move ModelManager initialization into its own module and restore embedding support

This commit is contained in:
Lincoln Stein
2023-03-11 10:56:53 -05:00
parent d612f11c11
commit c14241436b
5 changed files with 161 additions and 150 deletions

View File

@ -222,6 +222,7 @@ class Generate:
self.precision,
max_loaded_models=max_loaded_models,
sequential_offload=self.free_gpu_mem,
embedding_path=Path(self.embedding_path),
)
# don't accept invalid models
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
@ -940,18 +941,6 @@ class Generate:
self.generators = {}
set_seed(random.randrange(0, np.iinfo(np.uint32).max))
if self.embedding_path is not None:
print(f">> Loading embeddings from {self.embedding_path}")
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
self.model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
print(
f'>> Textual inversion triggers: {", ".join(sorted(self.model.textual_inversion_manager.get_all_trigger_strings()))}'
)
self.model_name = model_name
self._set_scheduler() # requires self.model_name to be set first
return self.model

View File

@ -54,12 +54,13 @@ class ModelManager(object):
Model manager handles loading, caching, importing, deleting, converting, and editing models.
'''
def __init__(
self,
config: OmegaConf|Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
self,
config: OmegaConf|Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path=None,
):
"""
Initialize with the path to the models.yaml config file or
@ -80,6 +81,7 @@ class ModelManager(object):
self.stack = [] # this is an LRU FIFO
self.current_model = None
self.sequential_offload = sequential_offload
self.embedding_path = embedding_path
def valid_model(self, model_name: str) -> bool:
"""
@ -434,6 +436,7 @@ class ModelManager(object):
height = width
print(f" | Default image dimensions = {width} x {height}")
self._add_embeddings_to_model(pipeline)
return pipeline, width, height, model_hash
@ -1070,6 +1073,19 @@ class ModelManager(object):
self.stack.remove(model_name)
self.stack.append(model_name)
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
if self.embedding_path is not None:
print(f">> Loading embeddings from {self.embedding_path}")
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
print(
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
)
def _has_cuda(self) -> bool:
return self.device.type == "cuda"