mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
merged and rebuilt
This commit is contained in:
commit
be305588d3
1
.github/workflows/close-inactive-issues.yml
vendored
1
.github/workflows/close-inactive-issues.yml
vendored
@ -24,3 +24,4 @@ jobs:
|
||||
days-before-pr-stale: -1
|
||||
days-before-pr-close: -1
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
operations-per-run: 500
|
||||
|
12
.github/workflows/test-invoke-pip-skip.yml
vendored
12
.github/workflows/test-invoke-pip-skip.yml
vendored
@ -1,12 +1,12 @@
|
||||
name: Test invoke.py pip
|
||||
on:
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- 'pyproject.toml'
|
||||
- 'invokeai/**'
|
||||
- 'invokeai/backend/**'
|
||||
- 'invokeai/configs/**'
|
||||
- 'invokeai/frontend/web/dist/**'
|
||||
paths:
|
||||
- '**'
|
||||
- '!pyproject.toml'
|
||||
- '!invokeai/**'
|
||||
- 'invokeai/frontend/web/**'
|
||||
- '!invokeai/frontend/web/dist/**'
|
||||
merge_group:
|
||||
workflow_dispatch:
|
||||
|
||||
|
6
.github/workflows/test-invoke-pip.yml
vendored
6
.github/workflows/test-invoke-pip.yml
vendored
@ -6,15 +6,13 @@ on:
|
||||
paths:
|
||||
- 'pyproject.toml'
|
||||
- 'invokeai/**'
|
||||
- 'invokeai/backend/**'
|
||||
- 'invokeai/configs/**'
|
||||
- '!invokeai/frontend/web/**'
|
||||
- 'invokeai/frontend/web/dist/**'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'pyproject.toml'
|
||||
- 'invokeai/**'
|
||||
- 'invokeai/backend/**'
|
||||
- 'invokeai/configs/**'
|
||||
- '!invokeai/frontend/web/**'
|
||||
- 'invokeai/frontend/web/dist/**'
|
||||
types:
|
||||
- 'ready_for_review'
|
||||
|
@ -148,7 +148,7 @@ manager, please follow these steps:
|
||||
=== "CUDA (NVidia)"
|
||||
|
||||
```bash
|
||||
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
|
||||
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
|
||||
```
|
||||
|
||||
=== "ROCm (AMD)"
|
||||
|
@ -4,7 +4,8 @@ import os
|
||||
from argparse import Namespace
|
||||
|
||||
from ...backend import Globals
|
||||
from ..services.generate_initializer import get_generate
|
||||
from ..services.model_manager_initializer import get_model_manager
|
||||
from ..services.restoration_services import RestorationServices
|
||||
from ..services.graph import GraphExecutionState
|
||||
from ..services.image_storage import DiskImageStorage
|
||||
from ..services.invocation_queue import MemoryInvocationQueue
|
||||
@ -37,18 +38,16 @@ class ApiDependencies:
|
||||
invoker: Invoker = None
|
||||
|
||||
@staticmethod
|
||||
def initialize(args, config, event_handler_id: int):
|
||||
Globals.try_patchmatch = args.patchmatch
|
||||
Globals.always_use_cpu = args.always_use_cpu
|
||||
Globals.internet_available = args.internet_available and check_internet()
|
||||
Globals.disable_xformers = not args.xformers
|
||||
Globals.ckpt_convert = args.ckpt_convert
|
||||
def initialize(config, event_handler_id: int):
|
||||
Globals.try_patchmatch = config.patchmatch
|
||||
Globals.always_use_cpu = config.always_use_cpu
|
||||
Globals.internet_available = config.internet_available and check_internet()
|
||||
Globals.disable_xformers = not config.xformers
|
||||
Globals.ckpt_convert = config.ckpt_convert
|
||||
|
||||
# TODO: Use a logger
|
||||
print(f">> Internet connectivity is {Globals.internet_available}")
|
||||
|
||||
generate = get_generate(args, config)
|
||||
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
|
||||
output_folder = os.path.abspath(
|
||||
@ -61,7 +60,7 @@ class ApiDependencies:
|
||||
db_location = os.path.join(output_folder, "invokeai.db")
|
||||
|
||||
services = InvocationServices(
|
||||
generate=generate,
|
||||
model_manager=get_model_manager(config),
|
||||
events=events,
|
||||
images=images,
|
||||
queue=MemoryInvocationQueue(),
|
||||
@ -69,6 +68,7 @@ class ApiDependencies:
|
||||
filename=db_location, table_name="graph_executions"
|
||||
),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config),
|
||||
)
|
||||
|
||||
ApiDependencies.invoker = Invoker(services)
|
||||
|
@ -1,5 +1,4 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import asyncio
|
||||
from inspect import signature
|
||||
|
||||
@ -53,11 +52,11 @@ config = {}
|
||||
# Add startup event to load dependencies
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
args = Args()
|
||||
config = args.parse_args()
|
||||
config = Args()
|
||||
config.parse_args()
|
||||
|
||||
ApiDependencies.initialize(
|
||||
args=args, config=config, event_handler_id=event_handler_id
|
||||
config=config, event_handler_id=event_handler_id
|
||||
)
|
||||
|
||||
|
||||
@ -113,10 +112,8 @@ def custom_openapi():
|
||||
output_type_title = output_type_titles[output_type.__name__]
|
||||
invoker_schema = openapi_schema["components"]["schemas"][invoker_name]
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
|
||||
if "additionalProperties" not in invoker_schema:
|
||||
invoker_schema["additionalProperties"] = {}
|
||||
|
||||
invoker_schema["additionalProperties"]["outputs"] = outputs_ref
|
||||
invoker_schema["output"] = outputs_ref
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
@ -17,7 +17,8 @@ from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_gra
|
||||
from .invocations import *
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
from .services.events import EventServiceBase
|
||||
from .services.generate_initializer import get_generate
|
||||
from .services.model_manager_initializer import get_model_manager
|
||||
from .services.restoration_services import RestorationServices
|
||||
from .services.graph import EdgeConnection, GraphExecutionState
|
||||
from .services.image_storage import DiskImageStorage
|
||||
from .services.invocation_queue import MemoryInvocationQueue
|
||||
@ -126,14 +127,9 @@ def invoke_all(context: CliContext):
|
||||
|
||||
|
||||
def invoke_cli():
|
||||
args = Args()
|
||||
config = args.parse_args()
|
||||
|
||||
generate = get_generate(args, config)
|
||||
|
||||
# NOTE: load model on first use, uncomment to load at startup
|
||||
# TODO: Make this a config option?
|
||||
# generate.load_model()
|
||||
config = Args()
|
||||
config.parse_args()
|
||||
model_manager = get_model_manager(config)
|
||||
|
||||
events = EventServiceBase()
|
||||
|
||||
@ -145,7 +141,7 @@ def invoke_cli():
|
||||
db_location = os.path.join(output_folder, "invokeai.db")
|
||||
|
||||
services = InvocationServices(
|
||||
generate=generate,
|
||||
model_manager=model_manager,
|
||||
events=events,
|
||||
images=DiskImageStorage(output_folder),
|
||||
queue=MemoryInvocationQueue(),
|
||||
@ -153,6 +149,7 @@ def invoke_cli():
|
||||
filename=db_location, table_name="graph_executions"
|
||||
),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config),
|
||||
)
|
||||
|
||||
invoker = Invoker(services)
|
||||
|
@ -12,12 +12,12 @@ from ..services.image_storage import ImageType
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from .image import ImageField, ImageOutput
|
||||
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[
|
||||
"ddim", "plms", "k_lms", "k_dpm_2", "k_dpm_2_a", "k_euler", "k_euler_a", "k_heun"
|
||||
tuple(InvokeAIGenerator.schedulers())
|
||||
]
|
||||
|
||||
|
||||
# Text to image
|
||||
class TextToImageInvocation(BaseInvocation):
|
||||
"""Generates an image using text2img."""
|
||||
@ -57,19 +57,18 @@ class TextToImageInvocation(BaseInvocation):
|
||||
# Handle invalid model parameter
|
||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||
# TODO: How to get the default model name now?
|
||||
if self.model is None or self.model == "":
|
||||
self.model = context.services.generate.model_name
|
||||
|
||||
# Set the model (if already cached, this does nothing)
|
||||
context.services.generate.set_model(self.model)
|
||||
|
||||
results = context.services.generate.prompt2image(
|
||||
# (right now uses whatever current model is set in model manager)
|
||||
model= context.services.model_manager.get_model()
|
||||
outputs = Txt2Img(model).generate(
|
||||
prompt=self.prompt,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
)
|
||||
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
||||
# each time it is called. We only need the first one.
|
||||
generate_output = next(outputs)
|
||||
|
||||
# Results are image and seed, unwrap for now and ignore the seed
|
||||
# TODO: pre-seed?
|
||||
@ -78,7 +77,7 @@ class TextToImageInvocation(BaseInvocation):
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
context.services.images.save(image_type, image_name, results[0][0])
|
||||
context.services.images.save(image_type, image_name, generate_output.image)
|
||||
return ImageOutput(
|
||||
image=ImageField(image_type=image_type, image_name=image_name)
|
||||
)
|
||||
@ -115,23 +114,20 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
# Handle invalid model parameter
|
||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||
# TODO: How to get the default model name now?
|
||||
if self.model is None or self.model == "":
|
||||
self.model = context.services.generate.model_name
|
||||
|
||||
# Set the model (if already cached, this does nothing)
|
||||
context.services.generate.set_model(self.model)
|
||||
|
||||
results = context.services.generate.prompt2image(
|
||||
model = context.services.model_manager.get_model()
|
||||
generator_output = next(
|
||||
Img2Img(model).generate(
|
||||
prompt=self.prompt,
|
||||
init_img=image,
|
||||
init_image=image,
|
||||
init_mask=mask,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt", "image", "mask"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
)
|
||||
)
|
||||
|
||||
result_image = results[0][0]
|
||||
result_image = generator_output.image
|
||||
|
||||
# Results are image and seed, unwrap for now and ignore the seed
|
||||
# TODO: pre-seed?
|
||||
@ -145,7 +141,6 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
image=ImageField(image_type=image_type, image_name=image_name)
|
||||
)
|
||||
|
||||
|
||||
class InpaintInvocation(ImageToImageInvocation):
|
||||
"""Generates an image using inpaint."""
|
||||
|
||||
@ -180,23 +175,20 @@ class InpaintInvocation(ImageToImageInvocation):
|
||||
# Handle invalid model parameter
|
||||
# TODO: figure out if this can be done via a validator that uses the model_cache
|
||||
# TODO: How to get the default model name now?
|
||||
if self.model is None or self.model == "":
|
||||
self.model = context.services.generate.model_name
|
||||
|
||||
# Set the model (if already cached, this does nothing)
|
||||
context.services.generate.set_model(self.model)
|
||||
|
||||
results = context.services.generate.prompt2image(
|
||||
manager = context.services.model_manager.get_model()
|
||||
generator_output = next(
|
||||
Inpaint(model).generate(
|
||||
prompt=self.prompt,
|
||||
init_img=image,
|
||||
init_mask=mask,
|
||||
init_image=image,
|
||||
mask_image=mask,
|
||||
step_callback=step_callback,
|
||||
**self.dict(
|
||||
exclude={"prompt", "image", "mask"}
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
)
|
||||
)
|
||||
|
||||
result_image = results[0][0]
|
||||
result_image = generator_output.image
|
||||
|
||||
# Results are image and seed, unwrap for now and ignore the seed
|
||||
# TODO: pre-seed?
|
||||
|
@ -8,7 +8,6 @@ from ..services.invocation_services import InvocationServices
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from .image import ImageField, ImageOutput
|
||||
|
||||
|
||||
class RestoreFaceInvocation(BaseInvocation):
|
||||
"""Restores faces in an image."""
|
||||
#fmt: off
|
||||
@ -23,7 +22,7 @@ class RestoreFaceInvocation(BaseInvocation):
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
results = context.services.generate.upscale_and_reconstruct(
|
||||
results = context.services.restoration.upscale_and_reconstruct(
|
||||
image_list=[[image, 0]],
|
||||
upscale=None,
|
||||
strength=self.strength, # GFPGAN strength
|
||||
|
@ -26,7 +26,7 @@ class UpscaleInvocation(BaseInvocation):
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
results = context.services.generate.upscale_and_reconstruct(
|
||||
results = context.services.restoration.upscale_and_reconstruct(
|
||||
image_list=[[image, 0]],
|
||||
upscale=(self.level, self.strength),
|
||||
strength=0.0, # GFPGAN strength
|
||||
|
@ -1,255 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from argparse import Namespace
|
||||
|
||||
import invokeai.version
|
||||
from invokeai.backend import Generate, ModelManager
|
||||
|
||||
from ...backend import Globals
|
||||
|
||||
|
||||
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
|
||||
def get_generate(args, config) -> Generate:
|
||||
if not args.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
if not os.path.exists(config_file):
|
||||
report_model_error(
|
||||
args, FileNotFoundError(f"The file {config_file} could not be found.")
|
||||
)
|
||||
|
||||
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
import transformers # type: ignore
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
import diffusers
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
|
||||
# Loading Face Restoration and ESRGAN Modules
|
||||
gfpgan, codeformer, esrgan = load_face_restoration(args)
|
||||
|
||||
# normalize the config directory relative to root
|
||||
if not os.path.isabs(args.conf):
|
||||
args.conf = os.path.normpath(os.path.join(Globals.root, args.conf))
|
||||
|
||||
if args.embeddings:
|
||||
if not os.path.isabs(args.embedding_path):
|
||||
embedding_path = os.path.normpath(
|
||||
os.path.join(Globals.root, args.embedding_path)
|
||||
)
|
||||
else:
|
||||
embedding_path = args.embedding_path
|
||||
else:
|
||||
embedding_path = None
|
||||
|
||||
# migrate legacy models
|
||||
ModelManager.migrate_models()
|
||||
|
||||
# load the infile as a list of lines
|
||||
if args.infile:
|
||||
try:
|
||||
if os.path.isfile(args.infile):
|
||||
infile = open(args.infile, "r", encoding="utf-8")
|
||||
elif args.infile == "-": # stdin
|
||||
infile = sys.stdin
|
||||
else:
|
||||
raise FileNotFoundError(f"{args.infile} not found.")
|
||||
except (FileNotFoundError, IOError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
# creating a Generate object:
|
||||
try:
|
||||
gen = Generate(
|
||||
conf=args.conf,
|
||||
model=args.model,
|
||||
sampler_name=args.sampler_name,
|
||||
embedding_path=embedding_path,
|
||||
full_precision=args.full_precision,
|
||||
precision=args.precision,
|
||||
gfpgan=gfpgan,
|
||||
codeformer=codeformer,
|
||||
esrgan=esrgan,
|
||||
free_gpu_mem=args.free_gpu_mem,
|
||||
safety_checker=args.safety_checker,
|
||||
max_loaded_models=args.max_loaded_models,
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
report_model_error(opt, e)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
if args.seamless:
|
||||
print(">> changed to seamless tiling mode")
|
||||
|
||||
# preload the model
|
||||
try:
|
||||
gen.load_model()
|
||||
except KeyError:
|
||||
pass
|
||||
except Exception as e:
|
||||
report_model_error(args, e)
|
||||
|
||||
# try to autoconvert new models
|
||||
# autoimport new .ckpt files
|
||||
if path := args.autoconvert:
|
||||
gen.model_manager.autoconvert_weights(
|
||||
conf_path=args.conf,
|
||||
weights_directory=path,
|
||||
)
|
||||
|
||||
return gen
|
||||
|
||||
|
||||
def load_face_restoration(opt):
|
||||
try:
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
if opt.restore or opt.esrgan:
|
||||
from invokeai.backend.restoration import Restoration
|
||||
|
||||
restoration = Restoration()
|
||||
if opt.restore:
|
||||
gfpgan, codeformer = restoration.load_face_restore_models(
|
||||
opt.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
if opt.esrgan:
|
||||
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
return gfpgan, codeformer, esrgan
|
||||
|
||||
|
||||
def report_model_error(opt: Namespace, e: Exception):
|
||||
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
print(
|
||||
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
)
|
||||
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
||||
if yes_to_all:
|
||||
print(
|
||||
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
)
|
||||
else:
|
||||
response = input(
|
||||
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
|
||||
)
|
||||
if response.startswith(("n", "N")):
|
||||
return
|
||||
|
||||
print("invokeai-configure is launching....\n")
|
||||
|
||||
# Match arguments that were set on the CLI
|
||||
# only the arguments accepted by the configuration script are parsed
|
||||
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
||||
config = ["--config", opt.conf] if opt.conf is not None else []
|
||||
previous_args = sys.argv
|
||||
sys.argv = ["invokeai-configure"]
|
||||
sys.argv.extend(root_dir)
|
||||
sys.argv.extend(config)
|
||||
if yes_to_all is not None:
|
||||
for arg in yes_to_all.split():
|
||||
sys.argv.append(arg)
|
||||
|
||||
from invokeai.frontend.install import invokeai_configure
|
||||
|
||||
invokeai_configure()
|
||||
# TODO: Figure out how to restart
|
||||
# print('** InvokeAI will now restart')
|
||||
# sys.argv = previous_args
|
||||
# main() # would rather do a os.exec(), but doesn't exist?
|
||||
# sys.exit(0)
|
||||
|
||||
|
||||
# Temporary initializer for Generate until we migrate off of it
|
||||
def old_get_generate(args, config) -> Generate:
|
||||
# TODO: Remove the need for globals
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
# alert - setting globals here
|
||||
Globals.root = os.path.expanduser(
|
||||
args.root_dir or os.environ.get("INVOKEAI_ROOT") or os.path.abspath(".")
|
||||
)
|
||||
Globals.try_patchmatch = args.patchmatch
|
||||
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
import transformers
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
# Loading Face Restoration and ESRGAN Modules
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
try:
|
||||
if config.restore or config.esrgan:
|
||||
from ldm.invoke.restoration import Restoration
|
||||
|
||||
restoration = Restoration()
|
||||
if config.restore:
|
||||
gfpgan, codeformer = restoration.load_face_restore_models(
|
||||
config.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
if config.esrgan:
|
||||
esrgan = restoration.load_esrgan(config.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
|
||||
# normalize the config directory relative to root
|
||||
if not os.path.isabs(config.conf):
|
||||
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
|
||||
|
||||
if config.embeddings:
|
||||
if not os.path.isabs(config.embedding_path):
|
||||
embedding_path = os.path.normpath(
|
||||
os.path.join(Globals.root, config.embedding_path)
|
||||
)
|
||||
else:
|
||||
embedding_path = None
|
||||
|
||||
# TODO: lazy-initialize this by wrapping it
|
||||
try:
|
||||
generate = Generate(
|
||||
conf=config.conf,
|
||||
model=config.model,
|
||||
sampler_name=config.sampler_name,
|
||||
embedding_path=embedding_path,
|
||||
full_precision=config.full_precision,
|
||||
precision=config.precision,
|
||||
gfpgan=gfpgan,
|
||||
codeformer=codeformer,
|
||||
esrgan=esrgan,
|
||||
free_gpu_mem=config.free_gpu_mem,
|
||||
safety_checker=config.safety_checker,
|
||||
max_loaded_models=config.max_loaded_models,
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError):
|
||||
# emergency_model_reconfigure() # TODO?
|
||||
sys.exit(-1)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
generate.free_gpu_mem = config.free_gpu_mem
|
||||
|
||||
return generate
|
@ -1,19 +1,20 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
from invokeai.backend import Generate
|
||||
from invokeai.backend import ModelManager
|
||||
|
||||
from .events import EventServiceBase
|
||||
from .image_storage import ImageStorageBase
|
||||
from .restoration_services import RestorationServices
|
||||
from .invocation_queue import InvocationQueueABC
|
||||
from .item_storage import ItemStorageABC
|
||||
|
||||
|
||||
class InvocationServices:
|
||||
"""Services that can be used by invocations"""
|
||||
|
||||
generate: Generate # TODO: wrap Generate, or split it up from model?
|
||||
events: EventServiceBase
|
||||
images: ImageStorageBase
|
||||
queue: InvocationQueueABC
|
||||
model_manager: ModelManager
|
||||
restoration: RestorationServices
|
||||
|
||||
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
|
||||
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
|
||||
@ -21,16 +22,18 @@ class InvocationServices:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
generate: Generate,
|
||||
model_manager: ModelManager,
|
||||
events: EventServiceBase,
|
||||
images: ImageStorageBase,
|
||||
queue: InvocationQueueABC,
|
||||
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
|
||||
processor: "InvocationProcessorABC",
|
||||
restoration: RestorationServices,
|
||||
):
|
||||
self.generate = generate
|
||||
self.model_manager = model_manager
|
||||
self.events = events
|
||||
self.images = images
|
||||
self.queue = queue
|
||||
self.graph_execution_manager = graph_execution_manager
|
||||
self.processor = processor
|
||||
self.restoration = restoration
|
||||
|
120
invokeai/app/services/model_manager_initializer.py
Normal file
120
invokeai/app/services/model_manager_initializer.py
Normal file
@ -0,0 +1,120 @@
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
from argparse import Namespace
|
||||
from invokeai.backend import Args
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
|
||||
import invokeai.version
|
||||
from ...backend import ModelManager
|
||||
from ...backend.util import choose_precision, choose_torch_device
|
||||
from ...backend import Globals
|
||||
|
||||
# TODO: Replace with an abstract class base ModelManagerBase
|
||||
def get_model_manager(config: Args) -> ModelManager:
|
||||
if not config.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
if not os.path.exists(config_file):
|
||||
report_model_error(
|
||||
config, FileNotFoundError(f"The file {config_file} could not be found.")
|
||||
)
|
||||
|
||||
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
import transformers # type: ignore
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
import diffusers
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
|
||||
# normalize the config directory relative to root
|
||||
if not os.path.isabs(config.conf):
|
||||
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
|
||||
|
||||
if config.embeddings:
|
||||
if not os.path.isabs(config.embedding_path):
|
||||
embedding_path = os.path.normpath(
|
||||
os.path.join(Globals.root, config.embedding_path)
|
||||
)
|
||||
else:
|
||||
embedding_path = config.embedding_path
|
||||
else:
|
||||
embedding_path = None
|
||||
|
||||
# migrate legacy models
|
||||
ModelManager.migrate_models()
|
||||
|
||||
# creating the model manager
|
||||
try:
|
||||
device = torch.device(choose_torch_device())
|
||||
precision = 'float16' if config.precision=='float16' \
|
||||
else 'float32' if config.precision=='float32' \
|
||||
else choose_precision(device)
|
||||
|
||||
model_manager = ModelManager(
|
||||
OmegaConf.load(config.conf),
|
||||
precision=precision,
|
||||
device_type=device,
|
||||
max_loaded_models=config.max_loaded_models,
|
||||
embedding_path = Path(embedding_path),
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
report_model_error(config, e)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
# try to autoconvert new models
|
||||
# autoimport new .ckpt files
|
||||
if path := config.autoconvert:
|
||||
model_manager.autoconvert_weights(
|
||||
conf_path=config.conf,
|
||||
weights_directory=path,
|
||||
)
|
||||
|
||||
return model_manager
|
||||
|
||||
def report_model_error(opt: Namespace, e: Exception):
|
||||
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
print(
|
||||
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
)
|
||||
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
||||
if yes_to_all:
|
||||
print(
|
||||
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
)
|
||||
else:
|
||||
response = input(
|
||||
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
|
||||
)
|
||||
if response.startswith(("n", "N")):
|
||||
return
|
||||
|
||||
print("invokeai-configure is launching....\n")
|
||||
|
||||
# Match arguments that were set on the CLI
|
||||
# only the arguments accepted by the configuration script are parsed
|
||||
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
||||
config = ["--config", opt.conf] if opt.conf is not None else []
|
||||
previous_config = sys.argv
|
||||
sys.argv = ["invokeai-configure"]
|
||||
sys.argv.extend(root_dir)
|
||||
sys.argv.extend(config.to_dict())
|
||||
if yes_to_all is not None:
|
||||
for arg in yes_to_all.split():
|
||||
sys.argv.append(arg)
|
||||
|
||||
from invokeai.frontend.install import invokeai_configure
|
||||
|
||||
invokeai_configure()
|
||||
# TODO: Figure out how to restart
|
||||
# print('** InvokeAI will now restart')
|
||||
# sys.argv = previous_args
|
||||
# main() # would rather do a os.exec(), but doesn't exist?
|
||||
# sys.exit(0)
|
109
invokeai/app/services/restoration_services.py
Normal file
109
invokeai/app/services/restoration_services.py
Normal file
@ -0,0 +1,109 @@
|
||||
import sys
|
||||
import traceback
|
||||
import torch
|
||||
from ...backend.restoration import Restoration
|
||||
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
|
||||
|
||||
# This should be a real base class for postprocessing functions,
|
||||
# but right now we just instantiate the existing gfpgan, esrgan
|
||||
# and codeformer functions.
|
||||
class RestorationServices:
|
||||
'''Face restoration and upscaling'''
|
||||
|
||||
def __init__(self,args):
|
||||
try:
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
if args.restore or args.esrgan:
|
||||
restoration = Restoration()
|
||||
if args.restore:
|
||||
gfpgan, codeformer = restoration.load_face_restore_models(
|
||||
args.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
if args.esrgan:
|
||||
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
self.device = torch.device(choose_torch_device())
|
||||
self.gfpgan = gfpgan
|
||||
self.codeformer = codeformer
|
||||
self.esrgan = esrgan
|
||||
|
||||
# note that this one method does gfpgan and codepath reconstruction, as well as
|
||||
# esrgan upscaling
|
||||
# TO DO: refactor into separate methods
|
||||
def upscale_and_reconstruct(
|
||||
self,
|
||||
image_list,
|
||||
facetool="gfpgan",
|
||||
upscale=None,
|
||||
upscale_denoise_str=0.75,
|
||||
strength=0.0,
|
||||
codeformer_fidelity=0.75,
|
||||
save_original=False,
|
||||
image_callback=None,
|
||||
prefix=None,
|
||||
):
|
||||
results = []
|
||||
for r in image_list:
|
||||
image, seed = r
|
||||
try:
|
||||
if strength > 0:
|
||||
if self.gfpgan is not None or self.codeformer is not None:
|
||||
if facetool == "gfpgan":
|
||||
if self.gfpgan is None:
|
||||
print(
|
||||
">> GFPGAN not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
image = self.gfpgan.process(image, strength, seed)
|
||||
if facetool == "codeformer":
|
||||
if self.codeformer is None:
|
||||
print(
|
||||
">> CodeFormer not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
cf_device = (
|
||||
CPU_DEVICE if self.device == MPS_DEVICE else self.device
|
||||
)
|
||||
image = self.codeformer.process(
|
||||
image=image,
|
||||
strength=strength,
|
||||
device=cf_device,
|
||||
seed=seed,
|
||||
fidelity=codeformer_fidelity,
|
||||
)
|
||||
else:
|
||||
print(">> Face Restoration is disabled.")
|
||||
if upscale is not None:
|
||||
if self.esrgan is not None:
|
||||
if len(upscale) < 2:
|
||||
upscale.append(0.75)
|
||||
image = self.esrgan.process(
|
||||
image,
|
||||
upscale[1],
|
||||
seed,
|
||||
int(upscale[0]),
|
||||
denoise_str=upscale_denoise_str,
|
||||
)
|
||||
else:
|
||||
print(">> ESRGAN is disabled. Image not upscaled.")
|
||||
except Exception as e:
|
||||
print(
|
||||
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
)
|
||||
|
||||
if image_callback is not None:
|
||||
image_callback(image, seed, upscaled=True, use_prefix=prefix)
|
||||
else:
|
||||
r[0] = image
|
||||
|
||||
results.append([image, seed])
|
||||
|
||||
return results
|
@ -2,6 +2,15 @@
|
||||
Initialization file for invokeai.backend
|
||||
"""
|
||||
from .generate import Generate
|
||||
from .generator import (
|
||||
InvokeAIGeneratorBasicParams,
|
||||
InvokeAIGenerator,
|
||||
InvokeAIGeneratorOutput,
|
||||
Txt2Img,
|
||||
Img2Img,
|
||||
Inpaint
|
||||
)
|
||||
from .model_management import ModelManager
|
||||
from .safety_checker import SafetyChecker
|
||||
from .args import Args
|
||||
from .globals import Globals
|
||||
|
@ -25,18 +25,19 @@ from accelerate.utils import set_seed
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
|
||||
from .args import metadata_from_png
|
||||
from .generator import infill_methods
|
||||
from .globals import Globals, global_cache_dir
|
||||
from .image_util import InitImageResizer, PngWriter, Txt2Mask, configure_model_padding
|
||||
from .model_management import ModelManager
|
||||
from .safety_checker import SafetyChecker
|
||||
from .prompting import get_uc_and_c_and_ec
|
||||
from .prompting.conditioning import log_tokenization
|
||||
from .stable_diffusion import HuggingFaceConceptsLibrary
|
||||
from .util import choose_precision, choose_torch_device
|
||||
|
||||
|
||||
def fix_func(orig):
|
||||
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
||||
|
||||
@ -222,6 +223,7 @@ class Generate:
|
||||
self.precision,
|
||||
max_loaded_models=max_loaded_models,
|
||||
sequential_offload=self.free_gpu_mem,
|
||||
embedding_path=Path(self.embedding_path),
|
||||
)
|
||||
# don't accept invalid models
|
||||
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
|
||||
@ -244,31 +246,8 @@ class Generate:
|
||||
|
||||
# load safety checker if requested
|
||||
if safety_checker:
|
||||
try:
|
||||
print(">> Initializing NSFW checker")
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
||||
StableDiffusionSafetyChecker,
|
||||
)
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
||||
safety_model_path = global_cache_dir("hub")
|
||||
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
||||
safety_model_id,
|
||||
local_files_only=True,
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
safety_model_id,
|
||||
local_files_only=True,
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
self.safety_checker.to(self.device)
|
||||
except Exception:
|
||||
print(
|
||||
"** An error was encountered while installing the safety checker:"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
self.safety_checker = SafetyChecker(self.device)
|
||||
else:
|
||||
print(">> NSFW checker is disabled")
|
||||
|
||||
@ -495,18 +474,6 @@ class Generate:
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
results = list()
|
||||
init_image = None
|
||||
mask_image = None
|
||||
|
||||
try:
|
||||
if (
|
||||
self.free_gpu_mem
|
||||
and self.model.cond_stage_model.device != self.model.device
|
||||
):
|
||||
self.model.cond_stage_model.device = self.model.device
|
||||
self.model.cond_stage_model.to(self.model.device)
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
|
||||
@ -535,15 +502,6 @@ class Generate:
|
||||
generator.set_variation(self.seed, variation_amount, with_variations)
|
||||
generator.use_mps_noise = use_mps_noise
|
||||
|
||||
checker = (
|
||||
{
|
||||
"checker": self.safety_checker,
|
||||
"extractor": self.safety_feature_extractor,
|
||||
}
|
||||
if self.safety_checker
|
||||
else None
|
||||
)
|
||||
|
||||
results = generator.generate(
|
||||
prompt,
|
||||
iterations=iterations,
|
||||
@ -570,7 +528,7 @@ class Generate:
|
||||
embiggen_strength=embiggen_strength,
|
||||
inpaint_replace=inpaint_replace,
|
||||
mask_blur_radius=mask_blur_radius,
|
||||
safety_checker=checker,
|
||||
safety_checker=self.safety_checker,
|
||||
seam_size=seam_size,
|
||||
seam_blur=seam_blur,
|
||||
seam_strength=seam_strength,
|
||||
@ -952,18 +910,6 @@ class Generate:
|
||||
self.generators = {}
|
||||
|
||||
set_seed(random.randrange(0, np.iinfo(np.uint32).max))
|
||||
if self.embedding_path is not None:
|
||||
print(f">> Loading embeddings from {self.embedding_path}")
|
||||
for root, _, files in os.walk(self.embedding_path):
|
||||
for name in files:
|
||||
ti_path = os.path.join(root, name)
|
||||
self.model.textual_inversion_manager.load_textual_inversion(
|
||||
ti_path, defer_injecting_tokens=True
|
||||
)
|
||||
print(
|
||||
f'>> Textual inversion triggers: {", ".join(sorted(self.model.textual_inversion_manager.get_all_trigger_strings()))}'
|
||||
)
|
||||
|
||||
self.model_name = model_name
|
||||
self._set_scheduler() # requires self.model_name to be set first
|
||||
return self.model
|
||||
@ -1010,7 +956,7 @@ class Generate:
|
||||
):
|
||||
results = []
|
||||
for r in image_list:
|
||||
image, seed = r
|
||||
image, seed, _ = r
|
||||
try:
|
||||
if strength > 0:
|
||||
if self.gfpgan is not None or self.codeformer is not None:
|
||||
|
@ -1,5 +1,13 @@
|
||||
"""
|
||||
Initialization file for the invokeai.generator package
|
||||
"""
|
||||
from .base import Generator
|
||||
from .base import (
|
||||
InvokeAIGenerator,
|
||||
InvokeAIGeneratorBasicParams,
|
||||
InvokeAIGeneratorOutput,
|
||||
Txt2Img,
|
||||
Img2Img,
|
||||
Inpaint,
|
||||
Generator,
|
||||
)
|
||||
from .inpaint import infill_methods
|
||||
|
@ -4,11 +4,15 @@ including img2img, txt2img, and inpaint
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import itertools
|
||||
import dataclasses
|
||||
import diffusers
|
||||
import os
|
||||
import random
|
||||
import traceback
|
||||
from abc import ABCMeta
|
||||
from argparse import Namespace
|
||||
from contextlib import nullcontext
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -17,12 +21,257 @@ from PIL import Image, ImageChops, ImageFilter
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers import DiffusionPipeline
|
||||
from tqdm import trange
|
||||
from typing import List, Iterator, Type
|
||||
from dataclasses import dataclass, field
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
from ..image_util import configure_model_padding
|
||||
from ..util.util import rand_perlin_2d
|
||||
from ..safety_checker import SafetyChecker
|
||||
from ..prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
|
||||
downsampling = 8
|
||||
CAUTION_IMG = "caution.png"
|
||||
|
||||
@dataclass
|
||||
class InvokeAIGeneratorBasicParams:
|
||||
seed: int=None
|
||||
width: int=512
|
||||
height: int=512
|
||||
cfg_scale: int=7.5
|
||||
steps: int=20
|
||||
ddim_eta: float=0.0
|
||||
scheduler: int='ddim'
|
||||
precision: str='float16'
|
||||
perlin: float=0.0
|
||||
threshold: int=0.0
|
||||
seamless: bool=False
|
||||
seamless_axes: List[str]=field(default_factory=lambda: ['x', 'y'])
|
||||
h_symmetry_time_pct: float=None
|
||||
v_symmetry_time_pct: float=None
|
||||
variation_amount: float = 0.0
|
||||
with_variations: list=field(default_factory=list)
|
||||
safety_checker: SafetyChecker=None
|
||||
|
||||
@dataclass
|
||||
class InvokeAIGeneratorOutput:
|
||||
'''
|
||||
InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation
|
||||
operation, including the image, its seed, the model name used to generate the image
|
||||
and the model hash, as well as all the generate() parameters that went into
|
||||
generating the image (in .params, also available as attributes)
|
||||
'''
|
||||
image: Image
|
||||
seed: int
|
||||
model_hash: str
|
||||
attention_maps_images: List[Image]
|
||||
params: Namespace
|
||||
|
||||
# we are interposing a wrapper around the original Generator classes so that
|
||||
# old code that calls Generate will continue to work.
|
||||
class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
scheduler_map = dict(
|
||||
ddim=diffusers.DDIMScheduler,
|
||||
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
|
||||
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
|
||||
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_euler=diffusers.EulerDiscreteScheduler,
|
||||
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
|
||||
k_heun=diffusers.HeunDiscreteScheduler,
|
||||
k_lms=diffusers.LMSDiscreteScheduler,
|
||||
plms=diffusers.PNDMScheduler,
|
||||
)
|
||||
|
||||
def __init__(self,
|
||||
model_info: dict,
|
||||
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
|
||||
):
|
||||
self.model_info=model_info
|
||||
self.params=params
|
||||
|
||||
def generate(self,
|
||||
prompt: str='',
|
||||
callback: callable=None,
|
||||
step_callback: callable=None,
|
||||
iterations: int=1,
|
||||
**keyword_args,
|
||||
)->Iterator[InvokeAIGeneratorOutput]:
|
||||
'''
|
||||
Return an iterator across the indicated number of generations.
|
||||
Each time the iterator is called it will return an InvokeAIGeneratorOutput
|
||||
object. Use like this:
|
||||
|
||||
outputs = txt2img.generate(prompt='banana sushi', iterations=5)
|
||||
for result in outputs:
|
||||
print(result.image, result.seed)
|
||||
|
||||
In the typical case of wanting to get just a single image, iterations
|
||||
defaults to 1 and do:
|
||||
|
||||
output = next(txt2img.generate(prompt='banana sushi')
|
||||
|
||||
Pass None to get an infinite iterator.
|
||||
|
||||
outputs = txt2img.generate(prompt='banana sushi', iterations=None)
|
||||
for o in outputs:
|
||||
print(o.image, o.seed)
|
||||
|
||||
'''
|
||||
generator_args = dataclasses.asdict(self.params)
|
||||
generator_args.update(keyword_args)
|
||||
|
||||
model_info = self.model_info
|
||||
model_name = model_info['model_name']
|
||||
model:StableDiffusionGeneratorPipeline = model_info['model']
|
||||
model_hash = model_info['hash']
|
||||
scheduler: Scheduler = self.get_scheduler(
|
||||
model=model,
|
||||
scheduler_name=generator_args.get('scheduler')
|
||||
)
|
||||
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(prompt,model=model)
|
||||
gen_class = self._generator_class()
|
||||
generator = gen_class(model, self.params.precision)
|
||||
if self.params.variation_amount > 0:
|
||||
generator.set_variation(generator_args.get('seed'),
|
||||
generator_args.get('variation_amount'),
|
||||
generator_args.get('with_variations')
|
||||
)
|
||||
|
||||
if isinstance(model, DiffusionPipeline):
|
||||
for component in [model.unet, model.vae]:
|
||||
configure_model_padding(component,
|
||||
generator_args.get('seamless',False),
|
||||
generator_args.get('seamless_axes')
|
||||
)
|
||||
else:
|
||||
configure_model_padding(model,
|
||||
generator_args.get('seamless',False),
|
||||
generator_args.get('seamless_axes')
|
||||
)
|
||||
|
||||
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
|
||||
for i in iteration_count:
|
||||
results = generator.generate(prompt,
|
||||
conditioning=(uc, c, extra_conditioning_info),
|
||||
sampler=scheduler,
|
||||
**generator_args,
|
||||
)
|
||||
output = InvokeAIGeneratorOutput(
|
||||
image=results[0][0],
|
||||
seed=results[0][1],
|
||||
attention_maps_images=results[0][2],
|
||||
model_hash = model_hash,
|
||||
params=Namespace(model_name=model_name,**generator_args),
|
||||
)
|
||||
if callback:
|
||||
callback(output)
|
||||
yield output
|
||||
|
||||
@classmethod
|
||||
def schedulers(self)->List[str]:
|
||||
'''
|
||||
Return list of all the schedulers that we currently handle.
|
||||
'''
|
||||
return list(self.scheduler_map.keys())
|
||||
|
||||
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
|
||||
return generator_class(model, self.params.precision)
|
||||
|
||||
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
|
||||
scheduler_class = self.scheduler_map.get(scheduler_name,'ddim')
|
||||
scheduler = scheduler_class.from_config(model.scheduler.config)
|
||||
# hack copied over from generate.py
|
||||
if not hasattr(scheduler, 'uses_inpainting_model'):
|
||||
scheduler.uses_inpainting_model = lambda: False
|
||||
return scheduler
|
||||
|
||||
@classmethod
|
||||
def _generator_class(cls)->Type[Generator]:
|
||||
'''
|
||||
In derived classes return the name of the generator to apply.
|
||||
If you don't override will return the name of the derived
|
||||
class, which nicely parallels the generator class names.
|
||||
'''
|
||||
return Generator
|
||||
|
||||
# ------------------------------------
|
||||
class Txt2Img(InvokeAIGenerator):
|
||||
@classmethod
|
||||
def _generator_class(cls):
|
||||
from .txt2img import Txt2Img
|
||||
return Txt2Img
|
||||
|
||||
# ------------------------------------
|
||||
class Img2Img(InvokeAIGenerator):
|
||||
def generate(self,
|
||||
init_image: Image | torch.FloatTensor,
|
||||
strength: float=0.75,
|
||||
**keyword_args
|
||||
)->List[InvokeAIGeneratorOutput]:
|
||||
return super().generate(init_image=init_image,
|
||||
strength=strength,
|
||||
**keyword_args
|
||||
)
|
||||
@classmethod
|
||||
def _generator_class(cls):
|
||||
from .img2img import Img2Img
|
||||
return Img2Img
|
||||
|
||||
# ------------------------------------
|
||||
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
|
||||
class Inpaint(Img2Img):
|
||||
def generate(self,
|
||||
mask_image: Image | torch.FloatTensor,
|
||||
# Seam settings - when 0, doesn't fill seam
|
||||
seam_size: int = 0,
|
||||
seam_blur: int = 0,
|
||||
seam_strength: float = 0.7,
|
||||
seam_steps: int = 10,
|
||||
tile_size: int = 32,
|
||||
inpaint_replace=False,
|
||||
infill_method=None,
|
||||
inpaint_width=None,
|
||||
inpaint_height=None,
|
||||
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
|
||||
**keyword_args
|
||||
)->List[InvokeAIGeneratorOutput]:
|
||||
return super().generate(
|
||||
mask_image=mask_image,
|
||||
seam_size=seam_size,
|
||||
seam_blur=seam_blur,
|
||||
seam_strength=seam_strength,
|
||||
seam_steps=seam_steps,
|
||||
tile_size=tile_size,
|
||||
inpaint_replace=inpaint_replace,
|
||||
infill_method=infill_method,
|
||||
inpaint_width=inpaint_width,
|
||||
inpaint_height=inpaint_height,
|
||||
inpaint_fill=inpaint_fill,
|
||||
**keyword_args
|
||||
)
|
||||
@classmethod
|
||||
def _generator_class(cls):
|
||||
from .inpaint import Inpaint
|
||||
return Inpaint
|
||||
|
||||
# ------------------------------------
|
||||
class Embiggen(Txt2Img):
|
||||
def generate(
|
||||
self,
|
||||
embiggen: list=None,
|
||||
embiggen_tiles: list = None,
|
||||
strength: float=0.75,
|
||||
**kwargs)->List[InvokeAIGeneratorOutput]:
|
||||
return super().generate(embiggen=embiggen,
|
||||
embiggen_tiles=embiggen_tiles,
|
||||
strength=strength,
|
||||
**kwargs)
|
||||
|
||||
@classmethod
|
||||
def _generator_class(cls):
|
||||
from .embiggen import Embiggen
|
||||
return Embiggen
|
||||
|
||||
|
||||
class Generator:
|
||||
@ -44,7 +293,6 @@ class Generator:
|
||||
self.with_variations = []
|
||||
self.use_mps_noise = False
|
||||
self.free_gpu_mem = None
|
||||
self.caution_img = None
|
||||
|
||||
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
|
||||
def get_make_image(self, prompt, **kwargs):
|
||||
@ -64,10 +312,10 @@ class Generator:
|
||||
def generate(
|
||||
self,
|
||||
prompt,
|
||||
init_image,
|
||||
width,
|
||||
height,
|
||||
sampler,
|
||||
init_image=None,
|
||||
iterations=1,
|
||||
seed=None,
|
||||
image_callback=None,
|
||||
@ -76,7 +324,7 @@ class Generator:
|
||||
perlin=0.0,
|
||||
h_symmetry_time_pct=None,
|
||||
v_symmetry_time_pct=None,
|
||||
safety_checker: dict = None,
|
||||
safety_checker: SafetyChecker=None,
|
||||
free_gpu_mem: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
@ -130,9 +378,9 @@ class Generator:
|
||||
image = make_image(x_T)
|
||||
|
||||
if self.safety_checker is not None:
|
||||
image = self.safety_check(image)
|
||||
image = self.safety_checker.check(image)
|
||||
|
||||
results.append([image, seed])
|
||||
results.append([image, seed, attention_maps_images])
|
||||
|
||||
if image_callback is not None:
|
||||
attention_maps_image = (
|
||||
@ -292,16 +540,6 @@ class Generator:
|
||||
seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
return (seed, initial_noise)
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self, width, height):
|
||||
"""
|
||||
Returns a tensor filled with random numbers, either form a normal distribution
|
||||
(txt2img) or from the latent image (img2img, inpaint)
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"get_noise() must be implemented in a descendent class"
|
||||
)
|
||||
|
||||
def get_perlin_noise(self, width, height):
|
||||
fixdevice = "cpu" if (self.model.device.type == "mps") else self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
@ -361,53 +599,6 @@ class Generator:
|
||||
|
||||
return v2
|
||||
|
||||
def safety_check(self, image: Image.Image):
|
||||
"""
|
||||
If the CompViz safety checker flags an NSFW image, we
|
||||
blur it out.
|
||||
"""
|
||||
import diffusers
|
||||
|
||||
checker = self.safety_checker["checker"]
|
||||
extractor = self.safety_checker["extractor"]
|
||||
features = extractor([image], return_tensors="pt")
|
||||
features.to(self.model.device)
|
||||
|
||||
# unfortunately checker requires the numpy version, so we have to convert back
|
||||
x_image = np.array(image).astype(np.float32) / 255.0
|
||||
x_image = x_image[None].transpose(0, 3, 1, 2)
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
checked_image, has_nsfw_concept = checker(
|
||||
images=x_image, clip_input=features.pixel_values
|
||||
)
|
||||
if has_nsfw_concept[0]:
|
||||
print(
|
||||
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
|
||||
)
|
||||
return self.blur(image)
|
||||
else:
|
||||
return image
|
||||
|
||||
def blur(self, input):
|
||||
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
||||
try:
|
||||
caution = self.get_caution_img()
|
||||
if caution:
|
||||
blurry.paste(caution, (0, 0), caution)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
return blurry
|
||||
|
||||
def get_caution_img(self):
|
||||
path = None
|
||||
if self.caution_img:
|
||||
return self.caution_img
|
||||
path = Path(web_assets.__path__[0]) / CAUTION_IMG
|
||||
caution = Image.open(path)
|
||||
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
|
||||
return self.caution_img
|
||||
|
||||
# this is a handy routine for debugging use. Given a generated sample,
|
||||
# convert it into a PNG image and store it at the indicated path
|
||||
def save_sample(self, sample, filepath):
|
||||
|
@ -1274,7 +1274,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
tokenizer=tokenizer,
|
||||
unet=unet.to(precision),
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker.to(precision),
|
||||
safety_checker=None if return_generator_pipeline else safety_checker.to(precision),
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
else:
|
||||
|
@ -34,8 +34,7 @@ from picklescan.scanner import scan_file_path
|
||||
from invokeai.backend.globals import Globals, global_cache_dir
|
||||
|
||||
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||
from ..util import CPU_DEVICE, ask_user, download_with_resume
|
||||
|
||||
from ..util import CUDA_DEVICE, CPU_DEVICE, ask_user, download_with_resume
|
||||
|
||||
class SDLegacyType(Enum):
|
||||
V1 = 1
|
||||
@ -51,23 +50,29 @@ VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
||||
}
|
||||
|
||||
class ModelManager(object):
|
||||
'''
|
||||
Model manager handles loading, caching, importing, deleting, converting, and editing models.
|
||||
'''
|
||||
def __init__(
|
||||
self,
|
||||
config: OmegaConf,
|
||||
device_type: torch.device = CPU_DEVICE,
|
||||
config: OmegaConf|Path,
|
||||
device_type: torch.device = CUDA_DEVICE,
|
||||
precision: str = "float16",
|
||||
max_loaded_models=DEFAULT_MAX_MODELS,
|
||||
sequential_offload=False,
|
||||
embedding_path: Path=None,
|
||||
):
|
||||
"""
|
||||
Initialize with the path to the models.yaml config file,
|
||||
the torch device type, and precision. The optional
|
||||
min_avail_mem argument specifies how much unused system
|
||||
(CPU) memory to preserve. The cache of models in RAM will
|
||||
grow until this value is approached. Default is 2G.
|
||||
Initialize with the path to the models.yaml config file or
|
||||
an initialized OmegaConf dictionary. Optional parameters
|
||||
are the torch device type, precision, max_loaded_models,
|
||||
and sequential_offload boolean. Note that the default device
|
||||
type and precision are set up for a CUDA system running at half precision.
|
||||
"""
|
||||
# prevent nasty-looking CLIP log message
|
||||
transformers.logging.set_verbosity_error()
|
||||
if not isinstance(config, DictConfig):
|
||||
config = OmegaConf.load(config)
|
||||
self.config = config
|
||||
self.precision = precision
|
||||
self.device = torch.device(device_type)
|
||||
@ -76,6 +81,7 @@ class ModelManager(object):
|
||||
self.stack = [] # this is an LRU FIFO
|
||||
self.current_model = None
|
||||
self.sequential_offload = sequential_offload
|
||||
self.embedding_path = embedding_path
|
||||
|
||||
def valid_model(self, model_name: str) -> bool:
|
||||
"""
|
||||
@ -84,12 +90,15 @@ class ModelManager(object):
|
||||
"""
|
||||
return model_name in self.config
|
||||
|
||||
def get_model(self, model_name: str):
|
||||
def get_model(self, model_name: str=None)->dict:
|
||||
"""
|
||||
Given a model named identified in models.yaml, return
|
||||
the model object. If in RAM will load into GPU VRAM.
|
||||
If on disk, will load from there.
|
||||
"""
|
||||
if not model_name:
|
||||
return self.get_model(self.current_model) if self.current_model else self.get_model(self.default_model())
|
||||
|
||||
if not self.valid_model(model_name):
|
||||
print(
|
||||
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
|
||||
@ -104,7 +113,7 @@ class ModelManager(object):
|
||||
if model_name in self.models:
|
||||
requested_model = self.models[model_name]["model"]
|
||||
print(f">> Retrieving model {model_name} from system RAM cache")
|
||||
self.models[model_name]["model"] = self._model_from_cpu(requested_model)
|
||||
requested_model.ready()
|
||||
width = self.models[model_name]["width"]
|
||||
height = self.models[model_name]["height"]
|
||||
hash = self.models[model_name]["hash"]
|
||||
@ -112,6 +121,7 @@ class ModelManager(object):
|
||||
else: # we're about to load a new model, so potentially offload the least recently used one
|
||||
requested_model, width, height, hash = self._load_model(model_name)
|
||||
self.models[model_name] = {
|
||||
"model_name": model_name,
|
||||
"model": requested_model,
|
||||
"width": width,
|
||||
"height": height,
|
||||
@ -121,6 +131,7 @@ class ModelManager(object):
|
||||
self.current_model = model_name
|
||||
self._push_newest_model(model_name)
|
||||
return {
|
||||
"model_name": model_name,
|
||||
"model": requested_model,
|
||||
"width": width,
|
||||
"height": height,
|
||||
@ -425,6 +436,7 @@ class ModelManager(object):
|
||||
height = width
|
||||
|
||||
print(f" | Default image dimensions = {width} x {height}")
|
||||
self._add_embeddings_to_model(pipeline)
|
||||
|
||||
return pipeline, width, height, model_hash
|
||||
|
||||
@ -499,7 +511,7 @@ class ModelManager(object):
|
||||
|
||||
print(f">> Offloading {model_name} to CPU")
|
||||
model = self.models[model_name]["model"]
|
||||
self.models[model_name]["model"] = self._model_to_cpu(model)
|
||||
model.offload_all()
|
||||
|
||||
gc.collect()
|
||||
if self._has_cuda():
|
||||
@ -557,7 +569,7 @@ class ModelManager(object):
|
||||
"""
|
||||
model_name = model_name or Path(repo_or_path).stem
|
||||
model_description = (
|
||||
model_description or f"Imported diffusers model {model_name}"
|
||||
description or f"Imported diffusers model {model_name}"
|
||||
)
|
||||
new_config = dict(
|
||||
description=model_description,
|
||||
@ -1044,43 +1056,6 @@ class ModelManager(object):
|
||||
self.stack.remove(model_name)
|
||||
self.models.pop(model_name, None)
|
||||
|
||||
def _model_to_cpu(self, model):
|
||||
if self.device == CPU_DEVICE:
|
||||
return model
|
||||
|
||||
if isinstance(model, StableDiffusionGeneratorPipeline):
|
||||
model.offload_all()
|
||||
return model
|
||||
|
||||
model.cond_stage_model.device = CPU_DEVICE
|
||||
model.to(CPU_DEVICE)
|
||||
|
||||
for submodel in ("first_stage_model", "cond_stage_model", "model"):
|
||||
try:
|
||||
getattr(model, submodel).to(CPU_DEVICE)
|
||||
except AttributeError:
|
||||
pass
|
||||
return model
|
||||
|
||||
def _model_from_cpu(self, model):
|
||||
if self.device == CPU_DEVICE:
|
||||
return model
|
||||
|
||||
if isinstance(model, StableDiffusionGeneratorPipeline):
|
||||
model.ready()
|
||||
return model
|
||||
|
||||
model.to(self.device)
|
||||
model.cond_stage_model.device = self.device
|
||||
|
||||
for submodel in ("first_stage_model", "cond_stage_model", "model"):
|
||||
try:
|
||||
getattr(model, submodel).to(self.device)
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
return model
|
||||
|
||||
def _pop_oldest_model(self):
|
||||
"""
|
||||
Remove the first element of the FIFO, which ought
|
||||
@ -1098,6 +1073,19 @@ class ModelManager(object):
|
||||
self.stack.remove(model_name)
|
||||
self.stack.append(model_name)
|
||||
|
||||
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
|
||||
if self.embedding_path is not None:
|
||||
print(f">> Loading embeddings from {self.embedding_path}")
|
||||
for root, _, files in os.walk(self.embedding_path):
|
||||
for name in files:
|
||||
ti_path = os.path.join(root, name)
|
||||
model.textual_inversion_manager.load_textual_inversion(
|
||||
ti_path, defer_injecting_tokens=True
|
||||
)
|
||||
print(
|
||||
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
|
||||
)
|
||||
|
||||
def _has_cuda(self) -> bool:
|
||||
return self.device.type == "cuda"
|
||||
|
||||
|
@ -3,7 +3,6 @@ Initialization file for invokeai.backend.prompting
|
||||
"""
|
||||
from .conditioning import (
|
||||
get_prompt_structure,
|
||||
get_tokenizer,
|
||||
get_tokens_for_prompt_object,
|
||||
get_uc_and_c_and_ec,
|
||||
split_weighted_subprompts,
|
||||
|
@ -7,7 +7,7 @@ get_uc_and_c_and_ec() get the conditioned and unconditioned latent, an
|
||||
|
||||
"""
|
||||
import re
|
||||
from typing import Any, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
from compel import Compel
|
||||
from compel.prompt_parser import (
|
||||
@ -17,7 +17,6 @@ from compel.prompt_parser import (
|
||||
Fragment,
|
||||
PromptParser,
|
||||
)
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
@ -25,36 +24,6 @@ from ..stable_diffusion import InvokeAIDiffuserComponent
|
||||
from ..util import torch_dtype
|
||||
|
||||
|
||||
def get_tokenizer(model) -> CLIPTokenizer:
|
||||
# TODO remove legacy ckpt fallback handling
|
||||
return (
|
||||
getattr(model, "tokenizer", None) # diffusers
|
||||
or model.cond_stage_model.tokenizer
|
||||
) # ldm
|
||||
|
||||
|
||||
def get_text_encoder(model) -> Any:
|
||||
# TODO remove legacy ckpt fallback handling
|
||||
return getattr(
|
||||
model, "text_encoder", None
|
||||
) or UnsqueezingLDMTransformer( # diffusers
|
||||
model.cond_stage_model.transformer
|
||||
) # ldm
|
||||
|
||||
|
||||
class UnsqueezingLDMTransformer:
|
||||
def __init__(self, ldm_transformer):
|
||||
self.ldm_transformer = ldm_transformer
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.ldm_transformer.device
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
insufficiently_unsqueezed_tensor = self.ldm_transformer(*args, **kwargs)
|
||||
return insufficiently_unsqueezed_tensor.unsqueeze(0)
|
||||
|
||||
|
||||
def get_uc_and_c_and_ec(
|
||||
prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False
|
||||
):
|
||||
@ -64,11 +33,10 @@ def get_uc_and_c_and_ec(
|
||||
prompt_string
|
||||
)
|
||||
|
||||
tokenizer = get_tokenizer(model)
|
||||
text_encoder = get_text_encoder(model)
|
||||
tokenizer = model.tokenizer
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
text_encoder=model.text_encoder,
|
||||
textual_inversion_manager=model.textual_inversion_manager,
|
||||
dtype_for_device_getter=torch_dtype,
|
||||
truncate_long_prompts=False
|
||||
|
82
invokeai/backend/safety_checker.py
Normal file
82
invokeai/backend/safety_checker.py
Normal file
@ -0,0 +1,82 @@
|
||||
'''
|
||||
SafetyChecker class - checks images against the StabilityAI NSFW filter
|
||||
and blurs images that contain potential NSFW content.
|
||||
'''
|
||||
import diffusers
|
||||
import numpy as np
|
||||
import torch
|
||||
import traceback
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
||||
StableDiffusionSafetyChecker,
|
||||
)
|
||||
from pathlib import Path
|
||||
from PIL import Image, ImageFilter
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
from .globals import global_cache_dir
|
||||
from .util import CPU_DEVICE
|
||||
|
||||
class SafetyChecker(object):
|
||||
CAUTION_IMG = "caution.png"
|
||||
|
||||
def __init__(self, device: torch.device):
|
||||
path = Path(web_assets.__path__[0]) / self.CAUTION_IMG
|
||||
caution = Image.open(path)
|
||||
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
|
||||
self.device = device
|
||||
|
||||
try:
|
||||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
||||
safety_model_path = global_cache_dir("hub")
|
||||
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
||||
safety_model_id,
|
||||
local_files_only=True,
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
safety_model_id,
|
||||
local_files_only=True,
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
except Exception:
|
||||
print(
|
||||
"** An error was encountered while installing the safety checker:"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
|
||||
def check(self, image: Image.Image):
|
||||
"""
|
||||
Check provided image against the StabilityAI safety checker and return
|
||||
|
||||
"""
|
||||
|
||||
self.safety_checker.to(self.device)
|
||||
features = self.safety_feature_extractor([image], return_tensors="pt")
|
||||
features.to(self.device)
|
||||
|
||||
# unfortunately checker requires the numpy version, so we have to convert back
|
||||
x_image = np.array(image).astype(np.float32) / 255.0
|
||||
x_image = x_image[None].transpose(0, 3, 1, 2)
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
checked_image, has_nsfw_concept = self.safety_checker(
|
||||
images=x_image, clip_input=features.pixel_values
|
||||
)
|
||||
self.safety_checker.to(CPU_DEVICE) # offload
|
||||
if has_nsfw_concept[0]:
|
||||
print(
|
||||
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
|
||||
)
|
||||
return self.blur(image)
|
||||
else:
|
||||
return image
|
||||
|
||||
def blur(self, input):
|
||||
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
||||
try:
|
||||
if caution := self.caution_img:
|
||||
blurry.paste(caution, (0, 0), caution)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
return blurry
|
@ -54,16 +54,6 @@ class PipelineIntermediateState:
|
||||
attention_map_saver: Optional[AttentionMapSaver] = None
|
||||
|
||||
|
||||
# copied from configs/stable-diffusion/v1-inference.yaml
|
||||
_default_personalization_config_params = dict(
|
||||
placeholder_strings=["*"],
|
||||
initializer_wods=["sculpture"],
|
||||
per_image_tokens=False,
|
||||
num_vectors_per_token=1,
|
||||
progressive_words=False,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class AddsMaskLatents:
|
||||
"""Add the channels required for inpainting model input.
|
||||
@ -175,7 +165,7 @@ def image_resized_to_grid_as_tensor(
|
||||
:param normalize: scale the range to [-1, 1] instead of [0, 1]
|
||||
:param multiple_of: resize the input so both dimensions are a multiple of this
|
||||
"""
|
||||
w, h = trim_to_multiple_of(*image.size)
|
||||
w, h = trim_to_multiple_of(*image.size, multiple_of=multiple_of)
|
||||
transformation = T.Compose(
|
||||
[
|
||||
T.Resize((h, w), T.InterpolationMode.LANCZOS),
|
||||
@ -290,10 +280,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
||||
feature_extractor ([`CLIPFeatureExtractor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
@ -436,11 +426,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
"""
|
||||
Ready this pipeline's models.
|
||||
|
||||
i.e. pre-load them to the GPU if appropriate.
|
||||
i.e. preload them to the GPU if appropriate.
|
||||
"""
|
||||
self._model_group.ready()
|
||||
|
||||
def to(self, torch_device: Optional[Union[str, torch.device]] = None):
|
||||
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False):
|
||||
# overridden method; types match the superclass.
|
||||
if torch_device is None:
|
||||
return self
|
||||
@ -917,20 +907,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
device=self._model_group.device_for(self.unet),
|
||||
)
|
||||
|
||||
@property
|
||||
def cond_stage_model(self):
|
||||
return self.embeddings_provider
|
||||
|
||||
@torch.inference_mode()
|
||||
def _tokenize(self, prompt: Union[str, List[str]]):
|
||||
return self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
@property
|
||||
def channels(self) -> int:
|
||||
"""Compatible with DiffusionWrapper"""
|
||||
@ -942,9 +918,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
return super().decode_latents(latents)
|
||||
|
||||
def debug_latents(self, latents, msg):
|
||||
from invokeai.backend.image_util import debug_image
|
||||
with torch.inference_mode():
|
||||
from ldm.util import debug_image
|
||||
|
||||
decoded = self.numpy_to_pil(self.decode_latents(latents))
|
||||
for i, img in enumerate(decoded):
|
||||
debug_image(
|
||||
|
@ -29,7 +29,6 @@ from ..image_util import PngWriter, retrieve_metadata
|
||||
from ...frontend.merge.merge_diffusers import merge_diffusion_models
|
||||
from ..prompting import (
|
||||
get_prompt_structure,
|
||||
get_tokenizer,
|
||||
get_tokens_for_prompt_object,
|
||||
)
|
||||
from ..stable_diffusion import PipelineIntermediateState
|
||||
@ -1274,7 +1273,7 @@ class InvokeAIWebServer:
|
||||
None
|
||||
if type(parsed_prompt) is Blend
|
||||
else get_tokens_for_prompt_object(
|
||||
get_tokenizer(self.generate.model), parsed_prompt
|
||||
self.generate.model.tokenizer, parsed_prompt
|
||||
)
|
||||
)
|
||||
attention_maps_image_base64_url = (
|
||||
|
@ -35,6 +35,7 @@ module.exports = {
|
||||
{ varsIgnorePattern: '^_', argsIgnorePattern: '^_' },
|
||||
],
|
||||
'prettier/prettier': ['error', { endOfLine: 'auto' }],
|
||||
'@typescript-eslint/ban-ts-comment': 'warn',
|
||||
},
|
||||
settings: {
|
||||
react: {
|
||||
|
40610
invokeai/frontend/web/dist/App-d3a51b95.mjs
vendored
40610
invokeai/frontend/web/dist/App-d3a51b95.mjs
vendored
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
1
invokeai/frontend/web/dist/assets/App-08e5c546.css
vendored
Normal file
1
invokeai/frontend/web/dist/assets/App-08e5c546.css
vendored
Normal file
@ -0,0 +1 @@
|
||||
.ltr-image-gallery-css-transition-enter{transform:translate(150%)}.ltr-image-gallery-css-transition-enter-active{transform:translate(0);transition:all .12s ease-out}.ltr-image-gallery-css-transition-exit{transform:translate(0)}.ltr-image-gallery-css-transition-exit-active{transform:translate(150%);transition:all .12s ease-out}.rtl-image-gallery-css-transition-enter{transform:translate(-150%)}.rtl-image-gallery-css-transition-enter-active{transform:translate(0);transition:all .12s ease-out}.rtl-image-gallery-css-transition-exit{transform:translate(0)}.rtl-image-gallery-css-transition-exit-active{transform:translate(-150%);transition:all .12s ease-out}
|
188
invokeai/frontend/web/dist/assets/App-b40e839f.js
vendored
Normal file
188
invokeai/frontend/web/dist/assets/App-b40e839f.js
vendored
Normal file
File diff suppressed because one or more lines are too long
315
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-bd116415.js
vendored
Normal file
315
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-bd116415.js
vendored
Normal file
File diff suppressed because one or more lines are too long
BIN
invokeai/frontend/web/dist/assets/favicon-0d253ced.ico
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/favicon-0d253ced.ico
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 116 KiB |
1
invokeai/frontend/web/dist/assets/index-5483945c.css
vendored
Normal file
1
invokeai/frontend/web/dist/assets/index-5483945c.css
vendored
Normal file
File diff suppressed because one or more lines are too long
115
invokeai/frontend/web/dist/assets/index-e1f916bd.js
vendored
Normal file
115
invokeai/frontend/web/dist/assets/index-e1f916bd.js
vendored
Normal file
File diff suppressed because one or more lines are too long
BIN
invokeai/frontend/web/dist/assets/inter-all-100-normal-2596a8cd.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-100-normal-2596a8cd.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-200-normal-34e907e6.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-200-normal-34e907e6.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-300-normal-e375e256.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-300-normal-e375e256.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-400-normal-f824029b.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-400-normal-f824029b.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-500-normal-94e08ad8.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-500-normal-94e08ad8.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-600-normal-ba29c057.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-600-normal-ba29c057.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-700-normal-9d318ccb.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-700-normal-9d318ccb.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-800-normal-ab496fbe.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-800-normal-ab496fbe.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-all-900-normal-50daf4f1.woff
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-all-900-normal-50daf4f1.woff
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-100-normal-9747741a.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-100-normal-9747741a.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-200-normal-87d2e1ba.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-200-normal-87d2e1ba.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-300-normal-cff08766.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-300-normal-cff08766.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-400-normal-e9493683.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-400-normal-e9493683.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-500-normal-f6bd191e.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-500-normal-f6bd191e.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-600-normal-9bc492f5.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-600-normal-9bc492f5.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-700-normal-f6c6dcaf.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-700-normal-f6c6dcaf.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-800-normal-82994ee8.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-800-normal-82994ee8.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-900-normal-768011c3.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-900-normal-768011c3.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-100-normal-a1f4d02d.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-100-normal-a1f4d02d.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-200-normal-82562199.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-200-normal-82562199.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-300-normal-66b2369e.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-300-normal-66b2369e.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-400-normal-f7666a51.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-400-normal-f7666a51.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-500-normal-8b5f6999.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-500-normal-8b5f6999.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-600-normal-2ea11f8c.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-600-normal-2ea11f8c.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-700-normal-b7bb121f.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-700-normal-b7bb121f.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-800-normal-f15d8f83.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-800-normal-f15d8f83.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-900-normal-b1c13874.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-cyrillic-ext-900-normal-b1c13874.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-100-normal-a44b9fc9.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-100-normal-a44b9fc9.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-200-normal-9575e0f8.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-200-normal-9575e0f8.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-300-normal-d0749e19.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-300-normal-d0749e19.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-400-normal-2f2d421a.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-400-normal-2f2d421a.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-500-normal-ddbf6a70.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-500-normal-ddbf6a70.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-600-normal-4591e350.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-600-normal-4591e350.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-700-normal-9e078f49.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-700-normal-9e078f49.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-800-normal-fb5de277.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-800-normal-fb5de277.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-900-normal-ffa82654.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-900-normal-ffa82654.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-100-normal-71976b96.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-100-normal-71976b96.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-200-normal-45dafb12.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-200-normal-45dafb12.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-300-normal-09d21325.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-300-normal-09d21325.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-400-normal-d3e30cde.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-400-normal-d3e30cde.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-500-normal-528b79aa.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-500-normal-528b79aa.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-600-normal-c37a11b3.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-600-normal-c37a11b3.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-700-normal-22174f43.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-700-normal-22174f43.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-800-normal-bddb6f8e.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-800-normal-bddb6f8e.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-900-normal-bebcb6fc.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-greek-ext-900-normal-bebcb6fc.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-100-normal-61cac109.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-100-normal-61cac109.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-200-normal-74885a0c.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-200-normal-74885a0c.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-300-normal-6b2cee46.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-300-normal-6b2cee46.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-400-normal-0364d368.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-400-normal-0364d368.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-500-normal-d5333670.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-500-normal-d5333670.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-600-normal-048d136d.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-600-normal-048d136d.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-700-normal-ced2d8e0.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-700-normal-ced2d8e0.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-800-normal-a51ac27d.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-800-normal-a51ac27d.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-900-normal-f2db7f82.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-900-normal-f2db7f82.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-100-normal-d3be20b3.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-100-normal-d3be20b3.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-200-normal-4336e69d.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-200-normal-4336e69d.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-300-normal-34623012.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-300-normal-34623012.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-400-normal-64a98f58.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-400-normal-64a98f58.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-500-normal-4fba9ae6.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-500-normal-4fba9ae6.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-600-normal-cc23fe6f.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-600-normal-cc23fe6f.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-700-normal-1cc47d25.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-700-normal-1cc47d25.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-800-normal-b6167428.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-800-normal-b6167428.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-900-normal-3cff82a5.woff2
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/inter-latin-ext-900-normal-3cff82a5.woff2
vendored
Normal file
Binary file not shown.
BIN
invokeai/frontend/web/dist/assets/logo-13003d72.png
vendored
Normal file
BIN
invokeai/frontend/web/dist/assets/logo-13003d72.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 43 KiB |
9
invokeai/frontend/web/dist/assets/storeHooks-548a355c.js
vendored
Normal file
9
invokeai/frontend/web/dist/assets/storeHooks-548a355c.js
vendored
Normal file
File diff suppressed because one or more lines are too long
25336
invokeai/frontend/web/dist/component-6919b100.mjs
vendored
25336
invokeai/frontend/web/dist/component-6919b100.mjs
vendored
File diff suppressed because one or more lines are too long
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user