Merge branch 'main' into fix/model_detect

This commit is contained in:
blessedcoolant 2023-07-05 18:52:11 +12:00 committed by GitHub
commit bc8cfc2baa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 28 additions and 25 deletions

View File

@ -367,7 +367,8 @@ setting environment variables INVOKEAI_<setting>.
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance') always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance') free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance') max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance') precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance') sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance') xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')

View File

@ -206,6 +206,8 @@ class ModelManagerService(ModelManagerServiceBase):
if hasattr(config,'max_cache_size') \ if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5 else config.max_loaded_models * 2.5
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
sequential_offload = config.sequential_guidance sequential_offload = config.sequential_guidance
self.mgr = ModelManager( self.mgr = ModelManager(