask_to_tensor',
image: {
image_name,
},
};
graph.nodes[maskToTensorNode.id] = maskToTensorNode;
if (layer.positivePrompt) {
// The main positive conditioning node
const regionalPositiveCondNode: S['SDXLCompelPromptInvocation'] | S['CompelInvocation'] = isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
style: layer.positivePrompt, // TODO: Should we put the positive prompt in both fields?
}
: {
type: 'compel',
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
};
graph.nodes[regionalPositiveCondNode.id] = regionalPositiveCondNode;
// Connect the mask to the conditioning
graph.edges.push({
source: { node_id: maskToTensorNode.id, field: 'mask' },
destination: { node_id: regionalPositiveCondNode.id, field: 'mask' },
});
// Connect the conditioning to the collector
graph.edges.push({
source: { node_id: regionalPositiveCondNode.id, field: 'conditioning' },
destination: { node_id: posCondCollectNode.id, field: 'item' },
});
// Copy the connections to the "global" positive conditioning node to the regional cond
for (const edge of graph.edges) {
if (edge.destination.node_id === POSITIVE_CONDITIONING && edge.destination.field !== 'prompt') {
graph.edges.push({
source: edge.source,
destination: { node_id: regionalPositiveCondNode.id, field: edge.destination.field },
});
}
}
}
if (layer.negativePrompt) {
// The main negative conditioning node
const regionalNegativeCondNode: S['SDXLCompelPromptInvocation'] | S['CompelInvocation'] = isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.negativePrompt,
style: layer.negativePrompt,
}
: {
type: 'compel',
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.negativePrompt,
};
graph.nodes[regionalNegativeCondNode.id] = regionalNegativeCondNode;
// Connect the mask to the conditioning
graph.edges.push({
source: { node_id: maskToTensorNode.id, field: 'mask' },
destination: { node_id: regionalNegativeCondNode.id, field: 'mask' },
});
// Connect the conditioning to the collector
graph.edges.push({
source: { node_id: regionalNegativeCondNode.id, field: 'conditioning' },
destination: { node_id: negCondCollectNode.id, field: 'item' },
});
// Copy the connections to the "global" negative conditioning node to the regional cond
for (const edge of graph.edges) {
if (edge.destination.node_id === NEGATIVE_CONDITIONING && edge.destination.field !== 'prompt') {
graph.edges.push({
source: edge.source,
destination: { node_id: regionalNegativeCondNode.id, field: edge.destination.field },
});
}
}
}
// If we are using the "invert" auto-negative setting, we need to add an additional negative conditioning node
if (layer.autoNegative === 'invert' && layer.positivePrompt) {
// We re-use the mask image, but invert it when converting to tensor
const invertTensorMaskNode: S['InvertTensorMaskInvocation'] = {
id: `${PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX}_${layer.id}`,
type: 'invert_tensor_mask',
};
graph.nodes[invertTensorMaskNode.id] = invertTensorMaskNode;
// Connect the OG mask image to the inverted mask-to-tensor node
graph.edges.push({
source: {
node_id: maskToTensorNode.id,
field: 'mask',
},
destination: {
node_id: invertTensorMaskNode.id,
field: 'mask',
},
});
// Create the conditioning node. It's going to be connected to the negative cond collector, but it uses the
// positive prompt
const regionalPositiveCondInvertedNode: S['SDXLCompelPromptInvocation'] | S['CompelInvocation'] = isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
style: layer.positivePrompt,
}
: {
type: 'compel',
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
};
graph.nodes[regionalPositiveCondInvertedNode.id] = regionalPositiveCondInvertedNode;
// Connect the inverted mask to the conditioning
graph.edges.push({
source: { node_id: invertTensorMaskNode.id, field: 'mask' },
destination: { node_id: regionalPositiveCondInvertedNode.id, field: 'mask' },
});
// Connect the conditioning to the negative collector
graph.edges.push({
source: { node_id: regionalPositiveCondInvertedNode.id, field: 'conditioning' },
destination: { node_id: negCondCollectNode.id, field: 'item' },
});
// Copy the connections to the "global" positive conditioning node to our regional node
for (const edge of graph.edges) {
if (edge.destination.node_id === POSITIVE_CONDITIONING && edge.destination.field !== 'prompt') {
graph.edges.push({
source: edge.source,
destination: { node_id: regionalPositiveCondInvertedNode.id, field: edge.destination.field },
});
}
}
}
for (const ipAdapterId of layer.ipAdapterIds) {
const ipAdapter = selectAllIPAdapters(state.controlAdapters)
.filter(({ id, model, controlImage, isEnabled }) => {
const hasModel = Boolean(model);
const doesBaseMatch = model?.base === state.generation.model?.base;
const hasControlImage = controlImage;
const isRegional = layers.some((l) => l.ipAdapterIds.includes(id));
return isEnabled && hasModel && doesBaseMatch && hasControlImage && isRegional;
})
.find((ca) => ca.id === ipAdapterId);
if (!ipAdapter?.model) {
return;
}
const { id, weight, model, clipVisionModel, method, beginStepPct, endStepPct, controlImage } = ipAdapter;
assert(controlImage, 'IP Adapter image is required');
const ipAdapterNode: IPAdapterInvocation = {
id: `ip_adapter_${id}`,
type: 'ip_adapter',
is_intermediate: true,
weight: weight,
method: method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginStepPct,
end_step_percent: endStepPct,
image: {
image_name: controlImage,
},
};
graph.nodes[ipAdapterNode.id] = ipAdapterNode;
// Connect the mask to the conditioning
graph.edges.push({
source: { node_id: maskToTensorNode.id, field: 'mask' },
destination: { node_id: ipAdapterNode.id, field: 'mask' },
});
graph.edges.push({
source: { node_id: ipAdapterNode.id, field: 'ip_adapter' },
destination: {
node_id: IP_ADAPTER_COLLECT,
field: 'item',
},
});
}
}
};

View File

@ -9,6 +9,7 @@ import {
CANVAS_TEXT_TO_IMAGE_GRAPH,
IMAGE_TO_IMAGE_GRAPH,
IMAGE_TO_LATENTS,
INPAINT_CREATE_MASK,
INPAINT_IMAGE,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
@ -145,6 +146,16 @@ export const addVAEToGraph = async (
field: 'vae',
},
},
{
source: {
node_id: isSeamlessEnabled ? SEAMLESS : isAutoVae ? modelLoaderNodeId : VAE_LOADER,
field: 'vae',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'vae',
},
},
{
source: {

View File

@ -133,6 +133,8 @@ export const buildCanvasInpaintGraph = async (
coherence_mode: canvasCoherenceMode,
minimum_denoise: canvasCoherenceMinDenoise,
edge_radius: canvasCoherenceEdgeSize,
tiled: false,
fp32: fp32,
},
[DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -182,6 +184,16 @@ export const buildCanvasInpaintGraph = async (
field: 'clip',
},
},
{
source: {
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'unet',
},
},
// Connect CLIP Skip to Conditioning
{
source: {
@ -331,6 +343,16 @@ export const buildCanvasInpaintGraph = async (
field: 'mask',
},
},
{
source: {
node_id: INPAINT_IMAGE_RESIZE_UP,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Resize Down
{
source: {

View File

@ -157,6 +157,8 @@ export const buildCanvasOutpaintGraph = async (
coherence_mode: canvasCoherenceMode,
edge_radius: canvasCoherenceEdgeSize,
minimum_denoise: canvasCoherenceMinDenoise,
tiled: false,
fp32: fp32,
},
[DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -207,6 +209,16 @@ export const buildCanvasOutpaintGraph = async (
field: 'clip',
},
},
{
source: {
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'unet',
},
},
// Connect CLIP Skip to Conditioning
{
source: {
@ -453,6 +465,16 @@ export const buildCanvasOutpaintGraph = async (
field: 'image',
},
},
{
source: {
node_id: INPAINT_IMAGE_RESIZE_UP,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Resize Results Down
{
source: {

View File

@ -135,6 +135,8 @@ export const buildCanvasSDXLInpaintGraph = async (
coherence_mode: canvasCoherenceMode,
minimum_denoise: refinerModel ? Math.max(0.2, canvasCoherenceMinDenoise) : canvasCoherenceMinDenoise,
edge_radius: canvasCoherenceEdgeSize,
tiled: false,
fp32: fp32,
},
[SDXL_DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -214,6 +216,16 @@ export const buildCanvasSDXLInpaintGraph = async (
field: 'clip2',
},
},
{
source: {
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'unet',
},
},
// Connect Everything To Inpaint Node
{
source: {
@ -342,6 +354,16 @@ export const buildCanvasSDXLInpaintGraph = async (
field: 'mask',
},
},
{
source: {
node_id: INPAINT_IMAGE_RESIZE_UP,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Resize Down
{
source: {

View File

@ -157,6 +157,8 @@ export const buildCanvasSDXLOutpaintGraph = async (
coherence_mode: canvasCoherenceMode,
edge_radius: canvasCoherenceEdgeSize,
minimum_denoise: refinerModel ? Math.max(0.2, canvasCoherenceMinDenoise) : canvasCoherenceMinDenoise,
tiled: false,
fp32: fp32,
},
[SDXL_DENOISE_LATENTS]: {
type: 'denoise_latents',
@ -237,6 +239,16 @@ export const buildCanvasSDXLOutpaintGraph = async (
field: 'clip2',
},
},
{
source: {
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'unet',
},
},
// Connect Infill Result To Inpaint Image
{
source: {
@ -451,6 +463,16 @@ export const buildCanvasSDXLOutpaintGraph = async (
field: 'image',
},
},
{
source: {
node_id: INPAINT_IMAGE_RESIZE_UP,
field: 'image',
},
destination: {
node_id: INPAINT_CREATE_MASK,
field: 'image',
},
},
// Take combined mask and resize
{
source: {

View File

@ -1,6 +1,7 @@
import { logger } from 'app/logging/logger';
import type { RootState } from 'app/store/store';
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
import { addRegionalPromptsToGraph } from 'features/nodes/util/graph/addRegionalPromptsToGraph';
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
@ -273,6 +274,8 @@ export const buildLinearSDXLTextToImageGraph = async (state: RootState): Promise
await addT2IAdaptersToLinearGraph(state, graph, SDXL_DENOISE_LATENTS);
await addRegionalPromptsToGraph(state, graph, SDXL_DENOISE_LATENTS);
// NSFW & watermark - must be last thing added to graph
if (state.system.shouldUseNSFWChecker) {
// must add before watermarker!

View File

@ -1,6 +1,7 @@
import { logger } from 'app/logging/logger';
import type { RootState } from 'app/store/store';
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
import { addRegionalPromptsToGraph } from 'features/nodes/util/graph/addRegionalPromptsToGraph';
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
@ -255,6 +256,8 @@ export const buildLinearTextToImageGraph = async (state: RootState): Promise<Non
await addT2IAdaptersToLinearGraph(state, graph, DENOISE_LATENTS);
await addRegionalPromptsToGraph(state, graph, DENOISE_LATENTS);
// High resolution fix.
if (state.hrf.hrfEnabled) {
addHrfToGraph(state, graph);

View File

@ -46,6 +46,13 @@ export const SDXL_REFINER_DENOISE_LATENTS = 'sdxl_refiner_denoise_latents';
export const SDXL_REFINER_INPAINT_CREATE_MASK = 'refiner_inpaint_create_mask';
export const SEAMLESS = 'seamless';
export const SDXL_REFINER_SEAMLESS = 'refiner_seamless';
export const PROMPT_REGION_MASK_TO_TENSOR_PREFIX = 'prompt_region_mask_to_tensor';
export const PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX = 'prompt_region_invert_tensor_mask';
export const PROMPT_REGION_POSITIVE_COND_PREFIX = 'prompt_region_positive_cond';
export const PROMPT_REGION_NEGATIVE_COND_PREFIX = 'prompt_region_negative_cond';
export const PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX = 'prompt_region_positive_cond_inverted';
export const POSITIVE_CONDITIONING_COLLECT = 'positive_conditioning_collect';
export const NEGATIVE_CONDITIONING_COLLECT = 'negative_conditioning_collect';
// friendly graph ids
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';

View File

@ -0,0 +1,13 @@
import { Flex } from '@invoke-ai/ui-library';
import { StageComponent } from 'features/regionalPrompts/components/StageComponent';
import { memo } from 'react';
export const AspectRatioCanvasPreview = memo(() => {
return (
<Flex w="full" h="full" alignItems="center" justifyContent="center" position="relative">
<StageComponent asPreview />
</Flex>
);
});
AspectRatioCanvasPreview.displayName = 'AspectRatioCanvasPreview';

View File

@ -2,7 +2,7 @@ import { useSize } from '@chakra-ui/react-use-size';
import { Flex, Icon } from '@invoke-ai/ui-library';
import { useImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
import { AnimatePresence, motion } from 'framer-motion';
import { useMemo, useRef } from 'react';
import { memo, useMemo, useRef } from 'react';
import { PiFrameCorners } from 'react-icons/pi';
import {
@ -15,7 +15,7 @@ import {
MOTION_ICON_INITIAL,
} from './constants';
export const AspectRatioPreview = () => {
export const AspectRatioIconPreview = memo(() => {
const ctx = useImageSizeContext();
const containerRef = useRef<HTMLDivElement>(null);
const containerSize = useSize(containerRef);
@ -70,4 +70,6 @@ export const AspectRatioPreview = () => {
</Flex>
</Flex>
);
};
});
AspectRatioIconPreview.displayName = 'AspectRatioIconPreview';

View File

@ -1,6 +1,5 @@
import type { FormLabelProps } from '@invoke-ai/ui-library';
import { Flex, FormControlGroup } from '@invoke-ai/ui-library';
import { AspectRatioPreview } from 'features/parameters/components/ImageSize/AspectRatioPreview';
import { AspectRatioSelect } from 'features/parameters/components/ImageSize/AspectRatioSelect';
import type { ImageSizeContextInnerValue } from 'features/parameters/components/ImageSize/ImageSizeContext';
import { ImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
@ -13,10 +12,11 @@ import { memo } from 'react';
type ImageSizeProps = ImageSizeContextInnerValue & {
widthComponent: ReactNode;
heightComponent: ReactNode;
previewComponent: ReactNode;
};
export const ImageSize = memo((props: ImageSizeProps) => {
const { widthComponent, heightComponent, ...ctx } = props;
const { widthComponent, heightComponent, previewComponent, ...ctx } = props;
return (
<ImageSizeContext.Provider value={ctx}>
<Flex gap={4} alignItems="center">
@ -33,7 +33,7 @@ export const ImageSize = memo((props: ImageSizeProps) => {
</FormControlGroup>
</Flex>
<Flex w="108px" h="108px" flexShrink={0} flexGrow={0}>
<AspectRatioPreview />
{previewComponent}
</Flex>
</Flex>
</ImageSizeContext.Provider>

View File

@ -1,7 +1,6 @@
import type { ComboboxOption } from '@invoke-ai/ui-library';
import type { AspectRatioID, AspectRatioState } from './types';
// When the aspect ratio is between these two values, we show the icon (experimentally determined)
export const ICON_LOW_CUTOFF = 0.23;
export const ICON_HIGH_CUTOFF = 1 / ICON_LOW_CUTOFF;
@ -25,7 +24,6 @@ export const ICON_CONTAINER_STYLES = {
alignItems: 'center',
justifyContent: 'center',
};
export const ASPECT_RATIO_OPTIONS: ComboboxOption[] = [
{ label: 'Free' as const, value: 'Free' },
{ label: '16:9' as const, value: '16:9' },

View File

@ -196,3 +196,8 @@ const zLoRAWeight = z.number();
type ParameterLoRAWeight = z.infer<typeof zLoRAWeight>;
export const isParameterLoRAWeight = (val: unknown): val is ParameterLoRAWeight => zLoRAWeight.safeParse(val).success;
// #endregion
// #region Regional Prompts AutoNegative
const zAutoNegative = z.enum(['off', 'invert']);
export type ParameterAutoNegative = z.infer<typeof zAutoNegative>;
// #endregion

View File

@ -3,6 +3,7 @@ import DataViewer from 'features/gallery/components/ImageMetadataViewer/DataView
import { useCancelBatch } from 'features/queue/hooks/useCancelBatch';
import { useCancelQueueItem } from 'features/queue/hooks/useCancelQueueItem';
import { getSecondsFromTimestamps } from 'features/queue/util/getSecondsFromTimestamps';
import { get } from 'lodash-es';
import type { ReactNode } from 'react';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
@ -92,7 +93,15 @@ const QueueItemComponent = ({ queueItemDTO }: Props) => {
</Flex>
)}
<Flex layerStyle="second" h={512} w="full" borderRadius="base" alignItems="center" justifyContent="center">
{queueItem ? <DataViewer label="Queue Item" data={queueItem} /> : <Spinner opacity={0.5} />}
{queueItem ? (
<DataViewer
label="Queue Item"
data={queueItem}
extraCopyActions={[{ label: 'Graph', getData: (data) => get(data, 'session.graph') }]}
/>
) : (
<Spinner opacity={0.5} />
)}
</Flex>
</Flex>
);

View File

@ -0,0 +1,22 @@
import { Button } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { layerAdded } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiPlusBold } from 'react-icons/pi';
export const AddLayerButton = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const onClick = useCallback(() => {
dispatch(layerAdded('vector_mask_layer'));
}, [dispatch]);
return (
<Button onClick={onClick} leftIcon={<PiPlusBold />} variant="ghost">
{t('regionalPrompts.addLayer')}
</Button>
);
});
AddLayerButton.displayName = 'AddLayerButton';

View File

@ -0,0 +1,70 @@
import { Button, Flex } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
isVectorMaskLayer,
maskLayerIPAdapterAdded,
maskLayerNegativePromptChanged,
maskLayerPositivePromptChanged,
selectRegionalPromptsSlice,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiPlusBold } from 'react-icons/pi';
import { assert } from 'tsafe';
type AddPromptButtonProps = {
layerId: string;
};
export const AddPromptButtons = ({ layerId }: AddPromptButtonProps) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const selectValidActions = useMemo(
() =>
createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
return {
canAddPositivePrompt: layer.positivePrompt === null,
canAddNegativePrompt: layer.negativePrompt === null,
};
}),
[layerId]
);
const validActions = useAppSelector(selectValidActions);
const addPositivePrompt = useCallback(() => {
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: '' }));
}, [dispatch, layerId]);
const addNegativePrompt = useCallback(() => {
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: '' }));
}, [dispatch, layerId]);
const addIPAdapter = useCallback(() => {
dispatch(maskLayerIPAdapterAdded(layerId));
}, [dispatch, layerId]);
return (
<Flex w="full" p={2} justifyContent="space-between">
<Button
size="sm"
variant="ghost"
leftIcon={<PiPlusBold />}
onClick={addPositivePrompt}
isDisabled={!validActions.canAddPositivePrompt}
>
{t('common.positivePrompt')}
</Button>
<Button
size="sm"
variant="ghost"
leftIcon={<PiPlusBold />}
onClick={addNegativePrompt}
isDisabled={!validActions.canAddNegativePrompt}
>
{t('common.negativePrompt')}
</Button>
<Button size="sm" variant="ghost" leftIcon={<PiPlusBold />} onClick={addIPAdapter}>
{t('common.ipAdapter')}
</Button>
</Flex>
);
};

View File

@ -0,0 +1,63 @@
import {
CompositeNumberInput,
CompositeSlider,
FormControl,
FormLabel,
Popover,
PopoverArrow,
PopoverBody,
PopoverContent,
PopoverTrigger,
} from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { brushSizeChanged, initialRegionalPromptsState } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const marks = [0, 100, 200, 300];
const formatPx = (v: number | string) => `${v} px`;
export const BrushSize = memo(() => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const brushSize = useAppSelector((s) => s.regionalPrompts.present.brushSize);
const onChange = useCallback(
(v: number) => {
dispatch(brushSizeChanged(v));
},
[dispatch]
);
return (
<FormControl w="min-content">
<FormLabel m={0}>{t('regionalPrompts.brushSize')}</FormLabel>
<Popover isLazy>
<PopoverTrigger>
<CompositeNumberInput
min={1}
max={600}
defaultValue={initialRegionalPromptsState.brushSize}
value={brushSize}
onChange={onChange}
w={24}
format={formatPx}
/>
</PopoverTrigger>
<PopoverContent w={200} py={2} px={4}>
<PopoverArrow />
<PopoverBody>
<CompositeSlider
min={1}
max={300}
defaultValue={initialRegionalPromptsState.brushSize}
value={brushSize}
onChange={onChange}
marks={marks}
/>
</PopoverBody>
</PopoverContent>
</Popover>
</FormControl>
);
});
BrushSize.displayName = 'BrushSize';

View File

@ -0,0 +1,22 @@
import { Button } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { allLayersDeleted } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleBold } from 'react-icons/pi';
export const DeleteAllLayersButton = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const onClick = useCallback(() => {
dispatch(allLayersDeleted());
}, [dispatch]);
return (
<Button onClick={onClick} leftIcon={<PiTrashSimpleBold />} variant="ghost" colorScheme="error">
{t('regionalPrompts.deleteAll')}
</Button>
);
});
DeleteAllLayersButton.displayName = 'DeleteAllLayersButton';

View File

@ -0,0 +1,70 @@
import {
CompositeNumberInput,
CompositeSlider,
FormControl,
FormLabel,
Popover,
PopoverArrow,
PopoverBody,
PopoverContent,
PopoverTrigger,
} from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
globalMaskLayerOpacityChanged,
initialRegionalPromptsState,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const marks = [0, 25, 50, 75, 100];
const formatPct = (v: number | string) => `${v} %`;
export const GlobalMaskLayerOpacity = memo(() => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const globalMaskLayerOpacity = useAppSelector((s) =>
Math.round(s.regionalPrompts.present.globalMaskLayerOpacity * 100)
);
const onChange = useCallback(
(v: number) => {
dispatch(globalMaskLayerOpacityChanged(v / 100));
},
[dispatch]
);
return (
<FormControl w="min-content">
<FormLabel m={0}>{t('regionalPrompts.globalMaskOpacity')}</FormLabel>
<Popover isLazy>
<PopoverTrigger>
<CompositeNumberInput
min={0}
max={100}
step={1}
value={globalMaskLayerOpacity}
defaultValue={initialRegionalPromptsState.globalMaskLayerOpacity * 100}
onChange={onChange}
w={24}
format={formatPct}
/>
</PopoverTrigger>
<PopoverContent w={200} py={2} px={4}>
<PopoverArrow />
<PopoverBody>
<CompositeSlider
min={0}
max={100}
step={1}
value={globalMaskLayerOpacity}
defaultValue={initialRegionalPromptsState.globalMaskLayerOpacity * 100}
onChange={onChange}
marks={marks}
/>
</PopoverBody>
</PopoverContent>
</Popover>
</FormControl>
);
});
GlobalMaskLayerOpacity.displayName = 'GlobalMaskLayerOpacity';

View File

@ -0,0 +1,51 @@
import { Checkbox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
isVectorMaskLayer,
maskLayerAutoNegativeChanged,
selectRegionalPromptsSlice,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import type { ChangeEvent } from 'react';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { assert } from 'tsafe';
type Props = {
layerId: string;
};
const useAutoNegative = (layerId: string) => {
const selectAutoNegative = useMemo(
() =>
createSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
return layer.autoNegative;
}),
[layerId]
);
const autoNegative = useAppSelector(selectAutoNegative);
return autoNegative;
};
export const RPLayerAutoNegativeCheckbox = memo(({ layerId }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const autoNegative = useAutoNegative(layerId);
const onChange = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
dispatch(maskLayerAutoNegativeChanged({ layerId, autoNegative: e.target.checked ? 'invert' : 'off' }));
},
[dispatch, layerId]
);
return (
<FormControl gap={2}>
<FormLabel m={0}>{t('regionalPrompts.autoNegative')}</FormLabel>
<Checkbox size="md" isChecked={autoNegative === 'invert'} onChange={onChange} />
</FormControl>
);
});
RPLayerAutoNegativeCheckbox.displayName = 'RPLayerAutoNegativeCheckbox';

View File

@ -0,0 +1,67 @@
import { Flex, Popover, PopoverBody, PopoverContent, PopoverTrigger, Tooltip } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import RgbColorPicker from 'common/components/RgbColorPicker';
import { rgbColorToString } from 'features/canvas/util/colorToString';
import {
isVectorMaskLayer,
maskLayerPreviewColorChanged,
selectRegionalPromptsSlice,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback, useMemo } from 'react';
import type { RgbColor } from 'react-colorful';
import { useTranslation } from 'react-i18next';
import { assert } from 'tsafe';
type Props = {
layerId: string;
};
export const RPLayerColorPicker = memo(({ layerId }: Props) => {
const { t } = useTranslation();
const selectColor = useMemo(
() =>
createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an vector mask layer`);
return layer.previewColor;
}),
[layerId]
);
const color = useAppSelector(selectColor);
const dispatch = useAppDispatch();
const onColorChange = useCallback(
(color: RgbColor) => {
dispatch(maskLayerPreviewColorChanged({ layerId, color }));
},
[dispatch, layerId]
);
return (
<Popover isLazy>
<PopoverTrigger>
<span>
<Tooltip label={t('regionalPrompts.maskPreviewColor')}>
<Flex
as="button"
aria-label={t('regionalPrompts.maskPreviewColor')}
borderRadius="base"
borderWidth={1}
bg={rgbColorToString(color)}
w={8}
h={8}
cursor="pointer"
tabIndex={-1}
/>
</Tooltip>
</span>
</PopoverTrigger>
<PopoverContent>
<PopoverBody minH={64}>
<RgbColorPicker color={color} onChange={onColorChange} withNumberInput />
</PopoverBody>
</PopoverContent>
</Popover>
);
});
RPLayerColorPicker.displayName = 'RPLayerColorPicker';

View File

@ -0,0 +1,28 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { layerDeleted } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleBold } from 'react-icons/pi';
type Props = { layerId: string };
export const RPLayerDeleteButton = memo(({ layerId }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const deleteLayer = useCallback(() => {
dispatch(layerDeleted(layerId));
}, [dispatch, layerId]);
return (
<IconButton
size="sm"
colorScheme="error"
aria-label={t('common.delete')}
tooltip={t('common.delete')}
icon={<PiTrashSimpleBold />}
onClick={deleteLayer}
/>
);
});
RPLayerDeleteButton.displayName = 'RPLayerDeleteButton';

View File

@ -0,0 +1,34 @@
import { Flex } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import ControlAdapterConfig from 'features/controlAdapters/components/ControlAdapterConfig';
import { selectRegionalPromptsSlice } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useMemo } from 'react';
import { assert } from 'tsafe';
type Props = {
layerId: string;
};
export const RPLayerIPAdapterList = memo(({ layerId }: Props) => {
const selectIPAdapterIds = useMemo(
() =>
createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(layer, `Layer ${layerId} not found`);
return layer.ipAdapterIds;
}),
[layerId]
);
const ipAdapterIds = useAppSelector(selectIPAdapterIds);
return (
<Flex w="full" flexDir="column" gap={2}>
{ipAdapterIds.map((id, index) => (
<ControlAdapterConfig key={id} id={id} number={index + 1} />
))}
</Flex>
);
});
RPLayerIPAdapterList.displayName = 'RPLayerIPAdapterList';

View File

@ -0,0 +1,87 @@
import { Badge, Flex, Spacer } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { rgbColorToString } from 'features/canvas/util/colorToString';
import { RPLayerColorPicker } from 'features/regionalPrompts/components/RPLayerColorPicker';
import { RPLayerDeleteButton } from 'features/regionalPrompts/components/RPLayerDeleteButton';
import { RPLayerIPAdapterList } from 'features/regionalPrompts/components/RPLayerIPAdapterList';
import { RPLayerMenu } from 'features/regionalPrompts/components/RPLayerMenu';
import { RPLayerNegativePrompt } from 'features/regionalPrompts/components/RPLayerNegativePrompt';
import { RPLayerPositivePrompt } from 'features/regionalPrompts/components/RPLayerPositivePrompt';
import RPLayerSettingsPopover from 'features/regionalPrompts/components/RPLayerSettingsPopover';
import { RPLayerVisibilityToggle } from 'features/regionalPrompts/components/RPLayerVisibilityToggle';
import {
isVectorMaskLayer,
layerSelected,
selectRegionalPromptsSlice,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { assert } from 'tsafe';
import { AddPromptButtons } from './AddPromptButtons';
type Props = {
layerId: string;
};
export const RPLayerListItem = memo(({ layerId }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const selector = useMemo(
() =>
createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
return {
color: rgbColorToString(layer.previewColor),
hasPositivePrompt: layer.positivePrompt !== null,
hasNegativePrompt: layer.negativePrompt !== null,
hasIPAdapters: layer.ipAdapterIds.length > 0,
isSelected: layerId === regionalPrompts.present.selectedLayerId,
autoNegative: layer.autoNegative,
};
}),
[layerId]
);
const { autoNegative, color, hasPositivePrompt, hasNegativePrompt, hasIPAdapters, isSelected } =
useAppSelector(selector);
const onClickCapture = useCallback(() => {
// Must be capture so that the layer is selected before deleting/resetting/etc
dispatch(layerSelected(layerId));
}, [dispatch, layerId]);
return (
<Flex
gap={2}
onClickCapture={onClickCapture}
bg={isSelected ? color : 'base.800'}
ps={2}
borderRadius="base"
pe="1px"
py="1px"
cursor="pointer"
>
<Flex flexDir="column" gap={2} w="full" bg="base.850" p={2} borderRadius="base">
<Flex gap={3} alignItems="center">
<RPLayerVisibilityToggle layerId={layerId} />
<RPLayerColorPicker layerId={layerId} />
<Spacer />
{autoNegative === 'invert' && (
<Badge color="base.300" bg="transparent" borderWidth={1}>
{t('regionalPrompts.autoNegative')}
</Badge>
)}
<RPLayerDeleteButton layerId={layerId} />
<RPLayerSettingsPopover layerId={layerId} />
<RPLayerMenu layerId={layerId} />
</Flex>
{!hasPositivePrompt && !hasNegativePrompt && !hasIPAdapters && <AddPromptButtons layerId={layerId} />}
{hasPositivePrompt && <RPLayerPositivePrompt layerId={layerId} />}
{hasNegativePrompt && <RPLayerNegativePrompt layerId={layerId} />}
{hasIPAdapters && <RPLayerIPAdapterList layerId={layerId} />}
</Flex>
</Flex>
);
});
RPLayerListItem.displayName = 'RPLayerListItem';

View File

@ -0,0 +1,120 @@
import { IconButton, Menu, MenuButton, MenuDivider, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
isVectorMaskLayer,
layerDeleted,
layerMovedBackward,
layerMovedForward,
layerMovedToBack,
layerMovedToFront,
layerReset,
maskLayerIPAdapterAdded,
maskLayerNegativePromptChanged,
maskLayerPositivePromptChanged,
selectRegionalPromptsSlice,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import {
PiArrowCounterClockwiseBold,
PiArrowDownBold,
PiArrowLineDownBold,
PiArrowLineUpBold,
PiArrowUpBold,
PiDotsThreeVerticalBold,
PiPlusBold,
PiTrashSimpleBold,
} from 'react-icons/pi';
import { assert } from 'tsafe';
type Props = { layerId: string };
export const RPLayerMenu = memo(({ layerId }: Props) => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const selectValidActions = useMemo(
() =>
createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
const layerIndex = regionalPrompts.present.layers.findIndex((l) => l.id === layerId);
const layerCount = regionalPrompts.present.layers.length;
return {
canAddPositivePrompt: layer.positivePrompt === null,
canAddNegativePrompt: layer.negativePrompt === null,
canMoveForward: layerIndex < layerCount - 1,
canMoveBackward: layerIndex > 0,
canMoveToFront: layerIndex < layerCount - 1,
canMoveToBack: layerIndex > 0,
};
}),
[layerId]
);
const validActions = useAppSelector(selectValidActions);
const addPositivePrompt = useCallback(() => {
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: '' }));
}, [dispatch, layerId]);
const addNegativePrompt = useCallback(() => {
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: '' }));
}, [dispatch, layerId]);
const addIPAdapter = useCallback(() => {
dispatch(maskLayerIPAdapterAdded(layerId));
}, [dispatch, layerId]);
const moveForward = useCallback(() => {
dispatch(layerMovedForward(layerId));
}, [dispatch, layerId]);
const moveToFront = useCallback(() => {
dispatch(layerMovedToFront(layerId));
}, [dispatch, layerId]);
const moveBackward = useCallback(() => {
dispatch(layerMovedBackward(layerId));
}, [dispatch, layerId]);
const moveToBack = useCallback(() => {
dispatch(layerMovedToBack(layerId));
}, [dispatch, layerId]);
const resetLayer = useCallback(() => {
dispatch(layerReset(layerId));
}, [dispatch, layerId]);
const deleteLayer = useCallback(() => {
dispatch(layerDeleted(layerId));
}, [dispatch, layerId]);
return (
<Menu>
<MenuButton as={IconButton} aria-label="Layer menu" size="sm" icon={<PiDotsThreeVerticalBold />} />
<MenuList>
<MenuItem onClick={addPositivePrompt} isDisabled={!validActions.canAddPositivePrompt} icon={<PiPlusBold />}>
{t('regionalPrompts.addPositivePrompt')}
</MenuItem>
<MenuItem onClick={addNegativePrompt} isDisabled={!validActions.canAddNegativePrompt} icon={<PiPlusBold />}>
{t('regionalPrompts.addNegativePrompt')}
</MenuItem>
<MenuItem onClick={addIPAdapter} icon={<PiPlusBold />}>
{t('regionalPrompts.addIPAdapter')}
</MenuItem>
<MenuDivider />
<MenuItem onClick={moveToFront} isDisabled={!validActions.canMoveToFront} icon={<PiArrowLineUpBold />}>
{t('regionalPrompts.moveToFront')}
</MenuItem>
<MenuItem onClick={moveForward} isDisabled={!validActions.canMoveForward} icon={<PiArrowUpBold />}>
{t('regionalPrompts.moveForward')}
</MenuItem>
<MenuItem onClick={moveBackward} isDisabled={!validActions.canMoveBackward} icon={<PiArrowDownBold />}>
{t('regionalPrompts.moveBackward')}
</MenuItem>
<MenuItem onClick={moveToBack} isDisabled={!validActions.canMoveToBack} icon={<PiArrowLineDownBold />}>
{t('regionalPrompts.moveToBack')}
</MenuItem>
<MenuDivider />
<MenuItem onClick={resetLayer} icon={<PiArrowCounterClockwiseBold />}>
{t('accessibility.reset')}
</MenuItem>
<MenuItem onClick={deleteLayer} icon={<PiTrashSimpleBold />} color="error.300">
{t('common.delete')}
</MenuItem>
</MenuList>
</Menu>
);
});
RPLayerMenu.displayName = 'RPLayerMenu';

View File

@ -0,0 +1,58 @@
import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
import { usePrompt } from 'features/prompt/usePrompt';
import { RPLayerPromptDeleteButton } from 'features/regionalPrompts/components/RPLayerPromptDeleteButton';
import { useLayerNegativePrompt } from 'features/regionalPrompts/hooks/layerStateHooks';
import { maskLayerNegativePromptChanged } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
type Props = {
layerId: string;
};
export const RPLayerNegativePrompt = memo(({ layerId }: Props) => {
const prompt = useLayerNegativePrompt(layerId);
const dispatch = useAppDispatch();
const textareaRef = useRef<HTMLTextAreaElement>(null);
const { t } = useTranslation();
const _onChange = useCallback(
(v: string) => {
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: v }));
},
[dispatch, layerId]
);
const { onChange, isOpen, onClose, onOpen, onSelect, onKeyDown } = usePrompt({
prompt,
textareaRef,
onChange: _onChange,
});
return (
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
<Box pos="relative" w="full">
<Textarea
id="prompt"
name="prompt"
ref={textareaRef}
value={prompt}
placeholder={t('parameters.negativePromptPlaceholder')}
onChange={onChange}
onKeyDown={onKeyDown}
variant="darkFilled"
paddingRight={30}
fontSize="sm"
/>
<PromptOverlayButtonWrapper>
<RPLayerPromptDeleteButton layerId={layerId} polarity="negative" />
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
</PromptOverlayButtonWrapper>
</Box>
</PromptPopover>
);
});
RPLayerNegativePrompt.displayName = 'RPLayerNegativePrompt';

View File

@ -0,0 +1,58 @@
import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
import { usePrompt } from 'features/prompt/usePrompt';
import { RPLayerPromptDeleteButton } from 'features/regionalPrompts/components/RPLayerPromptDeleteButton';
import { useLayerPositivePrompt } from 'features/regionalPrompts/hooks/layerStateHooks';
import { maskLayerPositivePromptChanged } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
type Props = {
layerId: string;
};
export const RPLayerPositivePrompt = memo(({ layerId }: Props) => {
const prompt = useLayerPositivePrompt(layerId);
const dispatch = useAppDispatch();
const textareaRef = useRef<HTMLTextAreaElement>(null);
const { t } = useTranslation();
const _onChange = useCallback(
(v: string) => {
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: v }));
},
[dispatch, layerId]
);
const { onChange, isOpen, onClose, onOpen, onSelect, onKeyDown } = usePrompt({
prompt,
textareaRef,
onChange: _onChange,
});
return (
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
<Box pos="relative" w="full">
<Textarea
id="prompt"
name="prompt"
ref={textareaRef}
value={prompt}
placeholder={t('parameters.positivePromptPlaceholder')}
onChange={onChange}
onKeyDown={onKeyDown}
variant="darkFilled"
paddingRight={30}
minH={28}
/>
<PromptOverlayButtonWrapper>
<RPLayerPromptDeleteButton layerId={layerId} polarity="positive" />
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
</PromptOverlayButtonWrapper>
</Box>
</PromptPopover>
);
});
RPLayerPositivePrompt.displayName = 'RPLayerPositivePrompt';

View File

@ -0,0 +1,38 @@
import { IconButton, Tooltip } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import {
maskLayerNegativePromptChanged,
maskLayerPositivePromptChanged,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleBold } from 'react-icons/pi';
type Props = {
layerId: string;
polarity: 'positive' | 'negative';
};
export const RPLayerPromptDeleteButton = memo(({ layerId, polarity }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const onClick = useCallback(() => {
if (polarity === 'positive') {
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: null }));
} else {
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: null }));
}
}, [dispatch, layerId, polarity]);
return (
<Tooltip label={t('regionalPrompts.deletePrompt')}>
<IconButton
variant="promptOverlay"
aria-label={t('regionalPrompts.deletePrompt')}
icon={<PiTrashSimpleBold />}
onClick={onClick}
/>
</Tooltip>
);
});
RPLayerPromptDeleteButton.displayName = 'RPLayerPromptDeleteButton';

View File

@ -0,0 +1,53 @@
import type { FormLabelProps } from '@invoke-ai/ui-library';
import {
Flex,
FormControlGroup,
IconButton,
Popover,
PopoverArrow,
PopoverBody,
PopoverContent,
PopoverTrigger,
} from '@invoke-ai/ui-library';
import { RPLayerAutoNegativeCheckbox } from 'features/regionalPrompts/components/RPLayerAutoNegativeCheckbox';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiGearSixBold } from 'react-icons/pi';
type Props = {
layerId: string;
};
const formLabelProps: FormLabelProps = {
flexGrow: 1,
minW: 32,
};
const RPLayerSettingsPopover = ({ layerId }: Props) => {
const { t } = useTranslation();
return (
<Popover isLazy>
<PopoverTrigger>
<IconButton
tooltip={t('common.settingsLabel')}
aria-label={t('common.settingsLabel')}
size="sm"
icon={<PiGearSixBold />}
/>
</PopoverTrigger>
<PopoverContent>
<PopoverArrow />
<PopoverBody>
<Flex direction="column" gap={2}>
<FormControlGroup formLabelProps={formLabelProps}>
<RPLayerAutoNegativeCheckbox layerId={layerId} />
</FormControlGroup>
</Flex>
</PopoverBody>
</PopoverContent>
</Popover>
);
};
export default memo(RPLayerSettingsPopover);

View File

@ -0,0 +1,34 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useLayerIsVisible } from 'features/regionalPrompts/hooks/layerStateHooks';
import { layerVisibilityToggled } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCheckBold } from 'react-icons/pi';
type Props = {
layerId: string;
};
export const RPLayerVisibilityToggle = memo(({ layerId }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const isVisible = useLayerIsVisible(layerId);
const onClick = useCallback(() => {
dispatch(layerVisibilityToggled(layerId));
}, [dispatch, layerId]);
return (
<IconButton
size="sm"
aria-label={t('regionalPrompts.toggleVisibility')}
tooltip={t('regionalPrompts.toggleVisibility')}
variant="outline"
icon={isVisible ? <PiCheckBold /> : undefined}
onClick={onClick}
colorScheme="base"
/>
);
});
RPLayerVisibilityToggle.displayName = 'RPLayerVisibilityToggle';

View File

@ -0,0 +1,24 @@
import { Flex } from '@invoke-ai/ui-library';
import type { Meta, StoryObj } from '@storybook/react';
import { RegionalPromptsEditor } from 'features/regionalPrompts/components/RegionalPromptsEditor';
const meta: Meta<typeof RegionalPromptsEditor> = {
title: 'Feature/RegionalPrompts',
tags: ['autodocs'],
component: RegionalPromptsEditor,
};
export default meta;
type Story = StoryObj<typeof RegionalPromptsEditor>;
const Component = () => {
return (
<Flex w={1500} h={1500}>
<RegionalPromptsEditor />
</Flex>
);
};
export const Default: Story = {
render: Component,
};

View File

@ -0,0 +1,24 @@
/* eslint-disable i18next/no-literal-string */
import { Flex } from '@invoke-ai/ui-library';
import { RegionalPromptsToolbar } from 'features/regionalPrompts/components/RegionalPromptsToolbar';
import { StageComponent } from 'features/regionalPrompts/components/StageComponent';
import { memo } from 'react';
export const RegionalPromptsEditor = memo(() => {
return (
<Flex
position="relative"
flexDirection="column"
height="100%"
width="100%"
rowGap={4}
alignItems="center"
justifyContent="center"
>
<RegionalPromptsToolbar />
<StageComponent />
</Flex>
);
});
RegionalPromptsEditor.displayName = 'RegionalPromptsEditor';

View File

@ -0,0 +1,38 @@
/* eslint-disable i18next/no-literal-string */
import { Flex } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import { AddLayerButton } from 'features/regionalPrompts/components/AddLayerButton';
import { DeleteAllLayersButton } from 'features/regionalPrompts/components/DeleteAllLayersButton';
import { RPLayerListItem } from 'features/regionalPrompts/components/RPLayerListItem';
import { isVectorMaskLayer, selectRegionalPromptsSlice } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo } from 'react';
const selectRPLayerIdsReversed = createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) =>
regionalPrompts.present.layers
.filter(isVectorMaskLayer)
.map((l) => l.id)
.reverse()
);
export const RegionalPromptsPanelContent = memo(() => {
const rpLayerIdsReversed = useAppSelector(selectRPLayerIdsReversed);
return (
<Flex flexDir="column" gap={4} w="full" h="full">
<Flex justifyContent="space-around">
<AddLayerButton />
<DeleteAllLayersButton />
</Flex>
<ScrollableContent>
<Flex flexDir="column" gap={4}>
{rpLayerIdsReversed.map((id) => (
<RPLayerListItem key={id} layerId={id} />
))}
</Flex>
</ScrollableContent>
</Flex>
);
});
RegionalPromptsPanelContent.displayName = 'RegionalPromptsPanelContent';

View File

@ -0,0 +1,20 @@
/* eslint-disable i18next/no-literal-string */
import { Flex } from '@invoke-ai/ui-library';
import { BrushSize } from 'features/regionalPrompts/components/BrushSize';
import { GlobalMaskLayerOpacity } from 'features/regionalPrompts/components/GlobalMaskLayerOpacity';
import { ToolChooser } from 'features/regionalPrompts/components/ToolChooser';
import { UndoRedoButtonGroup } from 'features/regionalPrompts/components/UndoRedoButtonGroup';
import { memo } from 'react';
export const RegionalPromptsToolbar = memo(() => {
return (
<Flex gap={4}>
<BrushSize />
<GlobalMaskLayerOpacity />
<UndoRedoButtonGroup />
<ToolChooser />
</Flex>
);
});
RegionalPromptsToolbar.displayName = 'RegionalPromptsToolbar';

View File

@ -0,0 +1,232 @@
import { Flex } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { logger } from 'app/logging/logger';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useMouseEvents } from 'features/regionalPrompts/hooks/mouseEventHooks';
import {
$cursorPosition,
$isMouseOver,
$lastMouseDownPos,
$tool,
isVectorMaskLayer,
layerBboxChanged,
layerSelected,
layerTranslated,
selectRegionalPromptsSlice,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { debouncedRenderers, renderers as normalRenderers } from 'features/regionalPrompts/util/renderers';
import Konva from 'konva';
import type { IRect } from 'konva/lib/types';
import type { MutableRefObject } from 'react';
import { memo, useCallback, useLayoutEffect, useMemo, useRef, useState } from 'react';
import { assert } from 'tsafe';
// This will log warnings when layers > 5 - maybe use `import.meta.env.MODE === 'development'` instead?
Konva.showWarnings = false;
const log = logger('regionalPrompts');
const selectSelectedLayerColor = createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === regionalPrompts.present.selectedLayerId);
if (!layer) {
return null;
}
assert(isVectorMaskLayer(layer), `Layer ${regionalPrompts.present.selectedLayerId} is not an RP layer`);
return layer.previewColor;
});
const useStageRenderer = (
stageRef: MutableRefObject<Konva.Stage>,
container: HTMLDivElement | null,
wrapper: HTMLDivElement | null,
asPreview: boolean
) => {
const dispatch = useAppDispatch();
const width = useAppSelector((s) => s.generation.width);
const height = useAppSelector((s) => s.generation.height);
const state = useAppSelector((s) => s.regionalPrompts.present);
const tool = useStore($tool);
const { onMouseDown, onMouseUp, onMouseMove, onMouseEnter, onMouseLeave, onMouseWheel } = useMouseEvents();
const cursorPosition = useStore($cursorPosition);
const lastMouseDownPos = useStore($lastMouseDownPos);
const isMouseOver = useStore($isMouseOver);
const selectedLayerIdColor = useAppSelector(selectSelectedLayerColor);
const layerIds = useMemo(() => state.layers.map((l) => l.id), [state.layers]);
const renderers = useMemo(() => (asPreview ? debouncedRenderers : normalRenderers), [asPreview]);
const onLayerPosChanged = useCallback(
(layerId: string, x: number, y: number) => {
dispatch(layerTranslated({ layerId, x, y }));
},
[dispatch]
);
const onBboxChanged = useCallback(
(layerId: string, bbox: IRect | null) => {
dispatch(layerBboxChanged({ layerId, bbox }));
},
[dispatch]
);
const onBboxMouseDown = useCallback(
(layerId: string) => {
dispatch(layerSelected(layerId));
},
[dispatch]
);
useLayoutEffect(() => {
log.trace('Initializing stage');
if (!container) {
return;
}
const stage = stageRef.current.container(container);
return () => {
log.trace('Cleaning up stage');
stage.destroy();
};
}, [container, stageRef]);
useLayoutEffect(() => {
log.trace('Adding stage listeners');
if (asPreview) {
return;
}
stageRef.current.on('mousedown', onMouseDown);
stageRef.current.on('mouseup', onMouseUp);
stageRef.current.on('mousemove', onMouseMove);
stageRef.current.on('mouseenter', onMouseEnter);
stageRef.current.on('mouseleave', onMouseLeave);
stageRef.current.on('wheel', onMouseWheel);
const stage = stageRef.current;
return () => {
log.trace('Cleaning up stage listeners');
stage.off('mousedown', onMouseDown);
stage.off('mouseup', onMouseUp);
stage.off('mousemove', onMouseMove);
stage.off('mouseenter', onMouseEnter);
stage.off('mouseleave', onMouseLeave);
stage.off('wheel', onMouseWheel);
};
}, [stageRef, asPreview, onMouseDown, onMouseUp, onMouseMove, onMouseEnter, onMouseLeave, onMouseWheel]);
useLayoutEffect(() => {
log.trace('Updating stage dimensions');
if (!wrapper) {
return;
}
const stage = stageRef.current;
const fitStageToContainer = () => {
const newXScale = wrapper.offsetWidth / width;
const newYScale = wrapper.offsetHeight / height;
const newScale = Math.min(newXScale, newYScale, 1);
stage.width(width * newScale);
stage.height(height * newScale);
stage.scaleX(newScale);
stage.scaleY(newScale);
};
const resizeObserver = new ResizeObserver(fitStageToContainer);
resizeObserver.observe(wrapper);
fitStageToContainer();
return () => {
resizeObserver.disconnect();
};
}, [stageRef, width, height, wrapper]);
useLayoutEffect(() => {
log.trace('Rendering tool preview');
if (asPreview) {
// Preview should not display tool
return;
}
renderers.renderToolPreview(
stageRef.current,
tool,
selectedLayerIdColor,
state.globalMaskLayerOpacity,
cursorPosition,
lastMouseDownPos,
isMouseOver,
state.brushSize
);
}, [
asPreview,
stageRef,
tool,
selectedLayerIdColor,
state.globalMaskLayerOpacity,
cursorPosition,
lastMouseDownPos,
isMouseOver,
state.brushSize,
renderers,
]);
useLayoutEffect(() => {
log.trace('Rendering layers');
renderers.renderLayers(stageRef.current, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged);
}, [stageRef, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged, renderers]);
useLayoutEffect(() => {
log.trace('Rendering bbox');
if (asPreview) {
// Preview should not display bboxes
return;
}
renderers.renderBbox(stageRef.current, state.layers, state.selectedLayerId, tool, onBboxChanged, onBboxMouseDown);
}, [stageRef, asPreview, state.layers, state.selectedLayerId, tool, onBboxChanged, onBboxMouseDown, renderers]);
useLayoutEffect(() => {
log.trace('Rendering background');
if (asPreview) {
// The preview should not have a background
return;
}
renderers.renderBackground(stageRef.current, width, height);
}, [stageRef, asPreview, width, height, renderers]);
useLayoutEffect(() => {
log.trace('Arranging layers');
renderers.arrangeLayers(stageRef.current, layerIds);
}, [stageRef, layerIds, renderers]);
};
type Props = {
asPreview?: boolean;
};
export const StageComponent = memo(({ asPreview = false }: Props) => {
const stageRef = useRef<Konva.Stage>(
new Konva.Stage({
container: document.createElement('div'), // We will overwrite this shortly...
})
);
const [container, setContainer] = useState<HTMLDivElement | null>(null);
const [wrapper, setWrapper] = useState<HTMLDivElement | null>(null);
const containerRef = useCallback((el: HTMLDivElement | null) => {
setContainer(el);
}, []);
const wrapperRef = useCallback((el: HTMLDivElement | null) => {
setWrapper(el);
}, []);
useStageRenderer(stageRef, container, wrapper, asPreview);
return (
<Flex overflow="hidden" w="full" h="full">
<Flex ref={wrapperRef} w="full" h="full" alignItems="center" justifyContent="center">
<Flex ref={containerRef} tabIndex={-1} bg="base.850" />
</Flex>
</Flex>
);
});
StageComponent.displayName = 'StageComponent';

View File

@ -0,0 +1,89 @@
import { ButtonGroup, IconButton } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
$tool,
layerAdded,
selectedLayerDeleted,
selectedLayerReset,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { useCallback } from 'react';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
import { PiArrowsOutCardinalBold, PiEraserBold, PiPaintBrushBold, PiRectangleBold } from 'react-icons/pi';
export const ToolChooser: React.FC = () => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const isDisabled = useAppSelector((s) => s.regionalPrompts.present.layers.length === 0);
const tool = useStore($tool);
const setToolToBrush = useCallback(() => {
$tool.set('brush');
}, []);
useHotkeys('b', setToolToBrush, { enabled: !isDisabled }, [isDisabled]);
const setToolToEraser = useCallback(() => {
$tool.set('eraser');
}, []);
useHotkeys('e', setToolToEraser, { enabled: !isDisabled }, [isDisabled]);
const setToolToRect = useCallback(() => {
$tool.set('rect');
}, []);
useHotkeys('u', setToolToRect, { enabled: !isDisabled }, [isDisabled]);
const setToolToMove = useCallback(() => {
$tool.set('move');
}, []);
useHotkeys('v', setToolToMove, { enabled: !isDisabled }, [isDisabled]);
const resetSelectedLayer = useCallback(() => {
dispatch(selectedLayerReset());
}, [dispatch]);
useHotkeys('shift+c', resetSelectedLayer);
const addLayer = useCallback(() => {
dispatch(layerAdded('vector_mask_layer'));
}, [dispatch]);
useHotkeys('shift+a', addLayer);
const deleteSelectedLayer = useCallback(() => {
dispatch(selectedLayerDeleted());
}, [dispatch]);
useHotkeys('shift+d', deleteSelectedLayer);
return (
<ButtonGroup isAttached>
<IconButton
aria-label={`${t('unifiedCanvas.brush')} (B)`}
tooltip={`${t('unifiedCanvas.brush')} (B)`}
icon={<PiPaintBrushBold />}
variant={tool === 'brush' ? 'solid' : 'outline'}
onClick={setToolToBrush}
isDisabled={isDisabled}
/>
<IconButton
aria-label={`${t('unifiedCanvas.eraser')} (E)`}
tooltip={`${t('unifiedCanvas.eraser')} (E)`}
icon={<PiEraserBold />}
variant={tool === 'eraser' ? 'solid' : 'outline'}
onClick={setToolToEraser}
isDisabled={isDisabled}
/>
<IconButton
aria-label={`${t('regionalPrompts.rectangle')} (U)`}
tooltip={`${t('regionalPrompts.rectangle')} (U)`}
icon={<PiRectangleBold />}
variant={tool === 'rect' ? 'solid' : 'outline'}
onClick={setToolToRect}
isDisabled={isDisabled}
/>
<IconButton
aria-label={`${t('unifiedCanvas.move')} (V)`}
tooltip={`${t('unifiedCanvas.move')} (V)`}
icon={<PiArrowsOutCardinalBold />}
variant={tool === 'move' ? 'solid' : 'outline'}
onClick={setToolToMove}
isDisabled={isDisabled}
/>
</ButtonGroup>
);
};

View File

@ -0,0 +1,49 @@
/* eslint-disable i18next/no-literal-string */
import { ButtonGroup, IconButton } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { redo, undo } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { memo, useCallback } from 'react';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
import { PiArrowClockwiseBold, PiArrowCounterClockwiseBold } from 'react-icons/pi';
export const UndoRedoButtonGroup = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const mayUndo = useAppSelector((s) => s.regionalPrompts.past.length > 0);
const handleUndo = useCallback(() => {
dispatch(undo());
}, [dispatch]);
useHotkeys(['meta+z', 'ctrl+z'], handleUndo, { enabled: mayUndo, preventDefault: true }, [mayUndo, handleUndo]);
const mayRedo = useAppSelector((s) => s.regionalPrompts.future.length > 0);
const handleRedo = useCallback(() => {
dispatch(redo());
}, [dispatch]);
useHotkeys(['meta+shift+z', 'ctrl+shift+z'], handleRedo, { enabled: mayRedo, preventDefault: true }, [
mayRedo,
handleRedo,
]);
return (
<ButtonGroup>
<IconButton
aria-label={t('unifiedCanvas.undo')}
tooltip={t('unifiedCanvas.undo')}
onClick={handleUndo}
icon={<PiArrowCounterClockwiseBold />}
isDisabled={!mayUndo}
/>
<IconButton
aria-label={t('unifiedCanvas.redo')}
tooltip={t('unifiedCanvas.redo')}
onClick={handleRedo}
icon={<PiArrowClockwiseBold />}
isDisabled={!mayRedo}
/>
</ButtonGroup>
);
});
UndoRedoButtonGroup.displayName = 'UndoRedoButtonGroup';

View File

@ -0,0 +1,49 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { isVectorMaskLayer, selectRegionalPromptsSlice } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { useMemo } from 'react';
import { assert } from 'tsafe';
export const useLayerPositivePrompt = (layerId: string) => {
const selectLayer = useMemo(
() =>
createSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
assert(layer.positivePrompt !== null, `Layer ${layerId} does not have a positive prompt`);
return layer.positivePrompt;
}),
[layerId]
);
const prompt = useAppSelector(selectLayer);
return prompt;
};
export const useLayerNegativePrompt = (layerId: string) => {
const selectLayer = useMemo(
() =>
createSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
assert(layer.negativePrompt !== null, `Layer ${layerId} does not have a negative prompt`);
return layer.negativePrompt;
}),
[layerId]
);
const prompt = useAppSelector(selectLayer);
return prompt;
};
export const useLayerIsVisible = (layerId: string) => {
const selectLayer = useMemo(
() =>
createSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
return layer.isVisible;
}),
[layerId]
);
const isVisible = useAppSelector(selectLayer);
return isVisible;
};

View File

@ -0,0 +1,217 @@
import { $ctrl, $meta } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { calculateNewBrushSize } from 'features/canvas/hooks/useCanvasZoom';
import {
$cursorPosition,
$isMouseDown,
$isMouseOver,
$lastMouseDownPos,
$tool,
brushSizeChanged,
maskLayerLineAdded,
maskLayerPointsAdded,
maskLayerRectAdded,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import type Konva from 'konva';
import type { KonvaEventObject } from 'konva/lib/Node';
import type { Vector2d } from 'konva/lib/types';
import { useCallback, useRef } from 'react';
const getIsFocused = (stage: Konva.Stage) => {
return stage.container().contains(document.activeElement);
};
export const getScaledFlooredCursorPosition = (stage: Konva.Stage) => {
const pointerPosition = stage.getPointerPosition();
const stageTransform = stage.getAbsoluteTransform().copy();
if (!pointerPosition || !stageTransform) {
return;
}
const scaledCursorPosition = stageTransform.invert().point(pointerPosition);
return {
x: Math.floor(scaledCursorPosition.x),
y: Math.floor(scaledCursorPosition.y),
};
};
const syncCursorPos = (stage: Konva.Stage): Vector2d | null => {
const pos = getScaledFlooredCursorPosition(stage);
if (!pos) {
return null;
}
$cursorPosition.set(pos);
return pos;
};
const BRUSH_SPACING = 20;
export const useMouseEvents = () => {
const dispatch = useAppDispatch();
const selectedLayerId = useAppSelector((s) => s.regionalPrompts.present.selectedLayerId);
const tool = useStore($tool);
const lastCursorPosRef = useRef<[number, number] | null>(null);
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
const brushSize = useAppSelector((s) => s.regionalPrompts.present.brushSize);
const onMouseDown = useCallback(
(e: KonvaEventObject<MouseEvent | TouchEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
if (!pos) {
return;
}
$isMouseDown.set(true);
$lastMouseDownPos.set(pos);
if (!selectedLayerId) {
return;
}
if (tool === 'brush' || tool === 'eraser') {
dispatch(
maskLayerLineAdded({
layerId: selectedLayerId,
points: [pos.x, pos.y, pos.x, pos.y],
tool,
})
);
}
},
[dispatch, selectedLayerId, tool]
);
const onMouseUp = useCallback(
(e: KonvaEventObject<MouseEvent | TouchEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
$isMouseDown.set(false);
const pos = $cursorPosition.get();
const lastPos = $lastMouseDownPos.get();
const tool = $tool.get();
if (pos && lastPos && selectedLayerId && tool === 'rect') {
dispatch(
maskLayerRectAdded({
layerId: selectedLayerId,
rect: {
x: Math.min(pos.x, lastPos.x),
y: Math.min(pos.y, lastPos.y),
width: Math.abs(pos.x - lastPos.x),
height: Math.abs(pos.y - lastPos.y),
},
})
);
}
$lastMouseDownPos.set(null);
},
[dispatch, selectedLayerId]
);
const onMouseMove = useCallback(
(e: KonvaEventObject<MouseEvent | TouchEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
if (!pos || !selectedLayerId) {
return;
}
if (getIsFocused(stage) && $isMouseOver.get() && $isMouseDown.get() && (tool === 'brush' || tool === 'eraser')) {
if (lastCursorPosRef.current) {
// Dispatching redux events impacts perf substantially - using brush spacing keeps dispatches to a reasonable number
if (Math.hypot(lastCursorPosRef.current[0] - pos.x, lastCursorPosRef.current[1] - pos.y) < BRUSH_SPACING) {
return;
}
}
lastCursorPosRef.current = [pos.x, pos.y];
dispatch(maskLayerPointsAdded({ layerId: selectedLayerId, point: lastCursorPosRef.current }));
}
},
[dispatch, selectedLayerId, tool]
);
const onMouseLeave = useCallback(
(e: KonvaEventObject<MouseEvent | TouchEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
if (
pos &&
selectedLayerId &&
getIsFocused(stage) &&
$isMouseOver.get() &&
$isMouseDown.get() &&
(tool === 'brush' || tool === 'eraser')
) {
dispatch(maskLayerPointsAdded({ layerId: selectedLayerId, point: [pos.x, pos.y] }));
}
$isMouseOver.set(false);
$isMouseDown.set(false);
$cursorPosition.set(null);
},
[selectedLayerId, tool, dispatch]
);
const onMouseEnter = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
$isMouseOver.set(true);
const pos = syncCursorPos(stage);
if (!pos) {
return;
}
if (!getIsFocused(stage)) {
return;
}
if (e.evt.buttons !== 1) {
$isMouseDown.set(false);
} else {
$isMouseDown.set(true);
if (!selectedLayerId) {
return;
}
if (tool === 'brush' || tool === 'eraser') {
dispatch(
maskLayerLineAdded({
layerId: selectedLayerId,
points: [pos.x, pos.y, pos.x, pos.y],
tool,
})
);
}
}
},
[dispatch, selectedLayerId, tool]
);
const onMouseWheel = useCallback(
(e: KonvaEventObject<WheelEvent>) => {
e.evt.preventDefault();
// checking for ctrl key is pressed or not,
// so that brush size can be controlled using ctrl + scroll up/down
// Invert the delta if the property is set to true
let delta = e.evt.deltaY;
if (shouldInvertBrushSizeScrollDirection) {
delta = -delta;
}
if ($ctrl.get() || $meta.get()) {
dispatch(brushSizeChanged(calculateNewBrushSize(brushSize, delta)));
}
},
[shouldInvertBrushSizeScrollDirection, brushSize, dispatch]
);
return { onMouseDown, onMouseUp, onMouseMove, onMouseEnter, onMouseLeave, onMouseWheel };
};

View File

@ -0,0 +1,30 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { selectRegionalPromptsSlice } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { useMemo } from 'react';
import { useTranslation } from 'react-i18next';
const selectValidLayerCount = createSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
if (!regionalPrompts.present.isEnabled) {
return 0;
}
const validLayers = regionalPrompts.present.layers
.filter((l) => l.isVisible)
.filter((l) => {
const hasTextPrompt = Boolean(l.positivePrompt || l.negativePrompt);
const hasAtLeastOneImagePrompt = l.ipAdapterIds.length > 0;
return hasTextPrompt || hasAtLeastOneImagePrompt;
});
return validLayers.length;
});
export const useRegionalControlTitle = () => {
const { t } = useTranslation();
const validLayerCount = useAppSelector(selectValidLayerCount);
const title = useMemo(() => {
const suffix = validLayerCount > 0 ? ` (${validLayerCount})` : '';
return `${t('regionalPrompts.regionalControl')}${suffix}`;
}, [t, validLayerCount]);
return title;
};

View File

@ -0,0 +1,496 @@
import type { PayloadAction, UnknownAction } from '@reduxjs/toolkit';
import { createSlice, isAnyOf } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { moveBackward, moveForward, moveToBack, moveToFront } from 'common/util/arrayUtils';
import { controlAdapterRemoved } from 'features/controlAdapters/store/controlAdaptersSlice';
import type { ParameterAutoNegative } from 'features/parameters/types/parameterSchemas';
import type { IRect, Vector2d } from 'konva/lib/types';
import { isEqual } from 'lodash-es';
import { atom } from 'nanostores';
import type { RgbColor } from 'react-colorful';
import type { UndoableOptions } from 'redux-undo';
import { assert } from 'tsafe';
import { v4 as uuidv4 } from 'uuid';
type DrawingTool = 'brush' | 'eraser';
export type Tool = DrawingTool | 'move' | 'rect';
export type VectorMaskLine = {
id: string;
type: 'vector_mask_line';
tool: DrawingTool;
strokeWidth: number;
points: number[];
};
export type VectorMaskRect = {
id: string;
type: 'vector_mask_rect';
x: number;
y: number;
width: number;
height: number;
};
type LayerBase = {
id: string;
x: number;
y: number;
bbox: IRect | null;
bboxNeedsUpdate: boolean;
isVisible: boolean;
};
type MaskLayerBase = LayerBase & {
positivePrompt: string | null;
negativePrompt: string | null; // Up to one text prompt per mask
ipAdapterIds: string[]; // Any number of image prompts
previewColor: RgbColor;
autoNegative: ParameterAutoNegative;
needsPixelBbox: boolean; // Needs the slower pixel-based bbox calculation - set to true when an there is an eraser object
};
export type VectorMaskLayer = MaskLayerBase & {
type: 'vector_mask_layer';
objects: (VectorMaskLine | VectorMaskRect)[];
};
export type Layer = VectorMaskLayer;
type RegionalPromptsState = {
_version: 1;
selectedLayerId: string | null;
layers: Layer[];
brushSize: number;
globalMaskLayerOpacity: number;
isEnabled: boolean;
};
export const initialRegionalPromptsState: RegionalPromptsState = {
_version: 1,
selectedLayerId: null,
brushSize: 100,
layers: [],
globalMaskLayerOpacity: 0.5, // this globally changes all mask layers' opacity
isEnabled: true,
};
const isLine = (obj: VectorMaskLine | VectorMaskRect): obj is VectorMaskLine => obj.type === 'vector_mask_line';
export const isVectorMaskLayer = (layer?: Layer): layer is VectorMaskLayer => layer?.type === 'vector_mask_layer';
const resetLayer = (layer: VectorMaskLayer) => {
layer.objects = [];
layer.bbox = null;
layer.isVisible = true;
layer.needsPixelBbox = false;
layer.bboxNeedsUpdate = false;
};
export const regionalPromptsSlice = createSlice({
name: 'regionalPrompts',
initialState: initialRegionalPromptsState,
reducers: {
//#region All Layers
layerAdded: {
reducer: (state, action: PayloadAction<Layer['type'], string, { uuid: string }>) => {
const kind = action.payload;
if (action.payload === 'vector_mask_layer') {
const lastColor = state.layers[state.layers.length - 1]?.previewColor;
const previewColor = LayerColors.next(lastColor);
const layer: VectorMaskLayer = {
id: getVectorMaskLayerId(action.meta.uuid),
type: kind,
isVisible: true,
bbox: null,
bboxNeedsUpdate: false,
objects: [],
previewColor,
x: 0,
y: 0,
autoNegative: 'invert',
needsPixelBbox: false,
positivePrompt: '',
negativePrompt: null,
ipAdapterIds: [],
};
state.layers.push(layer);
state.selectedLayerId = layer.id;
return;
}
},
prepare: (payload: Layer['type']) => ({ payload, meta: { uuid: uuidv4() } }),
},
layerSelected: (state, action: PayloadAction<string>) => {
const layer = state.layers.find((l) => l.id === action.payload);
if (layer) {
state.selectedLayerId = layer.id;
}
},
layerVisibilityToggled: (state, action: PayloadAction<string>) => {
const layer = state.layers.find((l) => l.id === action.payload);
if (layer) {
layer.isVisible = !layer.isVisible;
}
},
layerTranslated: (state, action: PayloadAction<{ layerId: string; x: number; y: number }>) => {
const { layerId, x, y } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
layer.x = x;
layer.y = y;
}
},
layerBboxChanged: (state, action: PayloadAction<{ layerId: string; bbox: IRect | null }>) => {
const { layerId, bbox } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
layer.bbox = bbox;
layer.bboxNeedsUpdate = false;
}
},
layerReset: (state, action: PayloadAction<string>) => {
const layer = state.layers.find((l) => l.id === action.payload);
if (layer) {
resetLayer(layer);
}
},
layerDeleted: (state, action: PayloadAction<string>) => {
state.layers = state.layers.filter((l) => l.id !== action.payload);
state.selectedLayerId = state.layers[0]?.id ?? null;
},
layerMovedForward: (state, action: PayloadAction<string>) => {
const cb = (l: Layer) => l.id === action.payload;
moveForward(state.layers, cb);
},
layerMovedToFront: (state, action: PayloadAction<string>) => {
const cb = (l: Layer) => l.id === action.payload;
// Because the layers are in reverse order, moving to the front is equivalent to moving to the back
moveToBack(state.layers, cb);
},
layerMovedBackward: (state, action: PayloadAction<string>) => {
const cb = (l: Layer) => l.id === action.payload;
moveBackward(state.layers, cb);
},
layerMovedToBack: (state, action: PayloadAction<string>) => {
const cb = (l: Layer) => l.id === action.payload;
// Because the layers are in reverse order, moving to the back is equivalent to moving to the front
moveToFront(state.layers, cb);
},
allLayersDeleted: (state) => {
state.layers = [];
state.selectedLayerId = null;
},
selectedLayerReset: (state) => {
const layer = state.layers.find((l) => l.id === state.selectedLayerId);
if (layer) {
resetLayer(layer);
}
},
selectedLayerDeleted: (state) => {
state.layers = state.layers.filter((l) => l.id !== state.selectedLayerId);
state.selectedLayerId = state.layers[0]?.id ?? null;
},
//#endregion
//#region Mask Layers
maskLayerPositivePromptChanged: (state, action: PayloadAction<{ layerId: string; prompt: string | null }>) => {
const { layerId, prompt } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
layer.positivePrompt = prompt;
}
},
maskLayerNegativePromptChanged: (state, action: PayloadAction<{ layerId: string; prompt: string | null }>) => {
const { layerId, prompt } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
layer.negativePrompt = prompt;
}
},
maskLayerIPAdapterAdded: {
reducer: (state, action: PayloadAction<string, string, { uuid: string }>) => {
const layer = state.layers.find((l) => l.id === action.payload);
if (layer) {
layer.ipAdapterIds.push(action.meta.uuid);
}
},
prepare: (payload: string) => ({ payload, meta: { uuid: uuidv4() } }),
},
maskLayerPreviewColorChanged: (state, action: PayloadAction<{ layerId: string; color: RgbColor }>) => {
const { layerId, color } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
layer.previewColor = color;
}
},
maskLayerLineAdded: {
reducer: (
state,
action: PayloadAction<
{ layerId: string; points: [number, number, number, number]; tool: DrawingTool },
string,
{ uuid: string }
>
) => {
const { layerId, points, tool } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
const lineId = getVectorMaskLayerLineId(layer.id, action.meta.uuid);
layer.objects.push({
type: 'vector_mask_line',
tool: tool,
id: lineId,
// Points must be offset by the layer's x and y coordinates
// TODO: Handle this in the event listener?
points: [points[0] - layer.x, points[1] - layer.y, points[2] - layer.x, points[3] - layer.y],
strokeWidth: state.brushSize,
});
layer.bboxNeedsUpdate = true;
if (!layer.needsPixelBbox && tool === 'eraser') {
layer.needsPixelBbox = true;
}
}
},
prepare: (payload: { layerId: string; points: [number, number, number, number]; tool: DrawingTool }) => ({
payload,
meta: { uuid: uuidv4() },
}),
},
maskLayerPointsAdded: (state, action: PayloadAction<{ layerId: string; point: [number, number] }>) => {
const { layerId, point } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
const lastLine = layer.objects.findLast(isLine);
if (!lastLine) {
return;
}
// Points must be offset by the layer's x and y coordinates
// TODO: Handle this in the event listener
lastLine.points.push(point[0] - layer.x, point[1] - layer.y);
layer.bboxNeedsUpdate = true;
}
},
maskLayerRectAdded: {
reducer: (state, action: PayloadAction<{ layerId: string; rect: IRect }, string, { uuid: string }>) => {
const { layerId, rect } = action.payload;
if (rect.height === 0 || rect.width === 0) {
// Ignore zero-area rectangles
return;
}
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
const id = getVectorMaskLayerRectId(layer.id, action.meta.uuid);
layer.objects.push({
type: 'vector_mask_rect',
id,
x: rect.x - layer.x,
y: rect.y - layer.y,
width: rect.width,
height: rect.height,
});
layer.bboxNeedsUpdate = true;
}
},
prepare: (payload: { layerId: string; rect: IRect }) => ({ payload, meta: { uuid: uuidv4() } }),
},
maskLayerAutoNegativeChanged: (
state,
action: PayloadAction<{ layerId: string; autoNegative: ParameterAutoNegative }>
) => {
const { layerId, autoNegative } = action.payload;
const layer = state.layers.find((l) => l.id === layerId);
if (layer) {
layer.autoNegative = autoNegative;
}
},
//#endregion
//#region General
brushSizeChanged: (state, action: PayloadAction<number>) => {
state.brushSize = action.payload;
},
globalMaskLayerOpacityChanged: (state, action: PayloadAction<number>) => {
state.globalMaskLayerOpacity = action.payload;
},
isEnabledChanged: (state, action: PayloadAction<boolean>) => {
state.isEnabled = action.payload;
},
undo: (state) => {
// Invalidate the bbox for all layers to prevent stale bboxes
for (const layer of state.layers) {
layer.bboxNeedsUpdate = true;
}
},
redo: (state) => {
// Invalidate the bbox for all layers to prevent stale bboxes
for (const layer of state.layers) {
layer.bboxNeedsUpdate = true;
}
},
//#endregion
},
extraReducers(builder) {
builder.addCase(controlAdapterRemoved, (state, action) => {
for (const layer of state.layers) {
layer.ipAdapterIds = layer.ipAdapterIds.filter((id) => id !== action.payload.id);
}
});
},
});
/**
* This class is used to cycle through a set of colors for the prompt region layers.
*/
class LayerColors {
static COLORS: RgbColor[] = [
{ r: 121, g: 157, b: 219 }, // rgb(121, 157, 219)
{ r: 131, g: 214, b: 131 }, // rgb(131, 214, 131)
{ r: 250, g: 225, b: 80 }, // rgb(250, 225, 80)
{ r: 220, g: 144, b: 101 }, // rgb(220, 144, 101)
{ r: 224, g: 117, b: 117 }, // rgb(224, 117, 117)
{ r: 213, g: 139, b: 202 }, // rgb(213, 139, 202)
{ r: 161, g: 120, b: 214 }, // rgb(161, 120, 214)
];
static i = this.COLORS.length - 1;
/**
* Get the next color in the sequence. If a known color is provided, the next color will be the one after it.
*/
static next(currentColor?: RgbColor): RgbColor {
if (currentColor) {
const i = this.COLORS.findIndex((c) => isEqual(c, currentColor));
if (i !== -1) {
this.i = i;
}
}
this.i = (this.i + 1) % this.COLORS.length;
const color = this.COLORS[this.i];
assert(color);
return color;
}
}
export const {
// All layer actions
layerAdded,
layerDeleted,
layerMovedBackward,
layerMovedForward,
layerMovedToBack,
layerMovedToFront,
layerReset,
layerSelected,
layerTranslated,
layerBboxChanged,
layerVisibilityToggled,
allLayersDeleted,
selectedLayerReset,
selectedLayerDeleted,
// Mask layer actions
maskLayerLineAdded,
maskLayerPointsAdded,
maskLayerRectAdded,
maskLayerNegativePromptChanged,
maskLayerPositivePromptChanged,
maskLayerIPAdapterAdded,
maskLayerAutoNegativeChanged,
maskLayerPreviewColorChanged,
// General actions
brushSizeChanged,
globalMaskLayerOpacityChanged,
undo,
redo,
} = regionalPromptsSlice.actions;
export const selectRegionalPromptsSlice = (state: RootState) => state.regionalPrompts;
/* eslint-disable-next-line @typescript-eslint/no-explicit-any */
const migrateRegionalPromptsState = (state: any): any => {
return state;
};
export const $isMouseDown = atom(false);
export const $isMouseOver = atom(false);
export const $lastMouseDownPos = atom<Vector2d | null>(null);
export const $tool = atom<Tool>('brush');
export const $cursorPosition = atom<Vector2d | null>(null);
// IDs for singleton Konva layers and objects
export const TOOL_PREVIEW_LAYER_ID = 'tool_preview_layer';
export const TOOL_PREVIEW_BRUSH_GROUP_ID = 'tool_preview_layer.brush_group';
export const TOOL_PREVIEW_BRUSH_FILL_ID = 'tool_preview_layer.brush_fill';
export const TOOL_PREVIEW_BRUSH_BORDER_INNER_ID = 'tool_preview_layer.brush_border_inner';
export const TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID = 'tool_preview_layer.brush_border_outer';
export const TOOL_PREVIEW_RECT_ID = 'tool_preview_layer.rect';
export const BACKGROUND_LAYER_ID = 'background_layer';
export const BACKGROUND_RECT_ID = 'background_layer.rect';
// Names (aka classes) for Konva layers and objects
export const VECTOR_MASK_LAYER_NAME = 'vector_mask_layer';
export const VECTOR_MASK_LAYER_LINE_NAME = 'vector_mask_layer.line';
export const VECTOR_MASK_LAYER_OBJECT_GROUP_NAME = 'vector_mask_layer.object_group';
export const VECTOR_MASK_LAYER_RECT_NAME = 'vector_mask_layer.rect';
export const LAYER_BBOX_NAME = 'layer.bbox';
// Getters for non-singleton layer and object IDs
const getVectorMaskLayerId = (layerId: string) => `${VECTOR_MASK_LAYER_NAME}_${layerId}`;
const getVectorMaskLayerLineId = (layerId: string, lineId: string) => `${layerId}.line_${lineId}`;
const getVectorMaskLayerRectId = (layerId: string, lineId: string) => `${layerId}.rect_${lineId}`;
export const getVectorMaskLayerObjectGroupId = (layerId: string, groupId: string) =>
`${layerId}.objectGroup_${groupId}`;
export const getLayerBboxId = (layerId: string) => `${layerId}.bbox`;
export const regionalPromptsPersistConfig: PersistConfig<RegionalPromptsState> = {
name: regionalPromptsSlice.name,
initialState: initialRegionalPromptsState,
migrate: migrateRegionalPromptsState,
persistDenylist: [],
};
// These actions are _individually_ grouped together as single undoable actions
const undoableGroupByMatcher = isAnyOf(
layerTranslated,
brushSizeChanged,
globalMaskLayerOpacityChanged,
maskLayerPositivePromptChanged,
maskLayerNegativePromptChanged,
maskLayerPreviewColorChanged
);
// These are used to group actions into logical lines below (hate typos)
const LINE_1 = 'LINE_1';
const LINE_2 = 'LINE_2';
export const regionalPromptsUndoableConfig: UndoableOptions<RegionalPromptsState, UnknownAction> = {
limit: 64,
undoType: regionalPromptsSlice.actions.undo.type,
redoType: regionalPromptsSlice.actions.redo.type,
groupBy: (action, state, history) => {
// Lines are started with `maskLayerLineAdded` and may have any number of subsequent `maskLayerPointsAdded` events.
// We can use a double-buffer-esque trick to group each "logical" line as a single undoable action, without grouping
// separate logical lines as a single undo action.
if (maskLayerLineAdded.match(action)) {
return history.group === LINE_1 ? LINE_2 : LINE_1;
}
if (maskLayerPointsAdded.match(action)) {
if (history.group === LINE_1 || history.group === LINE_2) {
return history.group;
}
}
if (undoableGroupByMatcher(action)) {
return action.type;
}
return null;
},
filter: (action, _state, _history) => {
// Ignore all actions from other slices
if (!action.type.startsWith(regionalPromptsSlice.name)) {
return false;
}
// This action is triggered on state changes, including when we undo. If we do not ignore this action, when we
// undo, this action triggers and empties the future states array. Therefore, we must ignore this action.
if (layerBboxChanged.match(action)) {
return false;
}
return true;
},
};

View File

@ -0,0 +1,134 @@
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { imageDataToDataURL } from 'features/canvas/util/blobToDataURL';
import { VECTOR_MASK_LAYER_OBJECT_GROUP_NAME } from 'features/regionalPrompts/store/regionalPromptsSlice';
import Konva from 'konva';
import type { Layer as KonvaLayerType } from 'konva/lib/Layer';
import type { IRect } from 'konva/lib/types';
import { assert } from 'tsafe';
const GET_CLIENT_RECT_CONFIG = { skipTransform: true };
type Extents = {
minX: number;
minY: number;
maxX: number;
maxY: number;
};
/**
* Get the bounding box of an image.
* @param imageData The ImageData object to get the bounding box of.
* @returns The minimum and maximum x and y values of the image's bounding box.
*/
const getImageDataBbox = (imageData: ImageData): Extents | null => {
const { data, width, height } = imageData;
let minX = width;
let minY = height;
let maxX = -1;
let maxY = -1;
let alpha = 0;
let isEmpty = true;
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
alpha = data[(y * width + x) * 4 + 3] ?? 0;
if (alpha > 0) {
isEmpty = false;
if (x < minX) {
minX = x;
}
if (x > maxX) {
maxX = x;
}
if (y < minY) {
minY = y;
}
if (y > maxY) {
maxY = y;
}
}
}
}
return isEmpty ? null : { minX, minY, maxX, maxY };
};
/**
* Get the bounding box of a regional prompt konva layer. This function has special handling for regional prompt layers.
* @param layer The konva layer to get the bounding box of.
* @param preview Whether to open a new tab displaying the rendered layer, which is used to calculate the bbox.
*/
export const getLayerBboxPixels = (layer: KonvaLayerType, preview: boolean = false): IRect | null => {
// To calculate the layer's bounding box, we must first export it to a pixel array, then do some math.
//
// Though it is relatively fast, we can't use Konva's `getClientRect`. It programmatically determines the rect
// by calculating the extents of individual shapes from their "vector" shape data.
//
// This doesn't work when some shapes are drawn with composite operations that "erase" pixels, like eraser lines.
// These shapes' extents are still calculated as if they were solid, leading to a bounding box that is too large.
const stage = layer.getStage();
// Construct and offscreen canvas on which we will do the bbox calculations.
const offscreenStageContainer = document.createElement('div');
const offscreenStage = new Konva.Stage({
container: offscreenStageContainer,
width: stage.width(),
height: stage.height(),
});
// Clone the layer and filter out unwanted children.
const layerClone = layer.clone();
offscreenStage.add(layerClone);
for (const child of layerClone.getChildren()) {
if (child.name() === VECTOR_MASK_LAYER_OBJECT_GROUP_NAME) {
// We need to cache the group to ensure it composites out eraser strokes correctly
child.opacity(1);
child.cache();
} else {
// Filter out unwanted children.
child.destroy();
}
}
// Get a worst-case rect using the relatively fast `getClientRect`.
const layerRect = layerClone.getClientRect();
// Capture the image data with the above rect.
const layerImageData = offscreenStage
.toCanvas(layerRect)
.getContext('2d')
?.getImageData(0, 0, layerRect.width, layerRect.height);
assert(layerImageData, "Unable to get layer's image data");
if (preview) {
openBase64ImageInTab([{ base64: imageDataToDataURL(layerImageData), caption: layer.id() }]);
}
// Calculate the layer's bounding box.
const layerBbox = getImageDataBbox(layerImageData);
if (!layerBbox) {
return null;
}
// Correct the bounding box to be relative to the layer's position.
const correctedLayerBbox = {
x: layerBbox.minX - Math.floor(stage.x()) + layerRect.x - Math.floor(layer.x()),
y: layerBbox.minY - Math.floor(stage.y()) + layerRect.y - Math.floor(layer.y()),
width: layerBbox.maxX - layerBbox.minX,
height: layerBbox.maxY - layerBbox.minY,
};
return correctedLayerBbox;
};
export const getLayerBboxFast = (layer: KonvaLayerType): IRect | null => {
const bbox = layer.getClientRect(GET_CLIENT_RECT_CONFIG);
return {
x: Math.floor(bbox.x),
y: Math.floor(bbox.y),
width: Math.floor(bbox.width),
height: Math.floor(bbox.height),
};
};

View File

@ -0,0 +1,64 @@
import { getStore } from 'app/store/nanostores/store';
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { VECTOR_MASK_LAYER_NAME } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { renderers } from 'features/regionalPrompts/util/renderers';
import Konva from 'konva';
import { assert } from 'tsafe';
/**
* Get the blobs of all regional prompt layers. Only visible layers are returned.
* @param layerIds The IDs of the layers to get blobs for. If not provided, all regional prompt layers are used.
* @param preview Whether to open a new tab displaying each layer.
* @returns A map of layer IDs to blobs.
*/
export const getRegionalPromptLayerBlobs = async (
layerIds?: string[],
preview: boolean = false
): Promise<Record<string, Blob>> => {
const state = getStore().getState();
const reduxLayers = state.regionalPrompts.present.layers;
const container = document.createElement('div');
const stage = new Konva.Stage({ container, width: state.generation.width, height: state.generation.height });
renderers.renderLayers(stage, reduxLayers, 1, 'brush');
const konvaLayers = stage.find<Konva.Layer>(`.${VECTOR_MASK_LAYER_NAME}`);
const blobs: Record<string, Blob> = {};
// First remove all layers
for (const layer of konvaLayers) {
layer.remove();
}
// Next render each layer to a blob
for (const layer of konvaLayers) {
if (layerIds && !layerIds.includes(layer.id())) {
continue;
}
const reduxLayer = reduxLayers.find((l) => l.id === layer.id());
assert(reduxLayer, `Redux layer ${layer.id()} not found`);
stage.add(layer);
const blob = await new Promise<Blob>((resolve) => {
stage.toBlob({
callback: (blob) => {
assert(blob, 'Blob is null');
resolve(blob);
},
});
});
if (preview) {
const base64 = await blobToDataURL(blob);
openBase64ImageInTab([
{
base64,
caption: `${reduxLayer.id}: ${reduxLayer.positivePrompt} / ${reduxLayer.negativePrompt}`,
},
]);
}
layer.remove();
blobs[layer.id()] = blob;
}
return blobs;
};

View File

@ -0,0 +1,619 @@
import { getStore } from 'app/store/nanostores/store';
import { rgbaColorToString, rgbColorToString } from 'features/canvas/util/colorToString';
import { getScaledFlooredCursorPosition } from 'features/regionalPrompts/hooks/mouseEventHooks';
import type {
Layer,
Tool,
VectorMaskLayer,
VectorMaskLine,
VectorMaskRect,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import {
$tool,
BACKGROUND_LAYER_ID,
BACKGROUND_RECT_ID,
getLayerBboxId,
getVectorMaskLayerObjectGroupId,
isVectorMaskLayer,
LAYER_BBOX_NAME,
TOOL_PREVIEW_BRUSH_BORDER_INNER_ID,
TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID,
TOOL_PREVIEW_BRUSH_FILL_ID,
TOOL_PREVIEW_BRUSH_GROUP_ID,
TOOL_PREVIEW_LAYER_ID,
TOOL_PREVIEW_RECT_ID,
VECTOR_MASK_LAYER_LINE_NAME,
VECTOR_MASK_LAYER_NAME,
VECTOR_MASK_LAYER_OBJECT_GROUP_NAME,
VECTOR_MASK_LAYER_RECT_NAME,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { getLayerBboxFast, getLayerBboxPixels } from 'features/regionalPrompts/util/bbox';
import Konva from 'konva';
import type { IRect, Vector2d } from 'konva/lib/types';
import { debounce } from 'lodash-es';
import type { RgbColor } from 'react-colorful';
import { assert } from 'tsafe';
import { v4 as uuidv4 } from 'uuid';
const BBOX_SELECTED_STROKE = 'rgba(78, 190, 255, 1)';
const BBOX_NOT_SELECTED_STROKE = 'rgba(255, 255, 255, 0.353)';
const BBOX_NOT_SELECTED_MOUSEOVER_STROKE = 'rgba(255, 255, 255, 0.661)';
const BRUSH_BORDER_INNER_COLOR = 'rgba(0,0,0,1)';
const BRUSH_BORDER_OUTER_COLOR = 'rgba(255,255,255,0.8)';
// This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
const STAGE_BG_DATAURL =
'';
const mapId = (object: { id: string }) => object.id;
const getIsSelected = (layerId?: string | null) => {
if (!layerId) {
return false;
}
return layerId === getStore().getState().regionalPrompts.present.selectedLayerId;
};
const selectVectorMaskObjects = (node: Konva.Node) => {
return node.name() === VECTOR_MASK_LAYER_LINE_NAME || node.name() === VECTOR_MASK_LAYER_RECT_NAME;
};
/**
* Creates the brush preview layer.
* @param stage The konva stage to render on.
* @returns The brush preview layer.
*/
const createToolPreviewLayer = (stage: Konva.Stage) => {
// Initialize the brush preview layer & add to the stage
const toolPreviewLayer = new Konva.Layer({ id: TOOL_PREVIEW_LAYER_ID, visible: false, listening: false });
stage.add(toolPreviewLayer);
// Add handlers to show/hide the brush preview layer
stage.on('mousemove', (e) => {
const tool = $tool.get();
e.target
.getStage()
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
?.visible(tool === 'brush' || tool === 'eraser');
});
stage.on('mouseleave', (e) => {
e.target.getStage()?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(false);
});
stage.on('mouseenter', (e) => {
const tool = $tool.get();
e.target
.getStage()
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
?.visible(tool === 'brush' || tool === 'eraser');
});
// Create the brush preview group & circles
const brushPreviewGroup = new Konva.Group({ id: TOOL_PREVIEW_BRUSH_GROUP_ID });
const brushPreviewFill = new Konva.Circle({
id: TOOL_PREVIEW_BRUSH_FILL_ID,
listening: false,
strokeEnabled: false,
});
brushPreviewGroup.add(brushPreviewFill);
const brushPreviewBorderInner = new Konva.Circle({
id: TOOL_PREVIEW_BRUSH_BORDER_INNER_ID,
listening: false,
stroke: BRUSH_BORDER_INNER_COLOR,
strokeWidth: 1,
strokeEnabled: true,
});
brushPreviewGroup.add(brushPreviewBorderInner);
const brushPreviewBorderOuter = new Konva.Circle({
id: TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID,
listening: false,
stroke: BRUSH_BORDER_OUTER_COLOR,
strokeWidth: 1,
strokeEnabled: true,
});
brushPreviewGroup.add(brushPreviewBorderOuter);
toolPreviewLayer.add(brushPreviewGroup);
// Create the rect preview
const rectPreview = new Konva.Rect({ id: TOOL_PREVIEW_RECT_ID, listening: false, stroke: 'white', strokeWidth: 1 });
toolPreviewLayer.add(rectPreview);
return toolPreviewLayer;
};
/**
* Renders the brush preview for the selected tool.
* @param stage The konva stage to render on.
* @param tool The selected tool.
* @param color The selected layer's color.
* @param cursorPos The cursor position.
* @param lastMouseDownPos The position of the last mouse down event - used for the rect tool.
* @param brushSize The brush size.
*/
const renderToolPreview = (
stage: Konva.Stage,
tool: Tool,
color: RgbColor | null,
globalMaskLayerOpacity: number,
cursorPos: Vector2d | null,
lastMouseDownPos: Vector2d | null,
isMouseOver: boolean,
brushSize: number
) => {
const layerCount = stage.find(`.${VECTOR_MASK_LAYER_NAME}`).length;
// Update the stage's pointer style
if (layerCount === 0) {
// We have no layers, so we should not render any tool
stage.container().style.cursor = 'default';
} else if (tool === 'move') {
// Move tool gets a pointer
stage.container().style.cursor = 'default';
} else if (tool === 'rect') {
// Move rect gets a crosshair
stage.container().style.cursor = 'crosshair';
} else {
// Else we use the brush preview
stage.container().style.cursor = 'none';
}
const toolPreviewLayer = stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`) ?? createToolPreviewLayer(stage);
if (!isMouseOver || layerCount === 0) {
// We can bail early if the mouse isn't over the stage or there are no layers
toolPreviewLayer.visible(false);
return;
}
toolPreviewLayer.visible(true);
const brushPreviewGroup = stage.findOne<Konva.Group>(`#${TOOL_PREVIEW_BRUSH_GROUP_ID}`);
assert(brushPreviewGroup, 'Brush preview group not found');
const rectPreview = stage.findOne<Konva.Rect>(`#${TOOL_PREVIEW_RECT_ID}`);
assert(rectPreview, 'Rect preview not found');
// No need to render the brush preview if the cursor position or color is missing
if (cursorPos && color && (tool === 'brush' || tool === 'eraser')) {
// Update the fill circle
const brushPreviewFill = brushPreviewGroup.findOne<Konva.Circle>(`#${TOOL_PREVIEW_BRUSH_FILL_ID}`);
brushPreviewFill?.setAttrs({
x: cursorPos.x,
y: cursorPos.y,
radius: brushSize / 2,
fill: rgbaColorToString({ ...color, a: globalMaskLayerOpacity }),
globalCompositeOperation: tool === 'brush' ? 'source-over' : 'destination-out',
});
// Update the inner border of the brush preview
const brushPreviewInner = toolPreviewLayer.findOne<Konva.Circle>(`#${TOOL_PREVIEW_BRUSH_BORDER_INNER_ID}`);
brushPreviewInner?.setAttrs({ x: cursorPos.x, y: cursorPos.y, radius: brushSize / 2 });
// Update the outer border of the brush preview
const brushPreviewOuter = toolPreviewLayer.findOne<Konva.Circle>(`#${TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID}`);
brushPreviewOuter?.setAttrs({
x: cursorPos.x,
y: cursorPos.y,
radius: brushSize / 2 + 1,
});
brushPreviewGroup.visible(true);
} else {
brushPreviewGroup.visible(false);
}
if (cursorPos && lastMouseDownPos && tool === 'rect') {
const rectPreview = toolPreviewLayer.findOne<Konva.Rect>(`#${TOOL_PREVIEW_RECT_ID}`);
rectPreview?.setAttrs({
x: Math.min(cursorPos.x, lastMouseDownPos.x),
y: Math.min(cursorPos.y, lastMouseDownPos.y),
width: Math.abs(cursorPos.x - lastMouseDownPos.x),
height: Math.abs(cursorPos.y - lastMouseDownPos.y),
});
rectPreview?.visible(true);
} else {
rectPreview?.visible(false);
}
};
/**
* Creates a vector mask layer.
* @param stage The konva stage to attach the layer to.
* @param reduxLayer The redux layer to create the konva layer from.
* @param onLayerPosChanged Callback for when the layer's position changes.
*/
const createVectorMaskLayer = (
stage: Konva.Stage,
reduxLayer: VectorMaskLayer,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
) => {
// This layer hasn't been added to the konva state yet
const konvaLayer = new Konva.Layer({
id: reduxLayer.id,
name: VECTOR_MASK_LAYER_NAME,
draggable: true,
dragDistance: 0,
});
// Create a `dragmove` listener for this layer
if (onLayerPosChanged) {
konvaLayer.on('dragend', function (e) {
onLayerPosChanged(reduxLayer.id, Math.floor(e.target.x()), Math.floor(e.target.y()));
});
}
// The dragBoundFunc limits how far the layer can be dragged
konvaLayer.dragBoundFunc(function (pos) {
const cursorPos = getScaledFlooredCursorPosition(stage);
if (!cursorPos) {
return this.getAbsolutePosition();
}
// Prevent the user from dragging the layer out of the stage bounds.
if (
cursorPos.x < 0 ||
cursorPos.x > stage.width() / stage.scaleX() ||
cursorPos.y < 0 ||
cursorPos.y > stage.height() / stage.scaleY()
) {
return this.getAbsolutePosition();
}
return pos;
});
// The object group holds all of the layer's objects (e.g. lines and rects)
const konvaObjectGroup = new Konva.Group({
id: getVectorMaskLayerObjectGroupId(reduxLayer.id, uuidv4()),
name: VECTOR_MASK_LAYER_OBJECT_GROUP_NAME,
listening: false,
});
konvaLayer.add(konvaObjectGroup);
stage.add(konvaLayer);
return konvaLayer;
};
/**
* Creates a konva line from a redux vector mask line.
* @param reduxObject The redux object to create the konva line from.
* @param konvaGroup The konva group to add the line to.
*/
const createVectorMaskLine = (reduxObject: VectorMaskLine, konvaGroup: Konva.Group): Konva.Line => {
const vectorMaskLine = new Konva.Line({
id: reduxObject.id,
key: reduxObject.id,
name: VECTOR_MASK_LAYER_LINE_NAME,
strokeWidth: reduxObject.strokeWidth,
tension: 0,
lineCap: 'round',
lineJoin: 'round',
shadowForStrokeEnabled: false,
globalCompositeOperation: reduxObject.tool === 'brush' ? 'source-over' : 'destination-out',
listening: false,
});
konvaGroup.add(vectorMaskLine);
return vectorMaskLine;
};
/**
* Creates a konva rect from a redux vector mask rect.
* @param reduxObject The redux object to create the konva rect from.
* @param konvaGroup The konva group to add the rect to.
*/
const createVectorMaskRect = (reduxObject: VectorMaskRect, konvaGroup: Konva.Group): Konva.Rect => {
const vectorMaskRect = new Konva.Rect({
id: reduxObject.id,
key: reduxObject.id,
name: VECTOR_MASK_LAYER_RECT_NAME,
x: reduxObject.x,
y: reduxObject.y,
width: reduxObject.width,
height: reduxObject.height,
listening: false,
});
konvaGroup.add(vectorMaskRect);
return vectorMaskRect;
};
/**
* Renders a vector mask layer.
* @param stage The konva stage to render on.
* @param reduxLayer The redux vector mask layer to render.
* @param reduxLayerIndex The index of the layer in the redux store.
* @param globalMaskLayerOpacity The opacity of the global mask layer.
* @param tool The current tool.
*/
const renderVectorMaskLayer = (
stage: Konva.Stage,
reduxLayer: VectorMaskLayer,
globalMaskLayerOpacity: number,
tool: Tool,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
): void => {
const konvaLayer =
stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ?? createVectorMaskLayer(stage, reduxLayer, onLayerPosChanged);
// Update the layer's position and listening state
konvaLayer.setAttrs({
listening: tool === 'move', // The layer only listens when using the move tool - otherwise the stage is handling mouse events
x: Math.floor(reduxLayer.x),
y: Math.floor(reduxLayer.y),
});
// Convert the color to a string, stripping the alpha - the object group will handle opacity.
const rgbColor = rgbColorToString(reduxLayer.previewColor);
const konvaObjectGroup = konvaLayer.findOne<Konva.Group>(`.${VECTOR_MASK_LAYER_OBJECT_GROUP_NAME}`);
assert(konvaObjectGroup, `Object group not found for layer ${reduxLayer.id}`);
// We use caching to handle "global" layer opacity, but caching is expensive and we should only do it when required.
let groupNeedsCache = false;
const objectIds = reduxLayer.objects.map(mapId);
for (const objectNode of konvaObjectGroup.find(selectVectorMaskObjects)) {
if (!objectIds.includes(objectNode.id())) {
objectNode.destroy();
groupNeedsCache = true;
}
}
for (const reduxObject of reduxLayer.objects) {
if (reduxObject.type === 'vector_mask_line') {
const vectorMaskLine =
stage.findOne<Konva.Line>(`#${reduxObject.id}`) ?? createVectorMaskLine(reduxObject, konvaObjectGroup);
// Only update the points if they have changed. The point values are never mutated, they are only added to the
// array, so checking the length is sufficient to determine if we need to re-cache.
if (vectorMaskLine.points().length !== reduxObject.points.length) {
vectorMaskLine.points(reduxObject.points);
groupNeedsCache = true;
}
// Only update the color if it has changed.
if (vectorMaskLine.stroke() !== rgbColor) {
vectorMaskLine.stroke(rgbColor);
groupNeedsCache = true;
}
} else if (reduxObject.type === 'vector_mask_rect') {
const konvaObject =
stage.findOne<Konva.Rect>(`#${reduxObject.id}`) ?? createVectorMaskRect(reduxObject, konvaObjectGroup);
// Only update the color if it has changed.
if (konvaObject.fill() !== rgbColor) {
konvaObject.fill(rgbColor);
groupNeedsCache = true;
}
}
}
// Only update layer visibility if it has changed.
if (konvaLayer.visible() !== reduxLayer.isVisible) {
konvaLayer.visible(reduxLayer.isVisible);
groupNeedsCache = true;
}
if (konvaObjectGroup.children.length === 0) {
// No objects - clear the cache to reset the previous pixel data
konvaObjectGroup.clearCache();
} else if (groupNeedsCache) {
konvaObjectGroup.cache();
}
// Updating group opacity does not require re-caching
if (konvaObjectGroup.opacity() !== globalMaskLayerOpacity) {
konvaObjectGroup.opacity(globalMaskLayerOpacity);
}
};
/**
* Renders the layers on the stage.
* @param stage The konva stage to render on.
* @param reduxLayers Array of the layers from the redux store.
* @param layerOpacity The opacity of the layer.
* @param onLayerPosChanged Callback for when the layer's position changes. This is optional to allow for offscreen rendering.
* @returns
*/
const renderLayers = (
stage: Konva.Stage,
reduxLayers: Layer[],
globalMaskLayerOpacity: number,
tool: Tool,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
) => {
const reduxLayerIds = reduxLayers.map(mapId);
// Remove un-rendered layers
for (const konvaLayer of stage.find<Konva.Layer>(`.${VECTOR_MASK_LAYER_NAME}`)) {
if (!reduxLayerIds.includes(konvaLayer.id())) {
konvaLayer.destroy();
}
}
for (const reduxLayer of reduxLayers) {
if (isVectorMaskLayer(reduxLayer)) {
renderVectorMaskLayer(stage, reduxLayer, globalMaskLayerOpacity, tool, onLayerPosChanged);
}
}
};
/**
* Creates a bounding box rect for a layer.
* @param reduxLayer The redux layer to create the bounding box for.
* @param konvaLayer The konva layer to attach the bounding box to.
* @param onBboxMouseDown Callback for when the bounding box is clicked.
*/
const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer, onBboxMouseDown: (layerId: string) => void) => {
const rect = new Konva.Rect({
id: getLayerBboxId(reduxLayer.id),
name: LAYER_BBOX_NAME,
strokeWidth: 1,
});
rect.on('mousedown', function () {
onBboxMouseDown(reduxLayer.id);
});
rect.on('mouseover', function (e) {
if (getIsSelected(e.target.getLayer()?.id())) {
this.stroke(BBOX_SELECTED_STROKE);
} else {
this.stroke(BBOX_NOT_SELECTED_MOUSEOVER_STROKE);
}
});
rect.on('mouseout', function (e) {
if (getIsSelected(e.target.getLayer()?.id())) {
this.stroke(BBOX_SELECTED_STROKE);
} else {
this.stroke(BBOX_NOT_SELECTED_STROKE);
}
});
konvaLayer.add(rect);
return rect;
};
/**
* Renders the bounding boxes for the layers.
* @param stage The konva stage to render on
* @param reduxLayers An array of all redux layers to draw bboxes for
* @param selectedLayerId The selected layer's id
* @param tool The current tool
* @param onBboxChanged Callback for when the bbox is changed
* @param onBboxMouseDown Callback for when the bbox is clicked
* @returns
*/
const renderBbox = (
stage: Konva.Stage,
reduxLayers: Layer[],
selectedLayerId: string | null,
tool: Tool,
onBboxChanged: (layerId: string, bbox: IRect | null) => void,
onBboxMouseDown: (layerId: string) => void
) => {
// Hide all bboxes so they don't interfere with getClientRect
for (const bboxRect of stage.find<Konva.Rect>(`.${LAYER_BBOX_NAME}`)) {
bboxRect.visible(false);
bboxRect.listening(false);
}
// No selected layer or not using the move tool - nothing more to do here
if (tool !== 'move') {
return;
}
for (const reduxLayer of reduxLayers) {
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`);
assert(konvaLayer, `Layer ${reduxLayer.id} not found in stage`);
let bbox = reduxLayer.bbox;
// We only need to recalculate the bbox if the layer has changed and it has objects
if (reduxLayer.bboxNeedsUpdate && reduxLayer.objects.length) {
// We only need to use the pixel-perfect bounding box if the layer has eraser strokes
bbox = reduxLayer.needsPixelBbox ? getLayerBboxPixels(konvaLayer) : getLayerBboxFast(konvaLayer);
// Update the layer's bbox in the redux store
onBboxChanged(reduxLayer.id, bbox);
}
if (!bbox) {
continue;
}
const rect =
konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(reduxLayer, konvaLayer, onBboxMouseDown);
rect.setAttrs({
visible: true,
listening: true,
x: bbox.x,
y: bbox.y,
width: bbox.width,
height: bbox.height,
stroke: reduxLayer.id === selectedLayerId ? BBOX_SELECTED_STROKE : BBOX_NOT_SELECTED_STROKE,
});
}
};
/**
* Creates the background layer for the stage.
* @param stage The konva stage to render on
*/
const createBackgroundLayer = (stage: Konva.Stage): Konva.Layer => {
const layer = new Konva.Layer({
id: BACKGROUND_LAYER_ID,
});
const background = new Konva.Rect({
id: BACKGROUND_RECT_ID,
x: stage.x(),
y: 0,
width: stage.width() / stage.scaleX(),
height: stage.height() / stage.scaleY(),
listening: false,
opacity: 0.2,
});
layer.add(background);
stage.add(layer);
const image = new Image();
image.onload = () => {
background.fillPatternImage(image);
};
image.src = STAGE_BG_DATAURL;
return layer;
};
/**
* Renders the background layer for the stage.
* @param stage The konva stage to render on
* @param width The unscaled width of the canvas
* @param height The unscaled height of the canvas
*/
const renderBackground = (stage: Konva.Stage, width: number, height: number) => {
const layer = stage.findOne<Konva.Layer>(`#${BACKGROUND_LAYER_ID}`) ?? createBackgroundLayer(stage);
const background = layer.findOne<Konva.Rect>(`#${BACKGROUND_RECT_ID}`);
assert(background, 'Background rect not found');
// ensure background rect is in the top-left of the canvas
background.absolutePosition({ x: 0, y: 0 });
// set the dimensions of the background rect to match the canvas - not the stage!!!
background.size({
width: width / stage.scaleX(),
height: height / stage.scaleY(),
});
// Calculate the amount the stage is moved - including the effect of scaling
const stagePos = {
x: -stage.x() / stage.scaleX(),
y: -stage.y() / stage.scaleY(),
};
// Apply that movement to the fill pattern
background.fillPatternOffset(stagePos);
};
/**
* Arranges all layers in the z-axis by updating their z-indices.
* @param stage The konva stage
* @param layerIds An array of redux layer ids, in their z-index order
*/
const arrangeLayers = (stage: Konva.Stage, layerIds: string[]): void => {
let nextZIndex = 0;
// Background is the first layer
stage.findOne<Konva.Layer>(`#${BACKGROUND_LAYER_ID}`)?.zIndex(nextZIndex++);
// Then arrange the redux layers in order
for (const layerId of layerIds) {
stage.findOne<Konva.Layer>(`#${layerId}`)?.zIndex(nextZIndex++);
}
// Finally, the tool preview layer is always on top
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.zIndex(nextZIndex++);
};
export const renderers = {
renderToolPreview,
renderLayers,
renderBbox,
renderBackground,
arrangeLayers,
};
const DEBOUNCE_MS = 300;
export const debouncedRenderers = {
renderToolPreview: debounce(renderToolPreview, DEBOUNCE_MS),
renderLayers: debounce(renderLayers, DEBOUNCE_MS),
renderBbox: debounce(renderBbox, DEBOUNCE_MS),
renderBackground: debounce(renderBackground, DEBOUNCE_MS),
arrangeLayers: debounce(arrangeLayers, DEBOUNCE_MS),
};

View File

@ -13,51 +13,60 @@ import {
selectValidIPAdapters,
selectValidT2IAdapters,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { selectRegionalPromptsSlice } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { useStandaloneAccordionToggle } from 'features/settingsAccordions/hooks/useStandaloneAccordionToggle';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { Fragment, memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiPlusBold } from 'react-icons/pi';
const selector = createMemoizedSelector(selectControlAdaptersSlice, (controlAdapters) => {
const badges: string[] = [];
let isError = false;
const selector = createMemoizedSelector(
[selectControlAdaptersSlice, selectRegionalPromptsSlice],
(controlAdapters, regionalPrompts) => {
const badges: string[] = [];
let isError = false;
const enabledIPAdapterCount = selectAllIPAdapters(controlAdapters).filter((ca) => ca.isEnabled).length;
const validIPAdapterCount = selectValidIPAdapters(controlAdapters).length;
if (enabledIPAdapterCount > 0) {
badges.push(`${enabledIPAdapterCount} IP`);
}
if (enabledIPAdapterCount > validIPAdapterCount) {
isError = true;
}
const enabledIPAdapterCount = selectAllIPAdapters(controlAdapters)
.filter((ca) => !regionalPrompts.present.layers.some((l) => l.ipAdapterIds.includes(ca.id)))
.filter((ca) => ca.isEnabled).length;
const enabledControlNetCount = selectAllControlNets(controlAdapters).filter((ca) => ca.isEnabled).length;
const validControlNetCount = selectValidControlNets(controlAdapters).length;
if (enabledControlNetCount > 0) {
badges.push(`${enabledControlNetCount} ControlNet`);
}
if (enabledControlNetCount > validControlNetCount) {
isError = true;
}
const validIPAdapterCount = selectValidIPAdapters(controlAdapters).length;
if (enabledIPAdapterCount > 0) {
badges.push(`${enabledIPAdapterCount} IP`);
}
if (enabledIPAdapterCount > validIPAdapterCount) {
isError = true;
}
const enabledT2IAdapterCount = selectAllT2IAdapters(controlAdapters).filter((ca) => ca.isEnabled).length;
const validT2IAdapterCount = selectValidT2IAdapters(controlAdapters).length;
if (enabledT2IAdapterCount > 0) {
badges.push(`${enabledT2IAdapterCount} T2I`);
}
if (enabledT2IAdapterCount > validT2IAdapterCount) {
isError = true;
}
const enabledControlNetCount = selectAllControlNets(controlAdapters).filter((ca) => ca.isEnabled).length;
const validControlNetCount = selectValidControlNets(controlAdapters).length;
if (enabledControlNetCount > 0) {
badges.push(`${enabledControlNetCount} ControlNet`);
}
if (enabledControlNetCount > validControlNetCount) {
isError = true;
}
const controlAdapterIds = selectControlAdapterIds(controlAdapters);
const enabledT2IAdapterCount = selectAllT2IAdapters(controlAdapters).filter((ca) => ca.isEnabled).length;
const validT2IAdapterCount = selectValidT2IAdapters(controlAdapters).length;
if (enabledT2IAdapterCount > 0) {
badges.push(`${enabledT2IAdapterCount} T2I`);
}
if (enabledT2IAdapterCount > validT2IAdapterCount) {
isError = true;
}
return {
controlAdapterIds,
badges,
isError, // TODO: Add some visual indicator that the control adapters are in an error state
};
});
const controlAdapterIds = selectControlAdapterIds(controlAdapters).filter(
(id) => !regionalPrompts.present.layers.some((l) => l.ipAdapterIds.includes(id))
);
return {
controlAdapterIds,
badges,
isError, // TODO: Add some visual indicator that the control adapters are in an error state
};
}
);
export const ControlSettingsAccordion: React.FC = memo(() => {
const { t } = useTranslation();

View File

@ -2,6 +2,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { aspectRatioChanged, setBoundingBoxDimensions } from 'features/canvas/store/canvasSlice';
import ParamBoundingBoxHeight from 'features/parameters/components/Canvas/BoundingBox/ParamBoundingBoxHeight';
import ParamBoundingBoxWidth from 'features/parameters/components/Canvas/BoundingBox/ParamBoundingBoxWidth';
import { AspectRatioIconPreview } from 'features/parameters/components/ImageSize/AspectRatioIconPreview';
import { ImageSize } from 'features/parameters/components/ImageSize/ImageSize';
import type { AspectRatioState } from 'features/parameters/components/ImageSize/types';
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
@ -41,6 +42,7 @@ export const ImageSizeCanvas = memo(() => {
aspectRatioState={aspectRatioState}
heightComponent={<ParamBoundingBoxHeight />}
widthComponent={<ParamBoundingBoxWidth />}
previewComponent={<AspectRatioIconPreview />}
onChangeAspectRatioState={onChangeAspectRatioState}
onChangeWidth={onChangeWidth}
onChangeHeight={onChangeHeight}

View File

@ -1,13 +1,17 @@
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { ParamHeight } from 'features/parameters/components/Core/ParamHeight';
import { ParamWidth } from 'features/parameters/components/Core/ParamWidth';
import { AspectRatioCanvasPreview } from 'features/parameters/components/ImageSize/AspectRatioCanvasPreview';
import { AspectRatioIconPreview } from 'features/parameters/components/ImageSize/AspectRatioIconPreview';
import { ImageSize } from 'features/parameters/components/ImageSize/ImageSize';
import type { AspectRatioState } from 'features/parameters/components/ImageSize/types';
import { aspectRatioChanged, heightChanged, widthChanged } from 'features/parameters/store/generationSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { memo, useCallback } from 'react';
export const ImageSizeLinear = memo(() => {
const dispatch = useAppDispatch();
const tab = useAppSelector(activeTabNameSelector);
const width = useAppSelector((s) => s.generation.width);
const height = useAppSelector((s) => s.generation.height);
const aspectRatioState = useAppSelector((s) => s.generation.aspectRatio);
@ -40,6 +44,7 @@ export const ImageSizeLinear = memo(() => {
aspectRatioState={aspectRatioState}
heightComponent={<ParamHeight />}
widthComponent={<ParamWidth />}
previewComponent={tab === 'txt2img' ? <AspectRatioCanvasPreview /> : <AspectRatioIconPreview />}
onChangeAspectRatioState={onChangeAspectRatioState}
onChangeWidth={onChangeWidth}
onChangeHeight={onChangeHeight}

View File

@ -1,8 +1,10 @@
import { Box, Flex } from '@invoke-ai/ui-library';
import { Box, Flex, Tab, TabList, TabPanel, TabPanels, Tabs } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { overlayScrollbarsParams } from 'common/components/OverlayScrollbars/constants';
import { Prompts } from 'features/parameters/components/Prompts/Prompts';
import QueueControls from 'features/queue/components/QueueControls';
import { RegionalPromptsPanelContent } from 'features/regionalPrompts/components/RegionalPromptsPanelContent';
import { useRegionalControlTitle } from 'features/regionalPrompts/hooks/useRegionalControlTitle';
import { SDXLPrompts } from 'features/sdxl/components/SDXLPrompts/SDXLPrompts';
import { AdvancedSettingsAccordion } from 'features/settingsAccordions/components/AdvancedSettingsAccordion/AdvancedSettingsAccordion';
import { CompositingSettingsAccordion } from 'features/settingsAccordions/components/CompositingSettingsAccordion/CompositingSettingsAccordion';
@ -14,6 +16,7 @@ import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
import type { CSSProperties } from 'react';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
const overlayScrollbarsStyles: CSSProperties = {
height: '100%',
@ -21,7 +24,9 @@ const overlayScrollbarsStyles: CSSProperties = {
};
const ParametersPanel = () => {
const { t } = useTranslation();
const activeTabName = useAppSelector(activeTabNameSelector);
const regionalControlTitle = useRegionalControlTitle();
const isSDXL = useAppSelector((s) => s.generation.model?.base === 'sdxl');
return (
@ -32,12 +37,28 @@ const ParametersPanel = () => {
<OverlayScrollbarsComponent defer style={overlayScrollbarsStyles} options={overlayScrollbarsParams.options}>
<Flex gap={2} flexDirection="column" h="full" w="full">
{isSDXL ? <SDXLPrompts /> : <Prompts />}
<ImageSettingsAccordion />
<GenerationSettingsAccordion />
<ControlSettingsAccordion />
{activeTabName === 'unifiedCanvas' && <CompositingSettingsAccordion />}
{isSDXL && <RefinerSettingsAccordion />}
<AdvancedSettingsAccordion />
<Tabs variant="line" isLazy={true} display="flex" flexDir="column" w="full" h="full">
<TabList>
<Tab>{t('parameters.globalSettings')}</Tab>
<Tab>{regionalControlTitle}</Tab>
</TabList>
<TabPanels w="full" h="full">
<TabPanel>
<Flex gap={2} flexDirection="column" h="full" w="full">
<ImageSettingsAccordion />
<GenerationSettingsAccordion />
<ControlSettingsAccordion />
{activeTabName === 'unifiedCanvas' && <CompositingSettingsAccordion />}
{isSDXL && <RefinerSettingsAccordion />}
<AdvancedSettingsAccordion />
</Flex>
</TabPanel>
<TabPanel>
<RegionalPromptsPanelContent />
</TabPanel>
</TabPanels>
</Tabs>
</Flex>
</OverlayScrollbarsComponent>
</Box>

View File

@ -1,13 +1,31 @@
import { Box, Flex } from '@invoke-ai/ui-library';
import { Box, Tab, TabList, TabPanel, TabPanels, Tabs } from '@invoke-ai/ui-library';
import CurrentImageDisplay from 'features/gallery/components/CurrentImage/CurrentImageDisplay';
import { RegionalPromptsEditor } from 'features/regionalPrompts/components/RegionalPromptsEditor';
import { useRegionalControlTitle } from 'features/regionalPrompts/hooks/useRegionalControlTitle';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
const TextToImageTab = () => {
const { t } = useTranslation();
const regionalControlTitle = useRegionalControlTitle();
return (
<Box layerStyle="first" position="relative" w="full" h="full" p={2} borderRadius="base">
<Flex w="full" h="full">
<CurrentImageDisplay />
</Flex>
<Box position="relative" w="full" h="full" p={2} borderRadius="base">
<Tabs variant="line" isLazy={true} display="flex" flexDir="column" w="full" h="full">
<TabList>
<Tab>{t('common.viewer')}</Tab>
<Tab>{regionalControlTitle}</Tab>
</TabList>
<TabPanels w="full" h="full" minH={0} minW={0}>
<TabPanel>
<CurrentImageDisplay />
</TabPanel>
<TabPanel>
<RegionalPromptsEditor />
</TabPanel>
</TabPanels>
</Tabs>
</Box>
);
};

View File

@ -124,7 +124,9 @@ export const usePanel = (arg: UsePanelOptions): UsePanelReturn => {
*
* For now, we'll just resize the panel to the min size every time the panel group is resized.
*/
panelHandleRef.current.resize(minSizePct);
if (!panelHandleRef.current.isCollapsed()) {
panelHandleRef.current.resize(minSizePct);
}
});
resizeObserver.observe(panelGroupElement);

File diff suppressed because one or more lines are too long

View File

@ -1 +1 @@
__version__ = "4.0.4"
__version__ = "4.2.0a3"

View File

@ -3,6 +3,7 @@ import pytest
from PIL import Image
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.image_util.util import nms
@pytest.mark.parametrize("num_channels", [1, 2, 3])
@ -40,3 +41,10 @@ def test_prepare_control_image_num_channels_too_large(num_channels):
device="cpu",
do_classifier_free_guidance=False,
)
@pytest.mark.parametrize("threshold,sigma", [(None, 1.0), (1, None)])
def test_nms_invalid_options(threshold: None | int, sigma: None | float):
"""Test that an exception is raised in nms(...) if only one of the `threshold` or `sigma` parameters are provided."""
with pytest.raises(ValueError):
nms(np.zeros((256, 256, 3), dtype=np.uint8), threshold, sigma)

View File

@ -4,7 +4,7 @@ import pytest
from torch import tensor
from invokeai.backend.model_manager import BaseModelType, ModelRepoVariant
from invokeai.backend.model_manager.config import InvalidModelConfigException
from invokeai.backend.model_manager.config import InvalidModelConfigException, MainDiffusersConfig, ModelVariantType
from invokeai.backend.model_manager.probe import (
CkptType,
ModelProbe,
@ -78,3 +78,11 @@ def test_probe_handles_state_dict_with_integer_keys():
}
with pytest.raises(InvalidModelConfigException):
ModelProbe.get_model_type_from_checkpoint(Path("embedding.pt"), state_dict_with_integer_keys)
def test_probe_sd1_diffusers_inpainting(datadir: Path):
config = ModelProbe.probe(datadir / "sd-1/main/dreamshaper-8-inpainting")
assert isinstance(config, MainDiffusersConfig)
assert config.base is BaseModelType.StableDiffusion1
assert config.variant is ModelVariantType.Inpaint
assert config.repo_variant is ModelRepoVariant.FP16

View File

@ -0,0 +1 @@
This folder contains config files copied from [Lykon/dreamshaper-8-inpainting](https://huggingface.co/Lykon/dreamshaper-8-inpainting).

View File

@ -0,0 +1,34 @@
{
"_class_name": "StableDiffusionInpaintPipeline",
"_diffusers_version": "0.21.0.dev0",
"_name_or_path": "lykon-models/dreamshaper-8-inpainting",
"feature_extractor": [
"transformers",
"CLIPFeatureExtractor"
],
"requires_safety_checker": true,
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"DEISMultistepScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}

View File

@ -0,0 +1,23 @@
{
"_class_name": "DEISMultistepScheduler",
"_diffusers_version": "0.21.0.dev0",
"algorithm_type": "deis",
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"clip_sample": false,
"dynamic_thresholding_ratio": 0.995,
"lower_order_final": true,
"num_train_timesteps": 1000,
"prediction_type": "epsilon",
"sample_max_value": 1.0,
"set_alpha_to_one": false,
"skip_prk_steps": true,
"solver_order": 2,
"solver_type": "logrho",
"steps_offset": 1,
"thresholding": false,
"timestep_spacing": "leading",
"trained_betas": null,
"use_karras_sigmas": false
}

Some files were not shown because too many files have changed in this diff Show More