mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
add support for Apple hardware using MPS acceleration
This commit is contained in:
parent
1714816fe2
commit
bdb0651eb2
2
.gitignore
vendored
2
.gitignore
vendored
@ -181,3 +181,5 @@ outputs
|
||||
logs
|
||||
testtube
|
||||
checkpoints
|
||||
# If it's a Mac
|
||||
.DS_Store
|
||||
|
228
README-Mac-MPS.md
Normal file
228
README-Mac-MPS.md
Normal file
@ -0,0 +1,228 @@
|
||||
# Apple Silicon Mac Users
|
||||
|
||||
Several people have gotten Stable Diffusion to work on Apple Silicon
|
||||
Macs using Anaconda. I've gathered up most of their instructions and
|
||||
put them in this fork (and readme). I haven't tested anything besides
|
||||
Anaconda, and I've read about issues with things like miniforge, so if
|
||||
you have an issue that isn't dealt with in this fork then head on over
|
||||
to the [Apple
|
||||
Silicon](https://github.com/CompVis/stable-diffusion/issues/25) issue
|
||||
on GitHub (that page is so long that GitHub hides most of it by
|
||||
default, so you need to find the hidden part and expand it to view the
|
||||
whole thing). This fork would not have been possible without the work
|
||||
done by the people on that issue.
|
||||
|
||||
You have to have macOS 12.3 Monterey or later. Anything earlier than that won't work.
|
||||
|
||||
BTW, I haven't tested any of this on Intel Macs.
|
||||
|
||||
How to:
|
||||
|
||||
```
|
||||
git clone https://github.com/lstein/stable-diffusion.git
|
||||
cd stable-diffusion
|
||||
|
||||
mkdir -p models/ldm/stable-diffusion-v1/
|
||||
ln -s /path/to/ckpt/sd-v1-1.ckpt models/ldm/stable-diffusion-v1/model.ckpt
|
||||
|
||||
conda env create -f environment-mac.yaml
|
||||
conda activate ldm
|
||||
```
|
||||
|
||||
These instructions are identical to the main repo except I added
|
||||
environment-mac.yaml because Mac doesn't have cudatoolkit.
|
||||
|
||||
After you follow all the instructions and run txt2img.py you might get several errors. Here's the errors I've seen and found solutions for.
|
||||
|
||||
### Doesn't work anymore?
|
||||
|
||||
We are using PyTorch nightly, which includes support for MPS. I don't
|
||||
know exactly how Anaconda does updates, but I woke up one morning and
|
||||
Stable Diffusion crashed and I couldn't think of anything I did that
|
||||
would've changed anything the night before, when it worked. A day and
|
||||
a half later I finally got it working again. I don't know what changed
|
||||
overnight. PyTorch-nightly changes overnight but I'm pretty sure I
|
||||
didn't manually update it. Either way, things are probably going to be
|
||||
bumpy on Apple Silicon until PyTorch releases a firm version that we
|
||||
can lock to.
|
||||
|
||||
To manually update to the latest version of PyTorch nightly (which could fix issues), run this command.
|
||||
|
||||
conda install pytorch torchvision torchaudio -c pytorch-nightly
|
||||
|
||||
## Debugging?
|
||||
|
||||
Tired of waiting for your renders to finish before you can see if it
|
||||
works? Reduce the steps! The picture wont look like anything but if it
|
||||
finishes, hey, it works! This could also help you figure out if you've
|
||||
got a memory problem, because I'm betting 1 step doesn't use much
|
||||
memory.
|
||||
|
||||
python ./scripts/txt2img.py --prompt "ocean" --ddim_steps 1
|
||||
|
||||
### "No module named cv2" (or some other module)
|
||||
|
||||
Did you remember to `conda activate ldm`? If your terminal prompt
|
||||
begins with "(ldm)" then you activated it. If it begins with "(base)"
|
||||
or something else you haven't.
|
||||
|
||||
If it says you're missing taming you need to rebuild your virtual
|
||||
environment.
|
||||
|
||||
conda env remove -n ldm
|
||||
conda env create -f environment-mac.yaml
|
||||
|
||||
If you have activated the ldm virtual environment and tried rebuilding
|
||||
it, maybe the problem could be that I have something installed that
|
||||
you don't and you'll just need to manually install it. Make sure you
|
||||
activate the virtual environment so it installs there instead of
|
||||
globally.
|
||||
|
||||
conda activate ldm
|
||||
pip install *name*
|
||||
|
||||
You might also need to install Rust (I mention this again below).
|
||||
|
||||
### "The operator [name] is not current implemented for the MPS device." (sic)
|
||||
|
||||
Example error.
|
||||
|
||||
```
|
||||
...
|
||||
NotImplementedError: The operator 'aten::index.Tensor' is not current implemented for the MPS device. If you want this op to be added in priority during the prototype phase of this feature, please comment on [https://github.com/pytorch/pytorch/issues/77764](https://github.com/pytorch/pytorch/issues/77764). As a temporary fix, you can set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op. WARNING: this will be slower than running natively on MPS.
|
||||
```
|
||||
|
||||
Just do what it says:
|
||||
|
||||
export PYTORCH_ENABLE_MPS_FALLBACK=1
|
||||
|
||||
### "Could not build wheels for tokenizers"
|
||||
|
||||
I have not seen this error because I had Rust installed on my computer before I started playing with Stable Diffusion. The fix is to install Rust.
|
||||
|
||||
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
||||
|
||||
### How come `--seed` doesn't work?
|
||||
|
||||
> Completely reproducible results are not guaranteed across PyTorch
|
||||
releases, individual commits, or different platforms. Furthermore,
|
||||
results may not be reproducible between CPU and GPU executions, even
|
||||
when using identical seeds.
|
||||
|
||||
[PyTorch docs](https://pytorch.org/docs/stable/notes/randomness.html)
|
||||
|
||||
There is an [open issue](https://github.com/pytorch/pytorch/issues/78035) (as of August 2022) in pytorch regarding gradient inconsistency. I am guessing that's what is causing this.
|
||||
|
||||
### libiomp5.dylib error?
|
||||
|
||||
OMP: Error #15: Initializing libiomp5.dylib, but found libomp.dylib already initialized.
|
||||
|
||||
There are several things you can do. First, you could use something
|
||||
besides Anaconda like miniforge. I read a lot of things online telling
|
||||
people to use something else, but I am stuck with Anaconda for other
|
||||
reasons.
|
||||
|
||||
Or you can try this.
|
||||
|
||||
export KMP_DUPLICATE_LIB_OK=True
|
||||
|
||||
Or this (which takes forever on my computer and didn't work anyway).
|
||||
|
||||
conda install nomkl
|
||||
|
||||
This error happens with Anaconda on Macs, and
|
||||
[nomkl](https://stackoverflow.com/questions/66224879/what-is-the-nomkl-python-package-used-for)
|
||||
is supposed to fix the issue (it isn't a module but a fix of some
|
||||
sort). [There's more
|
||||
suggestions](https://stackoverflow.com/questions/53014306/error-15-initializing-libiomp5-dylib-but-found-libiomp5-dylib-already-initial),
|
||||
like uninstalling tensorflow and reinstalling. I haven't tried them.
|
||||
|
||||
### Not enough memory.
|
||||
|
||||
This seems to be a common problem and is probably the underlying
|
||||
problem for a lot of symptoms (listed below). The fix is to lower your
|
||||
image size or to add `model.half()` right after the model is loaded. I
|
||||
should probably test it out. I've read that the reason this fixes
|
||||
problems is because it converts the model from 32-bit to 16-bit and
|
||||
that leaves more RAM for other things. I have no idea how that would
|
||||
affect the quality of the images though.
|
||||
|
||||
See [this issue](https://github.com/CompVis/stable-diffusion/issues/71).
|
||||
|
||||
### "Error: product of dimension sizes > 2**31'"
|
||||
|
||||
This error happens with img2img, which I haven't played with too much
|
||||
yet. But I know it's because your image is too big or the resolution
|
||||
isn't a multiple of 32x32. Because the stable-diffusion model was
|
||||
trained on images that were 512 x 512, it's always best to use that
|
||||
output size (which is the default). However, if you're using that size
|
||||
and you get the above error, try 256 x 256 or 512 x 256 or something
|
||||
as the source image.
|
||||
|
||||
BTW, 2**31-1 = [2,147,483,647](https://en.wikipedia.org/wiki/2,147,483,647#In_computing), which is also 32-bit signed [LONG_MAX](https://en.wikipedia.org/wiki/C_data_types) in C.
|
||||
|
||||
### I just got Rickrolled! Do I have a virus?
|
||||
|
||||
You don't have a virus. It's part of the project. Here's
|
||||
[Rick](https://github.com/lstein/stable-diffusion/blob/main/assets/rick.jpeg)
|
||||
and here's [the
|
||||
code](https://github.com/lstein/stable-diffusion/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/scripts/txt2img.py#L79)
|
||||
that swaps him in. It's a NSFW filter, which IMO, doesn't work very
|
||||
good (and we call this "computer vision", sheesh).
|
||||
|
||||
Actually, this could be happening because there's not enough RAM. You could try the `model.half()` suggestion or specify smaller output images.
|
||||
|
||||
### My images come out black
|
||||
|
||||
I haven't solved this issue. I just throw away my black
|
||||
images. There's a [similar
|
||||
issue](https://github.com/CompVis/stable-diffusion/issues/69) on CUDA
|
||||
GPU's where the images come out green. Maybe it's the same issue?
|
||||
Someone in that issue says to use "--precision full", but this fork
|
||||
actually disables that flag. I don't know why, someone else provided
|
||||
that code and I don't know what it does. Maybe the `model.half()`
|
||||
suggestion above would fix this issue too. I should probably test it.
|
||||
|
||||
### "view size is not compatible with input tensor's size and stride"
|
||||
|
||||
```
|
||||
File "/opt/anaconda3/envs/ldm/lib/python3.10/site-packages/torch/nn/functional.py", line 2511, in layer_norm
|
||||
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
|
||||
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
|
||||
```
|
||||
|
||||
Update to the latest version of lstein/stable-diffusion. We were
|
||||
patching pytorch but we found a file in stable-diffusion that we could
|
||||
change instead. This is a 32-bit vs 16-bit problem.
|
||||
|
||||
### The processor must support the Intel bla bla bla
|
||||
|
||||
What? Intel? On an Apple Silicon?
|
||||
|
||||
Intel MKL FATAL ERROR: This system does not meet the minimum requirements for use of the Intel(R) Math Kernel Library.
|
||||
The processor must support the Intel(R) Supplemental Streaming SIMD Extensions 3 (Intel(R) SSSE3) instructions.██████████████| 50/50 [02:25<00:00, 2.53s/it]
|
||||
The processor must support the Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) instructions.
|
||||
The processor must support the Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
|
||||
|
||||
This fixed it for me:
|
||||
|
||||
conda clean --yes --all
|
||||
|
||||
### Still slow?
|
||||
|
||||
I changed the defaults of n_samples and n_iter to 1 so that it uses
|
||||
less RAM and makes less images so it will be faster the first time you
|
||||
use it. I don't actually know what n_samples does internally, but I
|
||||
know it consumes a lot more RAM. The n_iter flag just loops around the
|
||||
image creation code, so it shouldn't consume more RAM (it should be
|
||||
faster if you're going to do multiple images because the libraries and
|
||||
model will already be loaded--use a prompt file to get this speed
|
||||
boost).
|
||||
|
||||
These flags are the default sample and iter settings in this fork/branch:
|
||||
|
||||
~~~~
|
||||
python scripts/txt2img.py --prompt "ocean" --n_samples=1 --n_iter=1
|
||||
~~~
|
||||
|
||||
|
32
README.md
32
README.md
@ -387,7 +387,7 @@ Credit goes to @rinongal and the repository located at
|
||||
https://github.com/rinongal/textual_inversion Please see the
|
||||
repository and associated paper for details and limitations.
|
||||
|
||||
# Latest
|
||||
# Latest Changes
|
||||
|
||||
- v1.13 (in process)
|
||||
|
||||
@ -403,9 +403,9 @@ For older changelogs, please visit **[CHANGELOGS](CHANGELOG.md)**.
|
||||
|
||||
# Installation
|
||||
|
||||
There are separate installation walkthroughs for [Linux/Mac](#linuxmac) and [Windows](#windows).
|
||||
There are separate installation walkthroughs for [Linux](#linux), [Windows](#windows) and [Macintosh](#Macintosh)
|
||||
|
||||
## Linux/Mac
|
||||
## Linux
|
||||
|
||||
1. You will need to install the following prerequisites if they are not already available. Use your
|
||||
operating system's preferred installer
|
||||
@ -580,7 +580,15 @@ python scripts\dream.py -l
|
||||
python scripts\dream.py
|
||||
```
|
||||
|
||||
10. Subsequently, to relaunch the script, first activate the Anaconda command window (step 3), enter the stable-diffusion directory (step 5, "cd \path\to\stable-diffusion"), run "conda activate ldm" (step 6b), and then launch the dream script (step 9).
|
||||
10. Subsequently, to relaunch the script, first activate the Anaconda
|
||||
command window (step 3), enter the stable-diffusion directory (step 5,
|
||||
"cd \path\to\stable-diffusion"), run "conda activate ldm" (step 6b),
|
||||
and then launch the dream script (step 9).
|
||||
|
||||
**Note:** Tildebyte has written an alternative ["Easy peasy Windows
|
||||
install"](https://github.com/lstein/stable-diffusion/wiki/Easy-peasy-Windows-install)
|
||||
which uses the Windows Powershell and pew. If you are having trouble
|
||||
with Anaconda on Windows, give this a try (or try it first!)
|
||||
|
||||
### Updating to newer versions of the script
|
||||
|
||||
@ -595,11 +603,16 @@ git pull
|
||||
|
||||
This will bring your local copy into sync with the remote one.
|
||||
|
||||
## Simplified API for text to image generation
|
||||
## Macintosh
|
||||
|
||||
See (README-Mac-MPS)[README-Mac-MPS.md] for instructions.
|
||||
|
||||
# Simplified API for text to image generation
|
||||
|
||||
For programmers who wish to incorporate stable-diffusion into other
|
||||
products, this repository includes a simplified API for text to image generation, which
|
||||
lets you create images from a prompt in just three lines of code:
|
||||
products, this repository includes a simplified API for text to image
|
||||
generation, which lets you create images from a prompt in just three
|
||||
lines of code:
|
||||
|
||||
```
|
||||
from ldm.simplet2i import T2I
|
||||
@ -608,9 +621,10 @@ outputs = model.txt2img("a unicorn in manhattan")
|
||||
```
|
||||
|
||||
Outputs is a list of lists in the format [[filename1,seed1],[filename2,seed2]...]
|
||||
Please see ldm/simplet2i.py for more information.
|
||||
Please see ldm/simplet2i.py for more information. A set of example scripts is
|
||||
coming RSN.
|
||||
|
||||
## Workaround for machines with limited internet connectivity
|
||||
# Workaround for machines with limited internet connectivity
|
||||
|
||||
My development machine is a GPU node in a high-performance compute
|
||||
cluster which has no connection to the internet. During model
|
||||
|
32
environment-mac.yaml
Normal file
32
environment-mac.yaml
Normal file
@ -0,0 +1,32 @@
|
||||
name: ldm
|
||||
channels:
|
||||
- apple
|
||||
- conda-forge
|
||||
- pytorch-nightly
|
||||
- defaults
|
||||
dependencies:
|
||||
- python=3.10.4
|
||||
- pip=22.1.2
|
||||
- pytorch
|
||||
- torchvision
|
||||
- numpy=1.23.1
|
||||
- pip:
|
||||
- albumentations==0.4.6
|
||||
- opencv-python==4.6.0.66
|
||||
- pudb==2019.2
|
||||
- imageio==2.9.0
|
||||
- imageio-ffmpeg==0.4.2
|
||||
- pytorch-lightning==1.4.2
|
||||
- omegaconf==2.1.1
|
||||
- test-tube>=0.7.5
|
||||
- streamlit==1.12.0
|
||||
- pillow==9.2.0
|
||||
- einops==0.3.0
|
||||
- torch-fidelity==0.3.0
|
||||
- transformers==4.19.2
|
||||
- torchmetrics==0.6.0
|
||||
- kornia==0.6.0
|
||||
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
||||
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
||||
- -e git+https://github.com/lstein/k-diffusion.git@master#egg=k-diffusion
|
||||
- -e .
|
11
ldm/dream/devices.py
Normal file
11
ldm/dream/devices.py
Normal file
@ -0,0 +1,11 @@
|
||||
import torch
|
||||
|
||||
def choose_torch_device() -> str:
|
||||
'''Convenience routine for guessing which GPU device to run model on'''
|
||||
if torch.cuda.is_available():
|
||||
return 'cuda'
|
||||
if torch.backends.mps.is_available():
|
||||
return 'mps'
|
||||
return 'cpu'
|
||||
|
||||
|
@ -4,6 +4,7 @@ import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
@ -14,17 +15,17 @@ from ldm.modules.diffusionmodules.util import (
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, schedule='linear', device='cuda', **kwargs):
|
||||
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
self.device = device
|
||||
self.device = device or choose_torch_device()
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(torch.device(self.device))
|
||||
attr = attr.to(dtype=torch.float32, device=self.device)
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(
|
||||
|
@ -2,7 +2,7 @@
|
||||
import k_diffusion as K
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model):
|
||||
@ -18,11 +18,11 @@ class CFGDenoiser(nn.Module):
|
||||
|
||||
|
||||
class KSampler(object):
|
||||
def __init__(self, model, schedule='lms', device='cuda', **kwargs):
|
||||
def __init__(self, model, schedule='lms', device=None, **kwargs):
|
||||
super().__init__()
|
||||
self.model = K.external.CompVisDenoiser(model)
|
||||
self.schedule = schedule
|
||||
self.device = device
|
||||
self.device = device or choose_torch_device()
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
|
@ -4,6 +4,7 @@ import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
@ -13,18 +14,17 @@ from ldm.modules.diffusionmodules.util import (
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
def __init__(self, model, schedule='linear', device='cuda', **kwargs):
|
||||
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
self.device = device
|
||||
self.device = device if device else choose_torch_device()
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(torch.device(self.device))
|
||||
|
||||
attr = attr.to(torch.float32).to(torch.device(self.device))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(
|
||||
|
@ -234,6 +234,7 @@ class BasicTransformerBlock(nn.Module):
|
||||
)
|
||||
|
||||
def _forward(self, x, context=None):
|
||||
x = x.contiguous() if x.device.type == 'mps' else x
|
||||
x = self.attn1(self.norm1(x)) + x
|
||||
x = self.attn2(self.norm2(x), context=context) + x
|
||||
x = self.ff(self.norm3(x)) + x
|
||||
|
@ -5,6 +5,7 @@ import clip
|
||||
from einops import rearrange, repeat
|
||||
from transformers import CLIPTokenizer, CLIPTextModel
|
||||
import kornia
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
from ldm.modules.x_transformer import (
|
||||
Encoder,
|
||||
@ -67,7 +68,12 @@ class TransformerEmbedder(AbstractEncoder):
|
||||
"""Some transformer encoder layers"""
|
||||
|
||||
def __init__(
|
||||
self, n_embed, n_layer, vocab_size, max_seq_len=77, device='cuda'
|
||||
self,
|
||||
n_embed,
|
||||
n_layer,
|
||||
vocab_size,
|
||||
max_seq_len=77,
|
||||
device=choose_torch_device(),
|
||||
):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
@ -89,7 +95,9 @@ class TransformerEmbedder(AbstractEncoder):
|
||||
class BERTTokenizer(AbstractEncoder):
|
||||
"""Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
||||
|
||||
def __init__(self, device='cuda', vq_interface=True, max_length=77):
|
||||
def __init__(
|
||||
self, device=choose_torch_device(), vq_interface=True, max_length=77
|
||||
):
|
||||
super().__init__()
|
||||
from transformers import (
|
||||
BertTokenizerFast,
|
||||
@ -145,7 +153,7 @@ class BERTEmbedder(AbstractEncoder):
|
||||
n_layer,
|
||||
vocab_size=30522,
|
||||
max_seq_len=77,
|
||||
device='cuda',
|
||||
device=choose_torch_device(),
|
||||
use_tokenizer=True,
|
||||
embedding_dropout=0.0,
|
||||
):
|
||||
@ -230,7 +238,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
def __init__(
|
||||
self,
|
||||
version='openai/clip-vit-large-patch14',
|
||||
device='cuda',
|
||||
device=choose_torch_device(),
|
||||
max_length=77,
|
||||
):
|
||||
super().__init__()
|
||||
@ -455,13 +463,13 @@ class FrozenCLIPTextEmbedder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
version='ViT-L/14',
|
||||
device='cuda',
|
||||
device=choose_torch_device(),
|
||||
max_length=77,
|
||||
n_repeat=1,
|
||||
normalize=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.model, _ = clip.load(version, jit=False, device='cpu')
|
||||
self.model, _ = clip.load(version, jit=False, device=device)
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
self.n_repeat = n_repeat
|
||||
@ -496,7 +504,7 @@ class FrozenClipImageEmbedder(nn.Module):
|
||||
self,
|
||||
model,
|
||||
jit=False,
|
||||
device='cuda' if torch.cuda.is_available() else 'cpu',
|
||||
device=choose_torch_device(),
|
||||
antialias=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
@ -28,6 +28,7 @@ from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
from ldm.dream.image_util import InitImageResizer
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
"""Simplified text to image API for stable diffusion/latent diffusion
|
||||
|
||||
@ -523,19 +524,15 @@ class T2I:
|
||||
return self.seed
|
||||
|
||||
def _get_device(self):
|
||||
if torch.cuda.is_available():
|
||||
return torch.device('cuda')
|
||||
elif torch.backends.mps.is_available():
|
||||
return torch.device('mps')
|
||||
else:
|
||||
return torch.device('cpu')
|
||||
device_type = choose_torch_device()
|
||||
return torch.device(device_type)
|
||||
|
||||
def load_model(self):
|
||||
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||||
if self.model is None:
|
||||
seed_everything(self.seed)
|
||||
try:
|
||||
config = OmegaConf.load(self.config)
|
||||
config = OmegaConf.load(self.config)
|
||||
self.device = self._get_device()
|
||||
model = self._load_model_from_config(config, self.weights)
|
||||
if self.embedding_path is not None:
|
||||
|
@ -14,7 +14,7 @@ from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.util import ismap
|
||||
import time
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
def download_models(mode):
|
||||
|
||||
@ -117,7 +117,8 @@ def get_cond(mode, selected_path):
|
||||
c = rearrange(c, '1 c h w -> 1 h w c')
|
||||
c = 2. * c - 1.
|
||||
|
||||
c = c.to(torch.device("cuda"))
|
||||
device = choose_torch_device()
|
||||
c = c.to(device)
|
||||
example["LR_image"] = c
|
||||
example["image"] = c_up
|
||||
|
||||
|
@ -8,11 +8,11 @@ import re
|
||||
import sys
|
||||
import copy
|
||||
import warnings
|
||||
import time
|
||||
import ldm.dream.readline
|
||||
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
||||
from ldm.dream.server import DreamServer, ThreadingDreamServer
|
||||
|
||||
|
||||
def main():
|
||||
"""Initialize command-line parsers and the diffusion model"""
|
||||
arg_parser = create_argv_parser()
|
||||
@ -81,7 +81,11 @@ def main():
|
||||
sys.exit(-1)
|
||||
|
||||
# preload the model
|
||||
tic = time.time()
|
||||
t2i.load_model()
|
||||
print(
|
||||
f'model loaded in', '%4.2fs' % (time.time() - tic)
|
||||
)
|
||||
|
||||
if not infile:
|
||||
print(
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import torch
|
||||
from main import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
def make_batch(image, mask, device):
|
||||
image = np.array(Image.open(image).convert("RGB"))
|
||||
@ -61,8 +61,8 @@ if __name__ == "__main__":
|
||||
model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"],
|
||||
strict=False)
|
||||
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = model.to(device)
|
||||
device = choose_torch_device()
|
||||
model = model.to(device)
|
||||
sampler = DDIMSampler(model)
|
||||
|
||||
os.makedirs(opt.outdir, exist_ok=True)
|
||||
|
@ -18,6 +18,7 @@ from pytorch_lightning import seed_everything
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
|
||||
def chunk(it, size):
|
||||
@ -40,7 +41,7 @@ def load_model_from_config(config, ckpt, verbose=False):
|
||||
print("unexpected keys:")
|
||||
print(u)
|
||||
|
||||
model.cuda()
|
||||
model.to(choose_torch_device())
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
@ -199,7 +200,7 @@ def main():
|
||||
config = OmegaConf.load(f"{opt.config}")
|
||||
model = load_model_from_config(config, f"{opt.ckpt}")
|
||||
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
device = choose_torch_device()
|
||||
model = model.to(device)
|
||||
|
||||
if opt.plms:
|
||||
@ -241,8 +242,10 @@ def main():
|
||||
print(f"target t_enc is {t_enc} steps")
|
||||
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
if device.type in ['mps', 'cpu']:
|
||||
precision_scope = nullcontext # have to use f32 on mps
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
with precision_scope(device.type):
|
||||
with model.ema_scope():
|
||||
tic = time.time()
|
||||
all_samples = list()
|
||||
|
@ -15,10 +15,10 @@ from contextlib import contextmanager, nullcontext
|
||||
import k_diffusion as K
|
||||
import torch.nn as nn
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
|
||||
from ldm.dream.devices import choose_torch_device
|
||||
|
||||
def chunk(it, size):
|
||||
it = iter(it)
|
||||
@ -40,7 +40,7 @@ def load_model_from_config(config, ckpt, verbose=False):
|
||||
print("unexpected keys:")
|
||||
print(u)
|
||||
|
||||
model.cuda()
|
||||
model.to(choose_torch_device())
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
@ -190,13 +190,14 @@ def main():
|
||||
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
|
||||
opt.outdir = "outputs/txt2img-samples-laion400m"
|
||||
|
||||
seed_everything(opt.seed)
|
||||
|
||||
config = OmegaConf.load(f"{opt.config}")
|
||||
model = load_model_from_config(config, f"{opt.ckpt}")
|
||||
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = model.to(device)
|
||||
seed_everything(opt.seed)
|
||||
|
||||
device = torch.device(choose_torch_device())
|
||||
model = model.to(device)
|
||||
|
||||
#for klms
|
||||
model_wrap = K.external.CompVisDenoiser(model)
|
||||
@ -240,11 +241,17 @@ def main():
|
||||
|
||||
start_code = None
|
||||
if opt.fixed_code:
|
||||
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
||||
shape = [opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f]
|
||||
if device.type == 'mps':
|
||||
start_code = torch.randn(shape, device='cpu').to(device)
|
||||
else:
|
||||
torch.randn(shape, device=device)
|
||||
|
||||
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
||||
if device.type in ['mps', 'cpu']:
|
||||
precision_scope = nullcontext # have to use f32 on mps
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
with precision_scope(device.type):
|
||||
with model.ema_scope():
|
||||
tic = time.time()
|
||||
all_samples = list()
|
||||
|
Loading…
Reference in New Issue
Block a user