Add image multiplication.

This commit is contained in:
Ryan Dick 2024-07-25 15:31:46 -04:00
parent 3573d39860
commit bead83a8bc
2 changed files with 61 additions and 14 deletions

View File

@ -12,7 +12,7 @@
"import numpy as np\n", "import numpy as np\n",
"import cv2\n", "import cv2\n",
"\n", "\n",
"from invokeai.backend.vto_workflow.overlay_pattern import generate_dress_mask\n", "from invokeai.backend.vto_workflow.overlay_pattern import generate_dress_mask, multiply_images\n",
"from invokeai.backend.vto_workflow.extract_channel import extract_channel, ImageChannel\n", "from invokeai.backend.vto_workflow.extract_channel import extract_channel, ImageChannel\n",
"from invokeai.backend.vto_workflow.seamless_mapping import map_seamless_tiles\n", "from invokeai.backend.vto_workflow.seamless_mapping import map_seamless_tiles\n",
"\n", "\n",
@ -87,19 +87,8 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"expanded_pattern = map_seamless_tiles(seamless_tile=pattern_image, target_hw=(model_image.height, model_image.width), num_repeats_h=5.0)\n", "# Tile the pattern.\n",
"expanded_pattern" "expanded_pattern = map_seamless_tiles(seamless_tile=pattern_image, target_hw=(model_image.height, model_image.width), num_repeats_h=10.0)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a12c166",
"metadata": {},
"outputs": [],
"source": [
"expanded_pattern = map_seamless_tiles(seamless_tile=pattern_image, target_hw=(model_image.height, model_image.width), num_repeats_h=1.0)\n",
"expanded_pattern"
] ]
}, },
{ {
@ -108,6 +97,40 @@
"id": "f4f22d02", "id": "f4f22d02",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [
"# Multiply the pattern by the shadows.\n",
"pattern_with_shadows = multiply_images(expanded_pattern, shadows)\n",
"pattern_with_shadows"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97db42b0",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "de32f7e3",
"metadata": {},
"outputs": [],
"source": [
"# Merge the pattern with the model image.\n",
"pattern_with_shadows_np = np.array(pattern_with_shadows)\n",
"merged_image = np.where(mask[:, :, None], pattern_with_shadows_np,model_image_np)\n",
"merged_image = Image.fromarray(merged_image)\n",
"merged_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff1d4044",
"metadata": {},
"outputs": [],
"source": [] "source": []
} }
], ],

View File

@ -29,6 +29,30 @@ def generate_dress_mask(model_image):
return binary_mask return binary_mask
def multiply_images(image_1: Image.Image, image_2: Image.Image) -> Image.Image:
"""Multiply two images together.
Args:
image_1 (Image.Image): The first image.
image_2 (Image.Image): The second image.
Returns:
Image.Image: The product of the two images.
"""
image_1_np = np.array(image_1, dtype=np.float32)
if image_1_np.ndim == 2:
# If the image is greyscale, add a channel dimension.
image_1_np = np.expand_dims(image_1_np, axis=-1)
image_2_np = np.array(image_2, dtype=np.float32)
if image_2_np.ndim == 2:
# If the image is greyscale, add a channel dimension.
image_2_np = np.expand_dims(image_2_np, axis=-1)
product_np = image_1_np * image_2_np // 255
product_np = np.clip(product_np, 0, 255).astype(np.uint8)
product = Image.fromarray(product_np)
return product
@torch.inference_mode() @torch.inference_mode()
def main(): def main():
# Load the model image. # Load the model image.