mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Fix for crashes in txt2img hires fix mode
This commit is contained in:
parent
194b875cf3
commit
bcb6e2e506
@ -40,7 +40,12 @@ class Txt2Img2Img(Generator):
|
||||
init_width // self.downsampling_factor,
|
||||
]
|
||||
|
||||
x = self.get_noise(init_width, init_height)
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
#x = self.get_noise(init_width, init_height)
|
||||
x = x_T
|
||||
|
||||
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
||||
self.model.model.to(self.model.device)
|
||||
@ -71,7 +76,7 @@ class Txt2Img2Img(Generator):
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
|
||||
x = None
|
||||
x = self.get_noise(width,height,False)
|
||||
|
||||
# Other samplers not supported yet, so ignore previous sampler
|
||||
if not isinstance(sampler,DDIMSampler):
|
||||
@ -88,7 +93,7 @@ class Txt2Img2Img(Generator):
|
||||
z_enc = img_sampler.stochastic_encode(
|
||||
samples,
|
||||
torch.tensor([t_enc]).to(self.model.device),
|
||||
noise=x_T
|
||||
noise=x
|
||||
)
|
||||
|
||||
# decode it
|
||||
@ -110,17 +115,28 @@ class Txt2Img2Img(Generator):
|
||||
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
def get_noise(self,width,height,scale = True):
|
||||
# print(f"Get noise: {width}x{height}")
|
||||
if scale:
|
||||
trained_square = 512 * 512
|
||||
actual_square = width * height
|
||||
scale = math.sqrt(trained_square / actual_square)
|
||||
scaled_width = math.ceil(scale * width / 64) * 64
|
||||
scaled_height = math.ceil(scale * height / 64) * 64
|
||||
else:
|
||||
scaled_width = width
|
||||
scaled_height = height
|
||||
|
||||
device = self.model.device
|
||||
if device.type == 'mps':
|
||||
return torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
scaled_height // self.downsampling_factor,
|
||||
scaled_width // self.downsampling_factor],
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
return torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
scaled_height // self.downsampling_factor,
|
||||
scaled_width // self.downsampling_factor],
|
||||
device=device)
|
||||
|
Loading…
Reference in New Issue
Block a user